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In the last two decades, extracellular vesicles (EVs) have aroused wide interest among
researchers in basic and clinical research. EVs, small membrane vesicles are released by
almost all kinds of cells into the extracellular environment. According to many recent
studies, EVs participate in immunomodulation and play an important role in the
pathogenesis of autoimmune diseases. In addition, EVs have great potential in the
diagnosis and therapy of autoimmune diseases. Here, we reviewed the latest research
advances on the functions and mechanisms of EVs and their roles in the pathogenesis,
diagnosis, and treatment of rheumatoid arthritis and systemic lupus erythematosus.
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INTRODUCTION

Rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) are both autoimmune diseases
that can involve multiple organs. Their etiologies and pathogenesis are complex, and epigenetic and
environmental factors are shown to be associated with the onset of the disease (1, 2).
Glucocorticoids, immunosuppressants, and biological agents are commonly used in the
treatment of RA and SLE, but problems such as toxic side effects and non-response to treatment
remain (3–5). EVs are phospholipid bilayer-enclosed vesicles secreted from all cell types. The
classification of EVs includes exosomes (<150 nm), microvesicles (150–1,000 nm) (6), and apoptotic
bodies (1,000–5,000 nm), depending on size and biogenesis (7). EVs play an important role in
cellular communication processes. In the past, intercellular communication was thought to have
two modes, direct contact between cells and secretion of cellular molecules (8). The relationship
between EVs and cellular communication has attracted more attention and has become the third
mechanism of intercellular communication (9). EVs began to be isolated and studied from
additional cell types, such as immune cells, nerve cells and tumor cells (10). It is demonstrated
that EVs are involved as carriers in intercellular communication by transporting lipids, proteins,
and other components (11). In 1996, Raposo et al. first showed that EVs could stimulate adaptive
immune responses (12). EVs can also carry mitochondria to regulate immunity and alter the
phenotype of macrophages (13).
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EVs are secreted by almost every functional cell type and have
the characteristics of easy detection and stability. Body fluids,
such as urine and peripheral blood contain EVs, which present
promising prospects as biomarkers for tumors, infectious
diseases, and autoimmune diseases. Furthermore, the biological
characteristics of EVs that can transport multiple cellular
components also make it possible to use them in therapeutic
approaches for diseases. To date, there have been some studies of
EV treatment for RA and SLE, which have made certain
achievements (14, 15). Here, we summarize the functions of
EVs on immune cells and their applications in the pathogenesis,
diagnosis and treatment of RA and SLE.
THE BIOGENESIS AND COMPOSITION
OF EVS

Different types of EVs have slightly different biological origins, and
their biological functions are determined by their respective
intercellular components. Exosomes are EVs with a diameter of
no more than 150 nm. The limiting membrane of late endosomes
generates exosomes by invagination and budding (16). Then,
exosomes are covered by endosomal multivesicular bodies
(MVBs) and form intraluminal vesicles (ILVs), which fuse with
the plasma membrane and are exocrine. The endosomal sorting
complex required for transport (ESCRT) is also involved in
exosome generation, which is formed by approximately twenty
proteins (17). The action of ESCRT is mainly carried out by four
proteins following specific steps. First, ESCRT-0 recognizes
ubiquitinated proteins in the endosomal membrane and isolates
them individually. Second, both ESCRT-I and ESCRT-II mediate
the transformation and assembly of the membrane. Third,
ESCRT-III leads to the scission (18). Exosomes contain proteins,
nucleic acids, lipids, and organelles such as mitochondria (19).

Microvesicles (MVs) are formed as the plasma membrane
germinates outward directly. Although the diameter-based
classification of exosomes and MVs is somewhat controversial,
the fundamental distinction is apparent based on their
biogenesis. Their formation is related to changes in the
symmetry of phospholipids in cell membranes, and their
release is associated with lipid rafts on the cell membrane (20).
Proteins and phospholipids are unevenly distributed on the
plasma membrane by the regulation of aminophospholipid
translocases. The transfer of phosphatidylserine and the change
in protein structure create a dynamic equilibrium, contributing
to the formation of MVs (21). MVs are composed similarly
to exosomes.

Apoptotic bodies are the products of apoptosis, while
exosomes and MVs are secreted by living cells. The contents of
the cell after apoptosis decompose into membrane-bound
vesicles. In terms of composition, apoptotic bodies are
characterized by the inclusion of organelles and smaller
vesicles (21). Apoptotic bodies also contain ribosomal RNA
which are almost undetectable in exosomes and MVs (22).
They work primarily as garbage carriers of cells containing
cellular wastes (23).
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THE ROLE AND MECHANISM OF EVS
IN THE IMMUNE SYSTEM

Research on EVs began in 1983 when exosomes were first identified
in reticulocytes from sheep (24). However, it was not until 1996 that
B cells were shown to release exosomes with the major
histocompatibility complex class II (MHC II), which indicated the
relationship between immune cell regulation and exosomes (12).
Other immunocytes, such as T cells, natural killer (NK) cells, and
dendritic cells (DCs), have been proven to be associated with EVs in
recent publications (25–27). Since EVs, especially exosomes, can
carry MHC II, it is possible for EVs to participate in antigen
presentation. Tian et al. summarized three mechanisms by which
EVs are involved in antigen presentation (7). First, loading antigen
proteins inside exosomes improves the efficiency of antigen
presentation, and then APCs costimulating molecules act on the
activation of T cells (28). Second, when peptide/MHC complexes
are formed, exosomes with antigens can be captured by APCs and
then are exposed to the cell membrane to activate T cells. Third, EVs
directly activate T cells without the participation of APCs (29).
Interestingly, reverse transport of miRNA by exosomes, which is
antigen-driven, has been proven to regulate the gene expression of
APCs (30).

DCs are one of the most effective immunocytes in presenting
antigens and are critical to both innate and adaptive immunity.
Some DCs can establish immune tolerance by reducing the T cell
activity level, while the other DCs can activate T cells to enhance the
immune response. With the expression of a high level of MHC I/
peptide complexes as well as B7 and ICAM-1, exosomes from DCs
are able to directly activate CD8+ T cells without the participation of
normal APCs (31). Not only the mutual effect between DCs and T
cells but also the intercellular communication between DCs play
crucial roles in the process of DCs regulating innate immune
responses (32). Angela Montecalvo et al. found that the miRNA
components of exosomes released by DCs at different stages of
maturation were different. Mature DC-derived exosomes show a
stronger T-cell stimulatory ability than immature DC-derived
exosomes because of higher expression of CD86 and CD54 (32).
DC-derived exosomes (Dexs) containing MHC/peptide complexes
can boost T cell-dependent tumor rejection. And NK cells can be
activated by both IL-15Ra and NKG2D ligands in Dexs and secrete
IFN-g (33).

Similar to other APCs, B cells have a cellular structure called the
endocytic compartment MIIC (major histocompatibility complex
[MHC] class II-enriched compartment), which participates in the
activation of antigen-specific MHC II-restricted T cell responses
(12). Activated B cells infected with EBV can also excrete exosomes
with EBV-miRNAs, which accumulate in neighboring primary
immature monocyte-derived DCs (MoDCs) without infection
(34). Furthermore, exosomes from activated B cells with EBV
infection harbor the viral latent membrane protein 1 (LMP1),
which imitates CD40 signaling, resulting in the propagation of B
cells as well as T cell-independent class-switch recombination (35).

NK cells are important immunocytes in innate immunity
with a variety of biological functions, including recognizing and
killing viral infections and tumor cells, and producing cytokines
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such as interferon (IFN)-g, involved in immune regulation (36).
After being activated by Dexs, NK cells secrete exosomes
containing CD63, fibronectin, perforin, granulysin, and
granzyme A/B, which indicates that NK-derived EVs contain
the killing function of NK cells (26). The EV interaction between
APCs and T cells as well as NK cells is shown in Figure 1.

Other non-immune cells can also produce EVs and
participate in the regulation of immune responses. EB virus
(EBV) infected cells can secrete exosomes containing EBV-
microRNAs (miRNA) to mediate gene silencing in immune
cells (37). EVs derived from tumor cells and stem cells have
also been shown to regulate immune function (38). miRNAs in
tumor exosomes may induce immune tolerance (39). While EVs
derived from stem cells have been shown to regulate immunity
and reduce inflammatory responses (40, 41). Lipid-filled vesicles,
derived by adipocytes, can modulate tissue macrophage to
participate in immune regulation (42).
THE ROLE OF EVS IN RA

EVs Are Involved in the Pathogenesis
of RA
RA is an autoimmune disease with a high incidence that damages
multiple joints throughout the body and can cause progressive
disability. RA is characterized by synovial inflammation and
cartilage destruction (43). In comparison with those from normal
controls, EVs showed a high density in the synovial fluid of RA
samples, which was associated with disease progression (44). EVs
are mainly involved in antigen presentation, inflammatory
Frontiers in Immunology | www.frontiersin.org 3
cytokine and miRNA transmission, and activation of fibroblast-
like synoviocytes (FLSs) in the pathological process of RA. It has
also been shown that FLSs-derived EVs contained hexosaminidase
D activities in the samples of RA patients (45). Additionally,
the level of N-acetyl-beta-D-hexosaminidase (NAHase) in
destructive RA is higher than that in inflammatory RA,
indicating that glycosaminoglycan-degrading glycosidases may
cause joint damage in RA (46). Citrullinated proteins can be
detected in synovial exosomes, which can enhance T cell activity
with fibronectin (47). In addition, antibodies to citrullinated
protein antigens (ACPAs) are crucial in the pathological process
of RA and are expected to work as biomarkers with the highest
predictive value (48, 49).

FLS-derived microparticles (MPs) contain B cell stimulation
factors in the synovial fluid of the joints of RA patients (50).
There are microparticle-containing immune complexes (mpICs)
in synovial fluid with CD41 highly expression, indicating
platelet-derived. These mpICs could induce neutrophils to
release leukotrienes, which proves that platelet mpICs are
proinflammatory and highly reactive (51). Also, platelet-derived
microparticles (MPs) seem to release IL-1b, which promotes joint
inflammation by increasing the levels of IL-6 and IL-8 in
fibroblasts from RA patients (52). Tumor necrosis factor-a
(TNF-a) is crucial to the pathogenesis of RA. TNF-a binding
membranes were detected in FLSs-derived EVs from RA patients.
EVs containing TNF-a activated AKT and NF-kB and rendered
these activated T cells resistant to apoptosis (53). Additionally,
T cell-derived MPs treated with TNF-a could upregulate
prostaglandin E2 (PGE2), microsomal prostaglandin E synthase
1 (mPGES-1) and cyclooxygenase 2 (COX-2) (54). Then COX2
FIGURE 1 | Interaction between immune cells through EVs. APCs activate T cells with EVs and reverse transport of miRNA by exosomes, which is antigen-driven,
regulating the gene expression of APCs. B cells infected with EBV excrete exosomes with EBV-miRNAs, accumulating in neighboring MoDCs. Exosomes with MHC
I/peptide complexes, B7 and ICAM-1 from DCs, directly activate CD8+ T cells. Dexs containing IL-15Ra and NKG2D ligands activate NK cells, which then secrete
exosomes with CD63, fibronectin, perforin, granulysin, and granzyme A/B.
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caused pain and inflammation in patients. Coinhibitory T cell
receptors can be expressed in cells from RA joints, including PD-1
and TIM-3. EVs from synovial fluid and T cells after cocultivation
could express PD-1. Carrying the PD-1 receptor and inhibitive
miRNAs, EVs may induce T cell exhaustion (55).

The transmission of miRNAs is crucial in the RA pathological
process. Of all the miRNAs associated with RA, miR-155 and miR-
146a have attracted most attention. A study proved that exosomal
miR-146a and miR-155 are expressed at high levels in RA synovial
tissue (56). Furthermore, miR-155 can be upregulated by
stimulation with proinflammatory mediators, including Toll-like
receptor (TLR) ligands, TNFa and IL-1b. Overexpression of miR-
155 in RA synovial fibroblasts (RASFs) can downregulate matrix
metalloproteinase 3 (MMP-3) andMMP-1 (57).MMP-3 is involved
in the generation of severe cartilage damage (58). All these
components in EVs contribute to the onset and development of
RA (Table 1).

The Role of EVs in Diagnosis and
Treatment of RA
Existing studies implied that EVs have potential as biomarkers
for RA. RA patients with IgM-rheumatoid factor (RF) EVs
showed high-level C-reactive protein (CRP) and Erythrocyte
sedimentation rate (ESR) levels compared with those of RA
patients without IgM-RF in EVs (63). Thus, EVs with IgM-RF
can be used to distinguish between active and inactive RA. RA
patients express high levels of MPs in the circulatory system
compared with those in healthy controls (64). Moreover, as the
role of miRNA in the pathology of RA disease has been
revealed, exosomal miRNAs, including miR-155 and miR-
146a, can be used for the early diagnosis of RA (57). Potential
biomarkers for RA in EVs are summarized in Table 2.

Mesenchymal stem cells (MSCs) have anti-fibrosis and anti-
inflammatory immune regulatory effects. The transplantation of
MSCs has been used as a new technique for RA therapy. When
collagen-induced arthritis (CIA) rats were treated with human
umbilical cord MSCs (hUCMSCs), the results showed that
hUCMSCs can reduce T lymphocyte activity and function, as
well as inhibit Th17 cells and induce Treg cells to alleviate the
disease (78). The same immunomodulatory function between
hUCMSCs and hUCMSC-derived EVs has been demonstrated in
vitro, which indicates the potential of hUCMSC-derived EVs as a
Frontiers in Immunology | www.frontiersin.org
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new treatment for RA (78). hUCMSC-derived EVs also can inhibit
the expression of IL-17 by downregulating Th17 cells and
increasing the proportion of Treg cells in a dose-dependent
manner. Moreover, it was demonstrated that periarticular
injection of exosomes containing IL-10 or exosomes from bone
marrow-derived DCs could relieve arthritis by anti-inflammatory
action since DC-derived exosomes showed strong anti-
inflammatory and immunosuppressive activity through the class
II-dependent pathway. In addition, as exosomes are phenotypically
stable after purification in vitro (79), EVs could potentially be a
drug carrier for precise therapy for RA. Louise et al. used the human
neutrophil-derived EVs as scaffolds, which have the function of
immune regulation and cartilage penetration. Anti-reactive oxygen
species-collagen type II (Anti-ROS-CII) is an antibody targeting
impaired arthritic cartilage. Combining this antibody with EVs
allows the complex to penetrate the cartilage into the articular
cavity and still maintain antibody activity, suggesting the potential
of EVs as a targeted carrier for drug delivery (80).
THE ROLE OF EVS IN SLE

EVs Are Involved in the Pathogenesis
of SLE
SLE is a complex heterogenous autoimmune disease that involves
damage to multiple organs throughout the body and can cause
death in severe cases. Patients with SLE are characterized by T and B
lymphocyte dysfunction, accumulation of autoantibodies, and
deposition of immune complexes (81). However, the pathogenesis
of SLE remains unclear. The role of EVs in the pathogenesis of SLE
is of interest to researchers.

Exosomal miRNAs in exosomes play an important role in the
development of SLE. The level of miR-146a contained within
exosomes in the urine of lupus patients was significantly higher
than that outside of exosomes. In contrast, miR-146a levels in
serum exosomes were significantly lower in SLE patients than in
HCs (59). Of all miRNAs, miR-146a can significantly distinguish
active LN from inactive LN and is related to inflammation and
fibrosis of the kidney (74). In addition, miR-146a may be
upregulated by chemokines as well as proinflammatory
cytokines and leads to anemia in SLE patients (82). MSCs can
internalize exosomes with miR-146a and target TRAF6/NF-kB
signaling, leading to the senescence of MSCs (59). The
senescence of MSCs may be related to the disease activity and
pathological process of SLE (83, 84). Another important
exosomal miRNA is miR-21 contained in EVs, facilitating
estrogen-regulated STAT1 activation and Toll-like receptor
(TLR) 8 expression in SLE. miRNAs can be endogenous
ligands of human TLR7, which is the single-stranded RNA
(ssRNA) receptor expressed by plasmacytoid dendritic cells
(pDCs). miR-21 can replace viral ssRNA to combine with
TLR8 to stimulate innate immune responses (60). Interferon
(IFN)-a plays a major role in SLE (85). It was proven that
miRNAs in exosomes, such as miR-574, upregulated type I IFNs
secreted by pDCs in SLE (61). MVs from apoptosis in SLE serum
can activate cyclic guanosine monophosphate (GMP)-AMP
TABLE 1 | EVs involved in the pathogenesis of RA and SLE.

Disease Molecular/Parameter Reference

RA Density of EVs (44)
FLSs-derived EVs contained hexosaminidase D (45)
Citrullinated proteins in exosomes (47)
Microparticles-containing immune complexes (51)
Platelet-derived Microparticles (52)
TNF-a contained in EVs (53)
Exosomal miR-155 (57)
Exosomal miR-146a (8)

SLE Exosomal miR-146a (59)
Exosomal miR-21 (60)
Exosomal miR-574 (61)
MVs from apoptosis (62)
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synthase (cGAS), which stimulates the stimulator of interferon
genes (STING) pathway and upregulates the type I IFN
production (62). The EVs involved in the pathogenesis of SLE
were shown in Table 1.
The Role of EVs in Diagnosis and
Treatment of SLE
EVs can be used to measure disease activity and differential
diagnosis in patients with LE. Damage to glomerular podocytes
is crucial in renal injury in SLE. Urinary podocyte-derivedMPs can
be used for the prediction of disease activity. They are positively
correlated with clinical indicators of SLE, including erythrocyte
sedimentation rate, proteinuria, and SLE Disease Activity Index
(SLEDAI) score (75). Urinary HMGB1 in MPs is expressed at a
significantly high level in active LN, which can distinguish between
active and non-active LN (77). And identification of MPs with
different surface proteins in SLE patients can predict disease
activity and vascular damage (86). It was reported in another
study that high plasma expression of monocytic CD 14+ MP has a
positive correlation with the disease activity of SLE (65). Compared
with healthy controls and systemic sclerosis (SSc) patients, SLE
patients presented a higher expression of endothelial cell MP
(EMP), suggesting that EMP has potential as a biomarker for
SLE vascular lesions (76). Potential biomarkers for SLE in EVs are
summarized in Table 2.

EVs have also received further attention in the treatment of
SLE. In LN, MP surface proteins, especially G3BP, play a key role
in the deposition of ICs. Therefore, targeting MPs may be a new
approach for treating LN (87). MSC-derived MVs have anti-
inflammatory and immunomodulatory effects (88). Although the
use of MSCs in the treatment of SLE is mature and has been used
clinically (89–93), Juhi et al. found that MSC-derived EVs can
replace MSCs in the treatment of SLE, with the following
advantages. First, there is no evidence that EVs are carcinogenic.
Second, compared with MSCs, EVs are more stable and easier to
preserve in the long term. Third, EVs do not cause an immune
response that harms the host. EVs can bypass the blood–brain
barrier, which makes it possible for EVs to be used in the
Frontiers in Immunology | www.frontiersin.org 5
treatment of lupus encephalopathy (94). In addition, EVs are
easier to prepare on a large scale and at a low cost for clinical
therapy. However, the effect of EVs is closely related to the dose,
and the appropriate therapeutic dose needs to be explored.
CONCLUSION AND OUTLOOK

Although EVs were discovered in 1983, research on EVs has grown
rapidly only in the current century. The role of EVs in cellular
communication and immune regulation is being gradually
explained. EVs secreted by immune cells are involved in antigen
presentation and regulation of immunity. Cytokines or miRNAs
contained in EVs and MSC-derived EVs play important roles in
autoimmune diseases. Technology for isolating and purifying EVs is
growing (95–98). New technologies, such as nanoscale flow
cytometry (NanoFCM) and microfluidic platforms with 100,000
pillars, have been used for more efficient isolation of EVs (99, 100). A
microfluidic cell culture platform using a 3D-printed microfluidic
chip has also been used in the preparation of EVs (101). The research
development of EVs is helpful to understand the pathogenesis of
autoimmune diseases and provide new ideas for diagnosis and
treatment. At the same time, we should also pay attention to the
role of EVs in the onset and development of diseases and emphasize
the dose and safety in the treatment to avoid potential side effects.
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