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ABSTRACT The rise of multidrug-resistant pathogens has awakened interest in new
drug candidates such as antimicrobial peptides and their derivatives. Recent work
suggests that some antimicrobial peptides have the ability to self-assemble into or-
dered amyloid-like nanostructures which facilitate their antibacterial activity. Here,
we evaluate a histatin-based antimicrobial peptide, and its self-assembling deriva-
tive, in the interplay between self-assembly, membrane interactions, and antibacte-
rial and antifungal activities. We demonstrate substantial membrane targeting by
both peptides, as well as mechanistic insights into this mode of action, which corre-
lates to their antifungal activity and is not affected by their self-assembling state.
The ability to self-assemble does, however, significantly affect peptide antibacterial
activity against both Gram-negative and Gram-positive bacteria. These results are
surprising and hint at important distinctions between antifungal and antibacterial
peptide activities in prokaryotes and eukaryotic microbes.

IMPORTANCE Antimicrobial peptides are important modulators of host defense
against bacterial, fungal, and viral pathogens in humans and other multicellular or-
ganisms. Two converging paradigms point to a link between antimicrobial peptides
that self-assemble into amyloid-like nanoassemblies and classical amyloidogenic
peptides that often have potent broad-spectrum antimicrobial activity, suggesting
that antimicrobial and amyloidogenic peptides may represent two sides of the same
coin. Here, we asked if the ability of an antifungal peptide to self-assemble affects
its antifungal or antibacterial activity. We found that modifications of classical anti-
fungal peptide derivative allowed it to self-assemble and did not alter its antifungal
activity, and yet self-assembly substantially increased the antibacterial activity of the
peptide. These results support the idea that peptide self-assembly can enhance anti-
bacterial activities and emphasize a distinction between the action of antifungal
peptides and that of antibacterial peptides. Accordingly, we suggest that the possi-
ble generality of this distinction should be widely tested.
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Rapid growth in the number and prevalence of multidrug-resistant bacteria, coupled
with a 30-year void in the introduction of new antibiotics into clinical practice,

underlies the need for new antibacterial agents, especially those based on unique
mechanisms of action (1–4). Antimicrobial peptides (AMPs), a growing class of
membrane-interacting antimicrobial agents, are active against a broad spectrum of
microorganisms (5–8), and their synthetic analogs and mimetics constitute a potential
source of new antimicrobial therapeutics (9, 10).

Candida albicans is the most prevalent cause of oral candidiasis and of candidal
infections in general (11, 12). Resistance and tolerance to antifungal drugs are serious
concerns for C. albicans as well as for several emerging non-albicans Candida species
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(13–15). The first-line defense against oral candidiasis involves the use of histatins, a
collection of at least 12 salivary histidine-rich antimicrobial peptides (16–18). Histatin 5
is among the most extensively studied and most effective of these against Candida
infections (18–22). Several histatin 5 derivatives with increased potency and stability
have been developed by amphipathic optimization (23–25). Histatin 5 derivatives
dhvar1 and dhvar4 are membrane active and able to dissipate cytoplasmic transmem-
brane potential, as well as uncouple the respiration of isolated mitochondria (23–26).
While histatin 5 may have other cytoplasmic targets (24, 27), these membrane-active
histatin derivatives elicit a response similar to that of classical pore-forming antimicro-
bial peptides (24).

Interestingly, several classical antimicrobial peptides self-assemble in a manner that
retains and/or augments their activity (28–34). Furthermore, some amyloidogenic
peptides have potent antimicrobial activities (35–39), suggesting that these two classes
of peptides may not be as distinct as previously thought (reviewed previously [40–45]).
We recently found that self-assembly of minimal amyloid models augments their
antibacterial activity (46). Furthermore, impressive intrinsic antibacterial activity (47–50)
has been detected in several studies using aromatic-amino-acid-based self-assembling
building blocks (47–50). Whether self-assembly has a role in antifungal peptide activity
is not well established.

Here, we investigated the relationship between peptide self-assembly, membrane
interactions, and antibacterial and antifungal activities using dhvar2 (KRLFKELLFSLRKY),
a well-characterized histatin 5 derivative, as a model. We identified a single-amino-acid
mutation, L7F (KRLFKEFLFSLRKY), which is required to facilitate peptide self-assembly
into ordered nanostructures. This mutation does not change the amphipathic nature
of the peptide but drastically affects its self-assembly potential. The membrane-
interacting capabilities of dhvar2 as well as L7F correlated positively with their anti-
fungal activity. Surprisingly, peptide self-assembly did not affect overall antifungal
activity but significantly affected antibacterial activity against both Escherichia coli and
Staphylococcus epidermidis. These results highlight a new distinction between self-
assembly and AMP activity in bacteria versus fungi, although the degree to which this
is a general principle remains to be tested.

RESULTS
Self-assembly of a histatin 5 derivative and its single-amino-acid variant. The

WALTZ algorithm, which predicts amylogenic peptide regions, identified a minimal
amino acid mutation within dhvar2 which was required for ordered assembly and
suggested that substitution of leucine with phenylalanine at position 7 would yield a
peptide with a high propensity for self-assembly (Fig. 1a and b). We tested this
prediction in vitro via transmission electron microscopy (TEM), which demonstrated the
formation of long, unbranched nanoassemblies by L7F; no ordered assemblies were
observed for the unmodified dhvar2 peptide (Fig. 1c and d).

Antifungal activity of each of the peptides. Antifungal capabilities of these
peptides were measured using standard growth curves in rich medium (yeast extract-
peptone-dextrose [YPD]). Like histatin 5, both peptides inhibited fungal growth con-
siderably at a 125 �g/ml concentration of each peptide and completely at 250 �g/ml
(Fig. 2a). Fungal viability, monitored with Live/Dead staining (fluorescein diacetate and
propidium iodide [PI]), revealed high levels of PI staining (a sign of cell death) as early
as 1 h after addition of the peptides, with stronger PI staining of cells, including some
that had undergone a yeast-to-hypha transition, at 6 h after addition of either peptide
(Fig. 2b).

Membrane interactions and their effect on fungal morphology. We monitored
the ability of dhvar2 and LF7 to interact with model membranes by exploiting small
unilamellar vesicles (SUVs) composed of phospholipids and ergosterol (ErgS). The SUVs
include polydiacetylene (PDA), a colorimetric polymer that reports on the type and
intensity of membrane interactions (51, 52). Two SUVs that mimic fungal membrane
composition, composed of DOPC/DMPG/ErgS/PDA and DOPE/DMPG/ErgS/PDA (1:0.6:
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0.4:3), were utilized. Importantly, both peptides exhibited significant colorimetric re-
sponses, albeit to different extents. The response to dhvar2 was 2-fold lower than that
to L7F, in both SUV types (Fig. 3a). Interestingly, the kinetic differences between the
ways in which the two peptides interacted with each model membrane indicated
differential modes of interaction. In the phosphatidylcholine-containing system, the
signal increased gradually for both peptides, corresponding to a slow penetration into
the membrane interior; dhvar2 caused less disturbance in the membrane than L7F. In
the phosphatidylethanolamine (PC)-containing system, an instantaneous increase
in the signal was observed, indicating that both peptides adhered to the surface
immediately. A strong signal coupled with the absence of a plateau in the kinetic
graphs of L7F may indicate complete destruction of the membrane.

The antimicrobial activity of most AMPs is due to membrane permeabilization
following association of the peptide with the plasma membrane. To address the
mechanism of dhvar2 and L7F antifungal activity in C. albicans, we measured the
degree of membrane damage by the use of a fluorescein isothiocyanate (FITC)-based
membrane permeation assay (53). Free FITC cannot traverse intact cell membranes and
enters (and stains) cells only after their plasma membrane is damaged. Incubation with
either of the peptides resulted in a marked fluorescent signal result, with 95% positive
fluorescence (compared to 1% FITC fluorescence in the no-peptide control) (Fig. 3b).
Thus, both peptides cause extensive membrane permeabilization.

To get a closer view of cell damage, we monitored cell integrity using scanning
electron microscopy (SEM) after exposure of the cells to each of the peptides. Cell
membranes had numerous nicks and tears after 6 h of exposure to either of the
peptides; in many cases, the cells appeared to have lysed with contents exuded from
one or more sites of cell (and likely membrane) fissure (Fig. 4). The cell damage was
even more dramatic after 24 h of peptide exposure, with the few unlysed cells
appearing deformed and deflated with numerous membrane perturbations (Fig. 4).
Taken together, these results support the idea that membrane lysis is a major mech-
anism of action for both dhvar2 and L7F and that the ability to form amyloid-like

FIG 1 Self-assembling capabilities of an antifungal peptide and its single-amino-acid variant. (a and b) Waltz
algorithim predictions of amylogenic regions in (a) dhvar2 and (b) the L7F variant. (c and d) Morphology of the
assemblies (at 1 mg/ml in water) obtained via transmission electron microscopy for (c) dhvar2 and (d) L7F. Scale
bar, 500 nm.
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assemblies (seen with L7F and not with dhvar2) is not a requirement for its membrane
association, cell lysis, and antifungal activity.

Antibacterial activity of each of the peptides. We next asked if the correlation
between antibacterial activity and self-assembly holds for these two peptides. Bacterial
kinetic growth inhibition analyses were carried out for both E. coli and S. epidermidis.
Interestingly, the two peptides had very different antibacterial activity levels, with L7F
being 4-fold more active than dhvar2 against E. coli and 2-fold more active against S.
epidermidis (Fig. 5). The growth of E. coli and S. epidermidis was completely inhibited by
125 and 250 �g/ml of L7F, respectively, and lower L7F concentrations partially inhibited
growth in a dose-dependent manner (Fig. 5). While the activity of dhvar2 was lower, it
also displayed dose-dependent bacterial growth inhibition (Fig. 5). These results rein-
force the established connections between antibacterial activity and self-assembly.

DISCUSSION

Therapeutic approaches that reduce the frequency of acquired resistance via new
mechanisms of action have the potential to address the global problem of antimicro-

FIG 2 Antifungal activity and loss of cell viability due to treatment with either dhvar2 or L7F. (a) Cell growth over 24 h
after addition of either peptide added at T � 0. Black, no peptide; blue, dhvar2; red, L7F, measured as OD600. (b) Yeast
viability staining by fluorescent Live (fluorescein diacetate, green)/Dead (propidium iodide, red) reagents. Control, no
peptide; dhvar2 and L7F, 250 �g/ml peptide as indicated for 1 h (left) and 6h (right). Scale bars, 50 �m.
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bial drug resistance. An emerging approach is the use of antimicrobial peptides, some
of which undergo a self-assembly process that is correlated with antibacterial activities.
Here, we found that a histatin 5 derivative designed to enable efficient self-assembly
(L7F) had higher antibacterial activity than the related, unmodified peptide dhvar2.
However, the correlation between self-assembly and antifungal activity, at least for C.
albicans, did not hold. The two peptides were able to inhibit fungal growth to similar
degrees, and the mechanism of action appears to be via membrane permeabilization.
While one peptide self-assembled into amyloid-like fibers and the other did not (under
the conditions tested), both peptides inhibited C. albicans growth, interacted with
model membranes containing ergosterol, and caused dramatic damage of cell integrity
that appears to have been due to cell lysis. Of course, we cannot rule out the possibility
that dhvar2 can self-assemble under conditions other than those tested here.

The substitution of phenylalanine for leucine in L7F is consistent with the literature
on the significance of aromaticity to self-assembly (54). Indeed, phenylalanine alone
can self-assemble into ordered nanosturctures (55), and diphenylalanine nanostruc-
tures serve as a minimal model for self-assembling antimicrobial peptides (46). Inter-
estingly, the overall antifungal activity of L7F peptide was similar to that of dhvar2,

FIG 3 dhvar2 and L7F interact with both SUV membrane models. (a and b) Membrane interaction with the two SUV model membrane systems consisting of
(a) DOPC/DMPG/ErgS/PDA and (b) DOPE/DMPG/ErgS/PDA (1:0.6:0.4:3) vesicles. PDA color transitions were induced upon peptide membrane activity. EgrSt,
ergosterol. (c) Membrane permeabilization of C. albicans by AMPs. The images shown influx of FITC (53) into cells after 6 h of incubation with the indicated
peptides at 250 �g/ml. FITC staining (green) indicates compromised fungal membrane integrity. Scale bar, 20 �m.
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though it showed increased interactions with model membrane systems. One expla-
nation for this apparent paradox is that the membrane activity demonstrated by dhvar2
was sufficient to elicit the fungal cell death observed; alternatively, the histatin family
of peptides may affect other targets, in addition to the cell membrane. Whether the
absence of correlation between self-assembly and antifungal activity for derivatives of
histatin 5 is a common theme for other antifungal peptides and for other fungi remains
to be determined.

MATERIALS AND METHODS
Sample preparation. Lyophilized powders of each of the peptides (Genscript Biotech, USA) were

dissolved in ultrapure water (BioInd, Israel) to a concentration of 1 mg/ml and heated for 50 min at 90°C,
allowing the peptides to reach the monomeric state, and were then allowed to cool gradually to 25°C
overnight. This treatment facilitated the self-assembly and nanostructure formation of L7F but not
dhvar2.

Transmission electron microscopy (TEM). TEM imaging was performed by applying 10-�l samples
to 400-mesh copper grids covered by a carbon-stabilized Formvar film (SPI, West Chester, PA, USA). The
samples were allowed to adsorb for 2 min before excess fluid was blotted off. Negative staining was then
achieved by depositing 10 �l of 2% uranyl acetate on the grid for 2 min before blotting off excess fluid.
Micrographs were obtained using a Tecnai 12 electron microscope (FEI, Tokyo, Japan) operating at
120 kV.

Fungal kinetic growth inhibition analysis. Candida albicans (SC5341) cells were streaked from
glycerol stock onto YPD agar and grown for 24 h at 30°C. Colonies were suspended in 1 ml phosphate-
buffered saline (PBS) and diluted to 103 cells/ml in a 96-well plate containing a gradient of 2-fold
dilutions per step of each of the peptides in YPD. Kinetic growth inhibition was determined by
measurements of optical density at 600 nm (OD600) by the use of a Tecan plate reader (Infinite F200 Pro;
Tecan, Switzerland). The kinetic analysis results presented are representative of three experiments
conducted independently.

Fungal viability analysis. Candida albicans (SC5341) cells were suspended in 1 ml PBS and diluted
to 103 cells/ml in a 24-well plate containing 250 �g/ml of each of the peptides in YPD. Following 1 and
6 h of incubation, the samples were washed thrice with saline solution, incubated for 15 min in a solution
containing fluorescein diacetate (6.6 �g/ml) and propidium iodide (5 �g/ml), and washed with saline

FIG 4 dhvar2 and L7F cause extensive cell lysis. High-resolution scanning electron microscope micro-
graphs were collected after exposure of C. albicans to the indicated peptides (250 �g/ml) for 6 or 24 h
as indicated. Scale bars, 2 �m and 10 �m (following 6 h and 24 h of treatment, respectively). Micrographs
are representative of 3 independent experiments; the effect was widespread and identified in all fields
evaluated (over 50 per sample).
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solution again. Fluorescence emission was detected using an Eclipse E600 fluorescence microscope
(Nikon, Japan). The results presented are representative of three independent experiments.

Interaction with model membrane systems. (i) Vesicle preparation. Vesicles containing the
diacetylene monomer 10,12-tricosadiynoic acid (TRCDA) and the lipid and ergosterol components
DOPC/DMPG/ErgS/PDA and DOPE/DMPG/ErgS/PDA (1:0.6:0.4:3) were dissolved in chloroform/ethanol
(1:1) and dried together in vacuo to reach a constant weight, followed by addition of deionized water to
reach a final concentration of 1 mM, and were subsequently subjected to probe sonication at 40 W at
70°C for 3 min. The vesicle solution was subsequently cooled at room temperature and kept at 4°C
overnight. The solution was then irradiated at 254 nm for 30s, resulting in intense blue color appearance
due to polymerization of the diacethylene units.

(ii) Fluorescence spectroscopy. Fluorescence was measured on a Fluscan Ascent microplate reader
using a 96-well microplate (Grainer), excitation at 485 nm and emission at 555 nm, and long-pass (LP)
filters with normal slits. The background fluorescence from the vesicles alone was negligible. Samples
were prepared for fluorescence measurements by adding 30 �l of each of the peptides at 1 mg/ml to
30 �l of lipid/PDA vesicles followed by addition of 30 �l 50 mM Tris-base buffer (pH � 8.0). The samples
were incubated at 27°C during the measurements. Percent fluorescent chromatic responses (%FCR) were
calculated according to the following formula: %FCR� [EmI/Emred] * 100% (where EmI is the value
obtained for the vesicle solution after incubation with the compounds and Emred is the maximal
fluorescence value obtained for the red-phase vesicles [treated with NaOH 1 M]). Results displayed are
representative of three experiments conducted independently.

FITC uptake assay. This assay was adapted from a previously reported method (53). Candida albicans
(SC5341) cells were suspended (2 � 107 cells per ml) in 10 mM sodium phosphate buffer (pH 7.4) and
treated with each of the peptides for 6 h at 30°C. Samples were then incubated with 6 �g/ml FITC (the
stock solution is 10 mg/ml in acetone) plus 10 mM sodium phosphate buffer at 30°C for 30 min. A 10-�l
volume of each sample was plated on an individual glass slide, and the slides were then washed with
10 mM sodium phosphate buffer thrice and examined using an Eclipse E600 fluorescence microscope
(Nikon, Japan). The results presented are representative of three independent experiments.

High-resolution scanning electron microscopy. Fungal samples treated with each of the peptides
for 6 and 24 h were centrifuged at 5,000 rpm for 5 min, washed thrice in PBS, and fixed in 2.5%
glutaraldehyde–PBS buffer for 1 h. Samples were then washed thrice in PBS and fixed in 1% OsO4–PBS
buffer for 1 h, followed by a dehydration series performed with ethanol. Samples were then left in
absolute ethanol for 30 min and placed onto glass coverslips, followed by critical point drying and
coating with gold. Micrographs were recorded using a JSM-6700F field emission scanning electron
microscope (FE-SEM) (JEOL, Tokyo, Japan) operating at 10 kV. The micrographs displayed are represen-
tative of results of three experiments conducted independently.

FIG 5 Histatin 5 derivatives exhibit antibacterial activity that is partially associated with self-assembly. Standard growth curves in rich medium over 15 h that
were determined using (a) E. coli and (b) S. epidermidis illustrate the higher efficacy of L7F than on dhvar2 (both at 250 �g/ml). The peptides exhibited
dose-dependent growth inhibition of (c) E. coli and (d) S. epidermidis exposed to dhvar2 (blue), L7F (red), and a no-peptide control (black).
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Bacterial kinetic growth inhibition analysis. Each of the peptides was diluted by serial 2-fold
dilutions in M9 minimal media in Corning (3879) 96-well plates (Sigma-Aldrich, Israel). E. coli bacteria
(ATCC 25922) were grown overnight in M9 minimal media and diluted 1,000-fold in M9 media and grown
for 5 h at 37°C. In Corning (3596) 96-well plates, 75-�l volumes of the serial 2-fold dilutions of each test
compound were added to 75 �l of growth medium containing bacteria (5 � 10^6 CFU/ml). Bacteria and
test compounds were incubated overnight at 37°C, and kinetic growth inhibition was determined by
measurements of optical density at 600 nm using a Biotek Synergy HT microplate reader. Results
displayed are representative of three experiments conducted independently.
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