
materials

Article

Confined Polysulfides in N-Doped 3D-CNTs Network for High
Performance Lithium-Sulfur Batteries

Donghuang Wang 1, Aijun Zhou 1,2, Zhujun Yao 3, Xinhui Xia 1,4 and Yongqi Zhang 1,4,5,*

����������
�������

Citation: Wang, D.; Zhou, A.; Yao, Z.;

Xia, X.; Zhang, Y. Confined

Polysulfides in N-Doped 3D-CNTs

Network for High Performance

Lithium-Sulfur Batteries. Materials

2021, 14, 6131. https://doi.org/

10.3390/ma14206131

Academic Editor: Alvaro Caballero

Received: 14 September 2021

Accepted: 11 October 2021

Published: 15 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China,
Huzhou 313001, China; wdh@csj.uestc.edu.cn (D.W.); zhouaj0823@163.com (A.Z.); helloxxh@zju.edu.cn (X.X.)

2 School of Materials and Energy, University of Electronic Science and Technology of China,
Chengdu 611731, China

3 School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
yaozj@zstu.edu.cn

4 State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for
Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University,
Hangzhou 310027, China

5 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China,
Chengdu 611731, China

* Correspondence: yqzhang@uestc.edu.cn

Abstract: Improving the utilization efficiency of active materials and suppressing the dissolution
of lithium polysulfides into the electrolyte are very critical for development of high-performance
lithium-sulfur batteries. Herein, a novel strategy is proposed to construct a three-dimensional (3D)
N-doped carbon nanotubes (CNTs) networks to support lithium polysulfides (3D-NCNT-Li2S6) as a
binder-free cathode for high-performance lithium-sulfur batteries. The 3D N-doped CNTs networks
not only provide a conductive porous 3D architecture for facilitating fast ion and electron transport
but also create void spaces and porous channels for accommodating active sulfur. In addition,
lithium polysulfides can be effectively confined among the networks through the chemical bond
between Li and N. Owing to the synergetic effect of the physical and chemical confinement for the
polysulfides dissolution, the 3D-NCNT-Li2S6 cathodes exhibit enhanced charge capacity and cyclic
stability with lower polarization and faster redox reaction kinetics. With an initial discharge capacity
of 924.8 mAh g−1 at 1 C, the discharge capacity can still maintain 525.1 mAh g−1 after 200 cycles,
which is better than that of its counterparts.

Keywords: lithium polysulfides; CNTs network; N-doping; lithium-sulfur battery

1. Introduction

There has been a strong demand of late for developing safe and cheap cathode ma-
terials with high energy density of rechargeable lithium batteries for many applications,
such as portable electronic devices, electric vehicles, and the grid storage of electricity [1–8].
Among the various alternative energy storage systems, the lithium-sulfur (Li-S) batteries
are considered as one of the most promising candidates for next-generation energy storage
devices, owing to the extremely high theoretical specific capacity (1672 mAh g−1) of sul-
fur [9,10]. Additionally, sulfur is a cheap, low-toxic and abundant resource, which makes
Li-S batteries a particularly low-cost and attractive energy storage technology [11,12]. How-
ever, Li-S batteries still hindered by the following critical challenges [13–15]. Firstly, the
element sulfur is insulating with the high resistance of about 5 × 10−30 S cm−1, resulting
into a low utilization of active materials and a large internal resistance and polarization of
the cathode [16,17]. Secondly, a volume expansion of about 80% exists into electrochemical
conversion of sulfur (density of 2.03 g cm−3) to Li2S (density of 1.66 g cm−3), giving rise
to structural and morphological destruction and poor columbic efficiency and rate capac-
ity [18,19]. Thirdly, lithium polysulfides (Li2Sx, 3 ≤ x ≤ 8) intermediates formed during
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the charge/discharge progress are soluble in the electrolytes, leading to a loss of active
materials, self-discharge and capacity fading during extended cycling [20,21].

To address these thorny problems, various strategies are developed, including en-
capsulation of sulfur into conductive host materials, embedment of interlayers and op-
timization of the electrolytes or additives [22–25]. A relatively successful approach is to
design carbon-based hosts (e.g., mesoporous carbon, hollow carbon nanofiber, graphene
and carbon nanotubes) [26–30]. Typically, combination sulfur with carbon nanotubes are
regarded as an effective way for construction of high-performance sulfur cathodes, which
could improve both electron and ion transfer and accommodate volume changes during
cycling [31–33]. However, only physical confinement is still insufficient to solve the poly-
sulfide shuttle problem because of the open holes and weak interactions between carbon
and polysulfides. Additionally, significant research effort has been made towards chemical
confinement of polysulfide intermediates by heteroatom doping, especially nitrogen dop-
ing [34–37]. First-principle calculation and surface analysis further proved that polar-polar
interaction and Lewis acid-base interaction with polysulfides are strong and stable [38,39].
Therefore, the nitrogen doping carbon nanotubes (CNTs) may have a significant effect on
suppressing the diffusion of polysulfides and realize high-performance of lithium-sulfur
batteries. Undoubtedly, it is still necessary to develop a novel and effective methodology for
construction three-dimensional architecture with N-doping as high-loading sulfur carriers
and take full advantage of the interactions to suppress polysulfides diffusion for realization
of high-energy and commercially viable Li-S batteries.

Herein, we develop a novel strategy to construct an integrated cathode by confining
polysulfides into three-dimensional N-doped CNTs networks (3D-NCNT-Li2S6). The
N-doped CNTs have constructed a 3D conductive networks, which not only provide
conductive path for electron and ion transfer but also create large amounts of porous
channels and void spaces to for a high sulfur loading. In addition, the physical and
chemical confinement have a synergetic effect on suppress the polysulfides dissolution into
the electrolyte. The cathodes demonstrate enhanced performance with lower polarization,
better cycling stability and superior high-rate performance.

2. Materials and Methods
2.1. Preparation of 3D-NCNT-Li2S6 Composite

As reported previously, the three-dimensional CNTs network was grown on the carbon
cloth (3D-CNT) by a chemical vapor deposition (CVD) method. Typically, the carbon cloth
(CC) was firstly immersed in nickel nitrate ethanol solution for 5 min and dried under
60 ◦C. Then the prepared carbon cloth was thermally treated at 600 ◦C in a mixed-gas
atmosphere of 60 sccm Ar + 5 sccm H2 for 30 min. And C2H4 gas was introduced as
a carbon source with a flow rate of 10 sccm for another 30 min to obtain 3D-CNT. The
3D-CNT was further doped nitrogen through the treatment at 550 ◦C with NH3 (30 sccm)
for 1 h to form the 3D-NCNT.

0.5 M Li2S6 solution was prepared by mixing sulfur and Li2S at a molar ratio of 5:1
in an appropriate amount of 1,2-dimethoxyethane and 1,3-dioxolane (DME and DOL). To
fabricate 3D-NCNT-Li2S6 cathode, 10 µL polysulfide solution was added into 3D -NCNT
that was cut into 0.5 × 0.5 cm2 and dried in argon atmosphere. For comparison, the 3D
-CNT- Li2S6 cathode was synthesized in the same way without NH3 treatment.

2.2. Materials Characterizations

The morphologies of these samples were investigated by scanning electron microscope
(SEM, Hitachi S-4800, Tokyo, Japan) and the elemental composition and mapping were
using EDS on the SEM. Raman measurements were performed on a Jobin Yvon Labor
Raman HR-800 (Paris, France) using a 532 nm diode-pumped solid-state laser after the
samples were sealed in a chamber with a glass window in glove box. Surface groups and
bond of samples were characterized by an X-ray photoelectron spectroscopy (XPS, ESCAL
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220i-XL, Waltham, MA, USA), using Al Kα X-ray radiation source in a base pressure of
10−7 Pa.

2.3. Electrochemical Measurements

The CR2025 coin cells were assembled with the 3D-CNT-Li2S6 and 3D-NCNT-Li2S6
composites as the working electrode, pure lithium foil as the counter electrode and cellgard
2400 as the separator. The cells were assembled in an argon filled glove box with O2 and
H2O concentration below 0.1 ppm and 1 mol L−1 lithium bis (trifluoromethanesulfonyl)
imide (LiTFSI) in 1,3-dioxolane (DOL) and 1,2-dimethoxyethane (DME) (1: 1 by volume)
with 1 wt.% lithium nitrate (LiNO3) as an additive was used as the electrolyte. The areal
mass loading of S on the electrodes is about 3.84 mg cm−2. All the specific capacities
and current densities of cells were calculated on the basis of the mass of sulfur. The
galvanostatic measurements were evaluated by the LAND battery test system in potential
range from 1.7 to 2.8 V. The cells were first discharged to 1.7 V and then the cycle number
was counted. Cyclic voltammetry (CV) tests were carried out on a CHI660E electrochemical
workstation (Shanghai, China) at a scan rate of 0.1 mV s−1. All the electrochemical tests
were conducted at room temperature.

3. Results and Discussion

The fabrication of 3D-NCNT-Li2S6 is schematically illustrated in Figure 1. Firstly, the
three-dimensional CNTs network was grown on the carbon cloth (3D-CNT) by a CVD
method. Then, the nitrogen-doping is introduced into the 3D-CNT through NH3 treatment
to form the 3D-NCNT. Finally, the Li2S6 solution was added into the 3D-NCNT to obtain
the 3D-NCNT-Li2S6 cathode.
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Figure 1. Illustration of synthesis 3D-NCNT-Li2S6 composite.

3.1. Structural Characterization

The morphology of the samples at different stages is analyzed by SEM. As shown
in Figure 2a, tens of the CNTs grow uniformly on the carbon fibers and construct a three
dimensional conductive network, which ensures a fast ion/electron transportation [40,41].
The high-resolution SEM image shows that the interconnected CNTs with a diameter of
~50 nm provide a hierarchical microporous architecture. The sufficient void space is capable
of loading a large amount of active material, accommodating the volumetric expansion of
sulfur and maintaining high electrolyte absorbability [42]. The 3D-NCNT still maintain
their microporous architecture as the 3D-CNT, demonstrating that nitrogen doping has
no damage on the structure upon NH3 treatment (Figure 2b). Figure 2c,d present the
SEM images of 3D-CNT-Li2S6 and 3D-NCNT-Li2S6 cathodes, the pores of the CNT and
NCNT network are mostly filled with the active material. The whole structure of both
cathodes is still porous, which allows efficient electrolyte penetration. It is obvious that
the CNT and NCNT become thicker as they are coated by the active material and form
a core-shell structure. The structure is further explored by the element mapping images
of the EDS analysis (Figure 3). The elemental mapping evidently reveals the presence
and homogeneous distribution of carbon, sulfur and nitrogen in the 3D-NCNT-Li2S6,
suggesting that the nitrogen-doping has been doped into the CNT successfully and the
Li2S6 uniformly cover the NCNTs [43].
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The variation of surface. chemistry of the samples is observed in Raman and X-ray
photoelectron spectroscopy (XPS). As shown in Figure 4a, there are two broad peaks for
3D-CNT and 3D-NCNT at ~1350 cm−1 and 1587 cm−1, which can be attributed to strong
graphitic G-band and weak disorder induced D-band, respectively [44,45]. The ID/IG ratio
is an important parameter to evaluate the quality of graphic structure. The ID/IG ratio of
3D-NCNT is higher than that of 3D-CNT indicating that more defects exist in 3D-NCNT
after NH3 treatment [44]. Figure 4b demonstrates the N1s spectra of 3D-NCNT, it can be
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deconvoluted into three peaks centered at 398.5, 400.2 and 402 eV, which are related to
the pyridinic, pyrrolic and graphitic of N atoms form the nitrogen doping [46,47]. The
nature of bonding between N atoms dopant on 3D-NCNT and polysulfide was analyzed.
For 3D-CNT-Li2S6, only a peak at 55.5 eV corresponding to Li-S bond appears, implying
no chemical bonding to 3D-CNT. Besides the Li-S bond, the 3D-NCNT-Li2S6 shows an
additional peak at 56.5 eV that can be is assigned to Li–N bond, indicating chemical bonding
between N atoms and polysulfide [48,49]. Previous work has proved that N dopants can
increase the surface basicity of 3D-CNT, strengthening the Lewis acid-base interaction
between 3D-NCNT and Lewis acidic Li in polysulfide [43,44].
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Figure 4. (a) Raman spectra of 3D-CNT and 3D-NCNT, XPS (b) N1s spectra of 3D-NCNT(c) Li1s
spectra of 3D-CNT-Li2S6 and (d) 3D-NCNT-Li2S6 composite.

3.2. Evaluation of Electrochemical Performance

We utilized cyclic voltammetry (CV) to investigate the electrochemical reaction kinet-
ics. Figure 5a displays the CV of 3D-CNT-Li2S6 and 3D-NCNT-Li2S6 in the voltage range
from 1.7 to 2.8 V at the scan rate of 0.1 mV s−1, exhibiting the typical lithiation/delithiation
features of sulfur cathodes [22,50]. The CV curve of 3D-CNT-Li2S6 and 3D-NCNT-Li2S6
both show two cathodic peaks in the reduction process, which can be attributed to the trans-
formation of long chain Li2S8 to short chain lithium polysulfides and then to the insoluble
Li2S2/Li2S, respectively. In the oxidization process, two anodic peaks are corresponding
to reversible conversion from solid Li2S2/Li2S to short-chain lithium polysulfides and
then to long-chain Li2S8, respectively [10,38]. Interestingly, the 3D-NCNT-Li2S6 cathode
shows a distinguishable negative shift in the oxidation process and positive shift in the
reduction process. Moreover, larger CV enclosed areas and higher peak intensities of the
3D-NCNT-Li2S6 cathode indicates a decrease of cell polarization and improved polysulfide
redox kinetics [51], which is in good agreement with the galvanostatic charge/discharge
profiles at a constant current rate of 0.1 C for the first cycle (Figure 5b). All the curves of
3D-CNT-Li2S6 and 3D-NCNT-Li2S6 cathodes demonstrate two typical plateaus of Li-S bat-
teries during both the charge and discharge processes. Impressively, the 3D-NCNT-Li2S6
cathode exhibits a smaller voltage gap between charge and discharge plateaus, indicating
a lower polarization and the enhanced reduction efficiency of lithium polysulfides via N
doping [34,52]. The promotions on the 3D-NCNT-Li2S6 cathode can be further supported
by electrochemical impedance spectroscopy (EIS) analysis (Figure 5f). The Nyquist plots
of both cathodes consist of a single depressed semicircle in the high-medium frequency
range and an inclined line in the low-frequency region, which are corresponding to the



Materials 2021, 14, 6131 6 of 10

charge-transfer resistance (Rct) and Warburg impedance, respectively [53]. Compared
with the semicircle and intercept on the X-axis in the Nyquist plots of both cathodes,
the 3D-NCNT-Li2S6 cathode shows much lower charge-transfer resistance and Warburg
impedance than that of the 3D-CNT-Li2S6 cathode. It reveals that N-doping reduces the
inner resistance and improves the charge transfer at the electrode-electrolyte interface of
the 3D-NCNT-Li2S6 cathode due to the strongest interaction between lithium polysulfides
and NCNTs [28,34,39].
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Figure 5. Comparison of electrochemical performance of 3D-CNT-Li2S6 and 3D-NCNT-Li2S6 cath-
odes, (a) CV curves at a scan rate of 0.1 mV s−1; (b) Typical voltage profiles at 0.1 C rate for first cycle;
(c) Rate performance at current rates ranging from 0.1 C to 2 C; (d) Cycling performance at 0.1 C,
(e) Cycling performance at 1 C; (f) Nyquist plots before cycling.

To evaluate the electrochemical stability of 3D-CNT-Li2S6 and 3D-NCNT-Li2S6 cath-
odes, the rate capability of both electrodes is tested at different currents from 0.1 to 2 C
(Figure 5c). On cycling on the current densities of 0.1 C, 0.2 C, 0.5 C, 1 C, and 2 C, the
3D-NCNT-Li2S6 cathode exhibits excellent rate performance with the discharge capaci-
ties of 1158.7, 1054.1, 954.7, 735.1, and 545.6 mA h g−1 (the capacity is calculated based
on the mass of sulfur), respectively. Even when the current density returns back from 2
to 0.2 C abruptly, the discharge capacity of 3D-NCNT-Li2S6 cathode is still recovered to
1031.3 mAh g−1, indicating good stability and robustness. As a contrast, the 3D-CNT-Li2S6
cathode reveals serious rapid capacity fading from 996.5 to 811.6 mA h g−1 at 0.1 C for
the first 10 cycles and only delivers 357.9 mAh g−1 at 2 C. And after the current density is
switched to 0.2 C, the capacity continues to descend.
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Moreover, long cycle performance of the 3D-CNT-Li2S6 and 3D-NCNT-Li2S6 cathodes
is investigated. As shown in Figure 5d, it can be noted that the 3D-NCNT-Li2S6 cathode
delivers a discharge capacity of 1170.8 mAh g−1 at 0.1 C, which is higher than that of the
3D-CNT-Li2S6 cathode (1020.4 mAh g−1), indicating higher utilization of active materials.
After 100 cycles, a discharge capacity of 769.7 mAh g−1 is obtained for the 3D-NCNT-Li2S6
cathode, whereas the 3D-NCNT-Li2S6 cathode only delivers a lower discharge capacity
of 415.3 mAh g−1. Additionally, the high-rate long cycling life of the 3D-CNT-Li2S6 and
3D-NCNT-Li2S6 cathodes is evaluated (Figure 5e). Under a current density of 1 C, the
3D-NCNT-Li2S6 cathode delivers a discharge capacity of 924.8 mAh g−1, and the discharge
capacity can still maintain 525.1 mAh g−1 after 200 cycles. In contrast, the 3D-CNT-
Li2S6 cathode only delivers low capacities and demonstrates fast capacity fading due to
dissolution of the lithium polysulfides. Table 1 lists the performance of 3D-NCNT-Li2S6
with other CNT-S and N–doping graphene-sulfur cathodes reported in the literatures. All
the sulfur cathodes with N-doping exhibit higher performance in terms of initial discharge
capacity, rate capability and cycle life than that of sulfur cathodes without N-doping. The
enhanced electrochemical performance can be ascribed to the N-doping. The graphitic
nitrogen state can improve the conductivity of the carbon host, and the pyridinic nitrogen
state can strongly attract lithium polysulfides with large enough binding energies to
effectively anchor the soluble lithium polysulfides, due to an enhanced attraction between
Li ions in lithium polysulfides and pyridinic nitrogen state and an additional attraction
between S anions in lithium polysulfides and Li ions captured by the pyridinic nitrogen
state [54]. Figure 6 demonstrates the SEM images of 3D-CNT-Li2S6 and 3D-NCNT-Li2S6
cathodes after 200 cycles. And the morphological change provides direct evidence for
suppressing the lithium polysulfide dissolution by chemical absorption. Note that the
3D-NCNT-Li2S6 cathode after 200 cycles still remains the similar structure to that of the
cathode before cycling, while the 3D-CNT-Li2S6 cathode becomes unrecognizable, with
serious aggregation. The chemisorption of lithium polysulfides on NCNT render a uniform
re-deposition of sulfur or Li2S during the charge and discharge process in conductive CNT
network that gives rise to more stable and higher ionic and electronic conductivity of the
3D-NCNT-Li2S6 cathode. As N doping in the CNTs network forms the chemical bond
between Li and N that can effectively confine the lithium polysulfides among the networks,
this improves the electrochemical reaction kinetics as well as enables the network catalyze
the redox reactions to reduce polarization [29,41,44].

Table 1. Comparison of electrochemical performances of CNT-S and N-doping graphene-sulfur electrodes.

Cathode Rate Initial Discharge Capacity
(mAh g−1)

Stable Discharge Capacity
(mAh g−1) and Cycles

S-CNT [55] 0.1C 1109 740 after 100
PCNT-S [56] 0.1C 895 625 after 100
CNT-S [57] 0.1C 736.8 408.4 after 85

S-MWCTs [58] 100 mA/g 1330 854 after 30
CNT/S [59] 0.1C 864 358 after 100

A-3DNG/S [60] 0.2C 1101 860 after 200
N-G-S [54] 0.3A/g 1150 880 after 100

S@N-3D-rGO [61] 0.2C 1042 987 after 100
3DNG-S [62] 0.2C 1050 990 after 100

3D-NCNT-Li2S6 (This work) 0.1C 1170.8 769.7 after 100
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4. Conclusions

In summary, we developed a novel strategy for construction of a three-dimensional
N-doped CNTs networks by using CVD technology and NH3 treatment which supports
lithium polysulfides as a binder-free cathode for high-performance Li-S batteries. The
three-dimensional N-doped CNTs networks not only construct a conductive porous 3D ar-
chitecture for facilitating fast ion and electron transport, but they also create large amounts
of void spaces and porous channels as well, for a high sulfur loading with 3.84 mg cm−2. In
addition, lithium polysulfides can be effectively confined among the networks through the
chemical bond between Li and N. Moreover, N doping in the CNTs network plays an impor-
tant role in improving the electrochemical reaction kinetics as well as enabling the network
to catalyze the redox reactions to reduce polarization. As a result, significantly enhanced
charge capacity and cyclic stability have been achieved for the 3D-NCNT-Li2S6 cathode.
Therefore, our research may provide a facile and scalable way to design a binder-free
lithium polysulfides based cathode for Li-S batteries in the future.
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