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Abstract: This paper aims to investigate the role of neighborhood tree and greenspace on asthma
morbidity, especially asthma emergency room visits. We employed advanced spatial data which
allow for precisely capturing both the quantity and the features of tree and greenspace within a
neighborhood environment. The results from the spatial regression models in Los Angeles County
revealed that the features of trees and greenspace, such as the configuration of the tree canopy,
the level of tree clustering, and private neighborhood greenspaces contribute to decreasing asthma
morbidity, in addition to the quantity of tree and greenspace acreages. Notably, however, large scale
greenspace, such as golf courses, school playgrounds, and parks fails to reduce the number of asthma
emergency room visits at the statistically significant level. These findings imply that the creation of
dense or clustered tree patches and small-scale neighborhood greenspaces might play a substantial
role in mitigating air quality and consequently reducing asthma emergency room visits.

Keywords: asthma; public health; neighborhood tree; open/greenspace; spatial regression; Light
Detection and Ranging (LiDAR)

1. Introduction

Asthma is one of highly prevalent health risks with a significant influence among the
US population [1]. According to the recent national statistics, as of 2018, about 7.7 percent
of total U.S. population suffers from asthma. While controlled asthma has a minimal impact
on everyday life, 61.9% of adult asthma patients experience uncontrolled asthma with high
frequency and intensity which can lead to a significant social and health cost [1]. These
patients have an increased risk of an emergency department visit, hospitalization and work
and school absenteeism.

Although the causal pathways to asthma are still unconvincing, it has been generally
accepted that the exposure to air pollutants outdoor, such as ozone, particulate matter (PM),
and diesel exhaust, can trigger asthma attacks [2]. Given this clear connection between out-
door air quality and asthma morbidity, large volume of literature in environmental health
research more related to asthma has paid attention to the important roles of greenspace in
alleviating air pollutants [3–7].

In general, the relationship between urban green spaces and the prevalence of asthma
is complicated and conditional, rather than steady and independent. For instance, some
previous studies offered evidence on the health benefit of an urban green environment,
arguing that greenspaces and trees can positively and protectively contribute to asthma
morbidity [8–10]. Another cross-sectional study also verified the confounding effect of
green spaces, traffic volume, and the perceived lack of area safety, in explaining the
prevalence of childhood asthma [9]. However, these findings are not always consistent. A
cross-sectional study revealed different roles of different types of urban green environments
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in asthma, depending on the level of pollutant exposure [8]. Green space and gardens
contribute to decreasing asthma hospitalization, when the level of pollutant exposure is
lower, whereas tree density plays a role in reducing asthma hospitalization, when the
level of pollutant exposure is higher. Others did not find any supportive evidence on the
hypothesized beneficial influence nor statistical significance in the association between
urban green environment and asthma morbidity [11–13]. Normally, these previous studies
present a home-based measurement of greenspace (i.e., buffer area) [12], a case-control
design [13], or birth cohort data linked to detailed geographic information [11].

In summary, mixed findings or conflicting influence of urban green environments
on asthma morbidity are possibly due to the diverse nature of research design. They
include different measurements in urban trees/greenspaces and/or asthma outcomes,
different study areas, different periods (cross-sectional- vs. longitudinal study), different
target groups (observational- vs. case-control/birth-cohort study), and different units of
analysis (ecological- vs. individual level). Among the variations in research design driven
by the quantitative analytic approach, this study raises the measurement issue of urban
trees/greenspaces.

Although considerable research has addressed the influence of greenspace on asthma,
it is still questionable whether or not the greenspace data employed by the research
adequately measure the area of greenspaces in the urban environment. Much research
conventionally applied land cover data derived from satellites to measure greenspace.
However, the resolution of the land cover data is too low to accurately capture the boundary
of tree patches and greenspaces in urban environments, because of the complex and dense
patterns of land use in urban areas [14]; and because of scattered small-scale greenspaces,
such as backyards, front yards, and pocket parks [15]. Furthermore, the conventional
satellite data are not sufficient to capture the features and configurations of greenspace and
trees. Keeping in mind the fairly defined relationship between asthma and air quality, it is
reasonable to presume that the features and configurations of urban tree and greenspace
(e.g., the size of tree patches) are probably related to asthma morbidity. However, there has
been a lack of research which adequately addresses the features and configurations, mainly
due to the scantiness of suitable data with the high resolution.

Considering this research gap, this paper aims to examine how and to what extent
neighborhood greenspaces and trees, measured by advanced spatial data, influence asthma
morbidity, especially asthma emergency room visits. Since high-resolution spatial data
allow the precise capturing of urban greenspaces and trees, this paper sheds light on the
relationship of asthma morbidity, not only with the quantity of greenspaces and trees but
also with their characteristics. Conducting a comprehensive measurement of the quantity,
features, and configuration of neighborhood greenspace and trees in Los Angeles County,
this paper constructs two spatial regression models that quantify the role of the greenspaces
and trees on asthma emergency room visits, while controlling the socio- demographic and
air quality factors at the census tract level.

2. Methodology

The focus of this study is to identify the role of a neighborhood’s tree and greenspace
on asthma morbidity under the control of socio-demographic and air quality factors. A
geographical area of this research is Los Angeles County, California, U.S., and we defined
the census tract as the unit of analysis for an empirical test of the relationship between
greenspaces/trees and asthma morbidity at the local level. There are 2346 census tracts in
total within Los Angeles County, but we built a data set of analysis variables for 2301 census
tracts. Since 45 census tracts only represent state parks, national forests, or mountain areas
where there is no residential household, we removed those areas from the final analysis.

The dependent variable of the model is the emergency department visits for asthma
per 10,000 people for the three-year period from 2011 to 2013 (Figure 1). These data were
extracted from the CalEnviroScreen 3.0, which was updated in 2018. The CalEnviroScreen
3.0 refers to an environmental health screening tool for the communities in California. It was
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designed not only to evaluate multiple pollutants and stressors at the local but also to assist
local agencies in carrying out their environmental justice missions [16]. Based on hospitals’
emergency medical service report to California Office of Statewide Health Planning and
Development (OSHPD), the CalEnviroScreen 3.0 provides the data by census tract. It
is noteworthy that the dependent variable differs from the number of asthma patients.
Due to the lack of individual asthma patient data, this paper employs the emergency
department visit data. Considerable research employed asthma emergency room visit data
as a proxy variable [8,17–20] Furthermore, some research reports that built environment
presents a stronger correlation with severe asthma than with asthma morbidity [21,22].
Hypothesizing that asthma patients who visited emergency rooms experience severe
asthma, the dependent variable can appropriately provide the insight of the relationship
between asthma morbidity and greenspace.

Independent variables include three factors that represent not only the quantity of
trees, but also the characteristics and configuration of tree patches (Table 1). They include
TreeCov, TreeClus, and TreeAgr. The variable, TreeCov, refers to the areas covered by tree
crowns and/or clustered canopies (TreeCov). This is the variable that represents the overall
quantity of trees and that considerable research addressed [8,9]. This paper measured
the median value of tree patch sizes in each census tract (TreeClus). It is reasonable to
hypothesize that larger patches of trees (extended and connected canopy of trees) have
a stronger capability to capture particles on their leaf surface, than smaller patches or an
individual tree does. Since the values of tree size that are measured appear to be a skewed
distribution rather than a normal distribution, median rather than mean was selected.

Table 1. List of variables.

Variables Definitions Descriptions Sources

Dependent Variable

Asthma The emergency department visits for asthma per 10,000 people by census tract (patients’ residential location
basis, 3-year averages between 2011 and 2013) CalEnviroScreen 3.0

Tree Variables

TreeCov Areas covered by trees The percent of census tract areas covered by tree canopy (%)
Los Angeles Regional
Imagery Acquisition

Consortium
TreeClus The size of tree patch The median size of the clustered tree patch (square feet)

TreeAgr Nearest neighbor index (NNI) The level of cluster (or dispersion) of tree patches

Green/Open Space Variables

PrvtGrn Private urban greenspace
The percent of census tract areas occupied by garden/landscape space of

urban land use types including residential, commercial, office, and
industrial (%) Los Angeles Regional

Imagery Acquisition
Consortium
(LARIAC)

GrnRec Greenspace in
recreational areas

The percent of census tract areas occupied by greenspace, which is largely
accessible by the public, including parks and recreational areas (%)

SemiGrn Semi-public greenspace
The percent of census tract areas occupied by greenspace, which is not

accessible by the public, including golf courses, educational facilities, and
cemeteries, as well as agricultural lands (%)

Socio-Demographic Variables

PovRt Poverty rate The percent of households whose income in the past 12 months was
below the poverty level (%)

The American
Community Survey

(2016; 5-year
estimates)

EduAtn Education attainment The percent of population with high school degree or lower (%)

EtnGrp Ethnical background The percent of the African American population (%)

ChldPop Children population The percent of children population whose age is 10 or under (%)

SnrPop Elderly population The percent of the elderly population whose age is 65 or above (%)

Air Quality Variables

PM2.5 Particulate matter 2.5 The average of particulate matter 2.5 concentration from the years 2011
to 2013

CalEnviroScreen 3.0

Ozone Level of ozone The average daily maximum ozone concentration for the years 2011
to 2013
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Figure 1. Asthma emergency room visits per 10,000 people across the Los Angeles County census tracts (2011–2013).

Another characteristic of tree path measured is the nearest neighbor index (NNI)
of tree patches (TreeAgr). This paper adopts this variable under the assumption that
the formations or configurations of tree patches can be an influential factor on asthma
morbidity. The NNI indicates whether the distribution of tree patches is clustered or
dispersed. It is a ratio of distance between each feature centroid and its nearest neighbor’s
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centroid location, which is a hypothetical random distribution with the same number of
features covering the same total area [23]. If the NNI is less than 1, the pattern represents
clustering, while an index greater than 1 indicates dispersion. In other words, the smaller
NNI is, the more aggregated the pattern of tree patches is.

This paper also includes three open/greenspace variables that comprehensively cap-
ture green infrastructure in an urban environment. They include private, semi-private, and
public greenspaces, which became three open/greenspace variables, PrvtGrn, SemiGrn,
and GrnRec, respectively. Including front/back yards and gardens of residential areas, as
well as landscaped areas in commercial, office, and industrial facilities, private greenspace
(PrvtGrn) represents green and landscaped areas within privately owned properties. These
spaces are relatively small scale and belong to private properties but are commonly found
within close proximity to people’s everyday life. Semi-public greenspace (SemiGrn) indi-
cates the greenspace of the facilities that have a certain level of restriction on the public
access. They mainly include golf courses, schools, cemeteries, and agricultural lands. These
facilities normally provide the public with a large scale of open/greenspaces in an urban
environment, but people’s free access to the facilities is not warranted. Public greenspace
(GrnRec) refers to greenspace which is largely accessible by the public, including local and
regional parks and recreational areas. This greenspace offers not only green/open space
but also opportunities for the public to engage in physical activities and exercise.

In order to compute these variables, this paper acquired the tree canopy and high-
resolution land cover data from Los Angeles Regional Imagery Acquisition Consortium
(LARIAC). LARIAC captured tree canopy using Light Detection and Ranging (LiDAR)
technology, which allow creating high resolution digital surface models (DSM) and extract-
ing the tree canopy from DSM. The tree canopy data were in the format of raster at 2 feet
by 2 feet resolution. This paper captured open/greenspaces in the urban environment
with the high-resolution land cover data (0.2286 m by 0.2286 m) from LARIAC and the
parcel-based land use data from Southern California Association of Governments (SCAG).

By overlaying these two datasets, it was possible to precisely extract greenspaces
within properties designated for a specific land use type. Extensive existing research
detected greenspace with land cover data from satellite images [8,9,12,13]. The resolution
of the land cover data is normally 30 m by 30 m or 10 m by 10 m. For example, the
Normalized Difference Vegetation Index (NDVI) data derived from satellite imagery data,
whose resolution is typically 30 m by 30 m. The LARIAC data allow delineating the shape
and area of tree and greenspaces at a much finer level than the conventional satellite
imagery data. For instance, the LARIAC land cover data are about 1914 and 17,222 times
finer than 10 m by 10 m and 30 m by 30 m satellite imagery data, respectively (Figure 2).
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by 0.2286 m resolution (source: LARIAC).

Since the socio-demographic background of asthma patients is often mentioned as
one of most significant risk factors of asthma in previous studies [24,25], several socio-
demographic characteristics at the geographic level were defined as control variables.
Given the direct association between air pollution and asthma morbidity, it is also fairly rea-
sonable to control outdoor air quality variables. Thus, this model includes these variables.
Lastly, all of socio-demographic factors were based on the 2016 American Community
Survey U.S. (5-year estimates), while the air quality variables were extracted from CalEnvi-
roScreen 3.0.

Using the variables, this paper constructs two spatial regression methods: a spatial lag
(SL) and a spatial error (SE) model. Whereas the SL model presupposes that dependencies
lie straightly in the levels of the dependent variable, the SE model treats primarily the
spatial correlation as a problem that should be fixed. It is very similar to how statistical
approaches often treat temporal serial correlation as something to be eliminated and solely
regarded as an estimation problem [26]. The SL and SE models can be expressed using the
following formulas, respectively.

y = pWy + Xβ + ε (1)

where

y = a vector of observations on the dependent variable;
Wy = a spatially lagged dependent variable for the weight matrix, W;
X = a matrix of observations on the explanatory variables;
ε = a vector of error terms;
p, β = parameters.

y = Xβ + ε with ε = λWε + u (2)

where

y = a vector of observations on the dependent variable;
W = the spatial weight matrix;
X = a matrix of observations on the explanatory variables;
ε = a vector of spatially autocorrelated error terms;
u = a vector of errors;
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λ, β = parameters.

The primary reason for employing the spatial regression methods is spatial auto-
correlation. In previous environmental health studies, less consideration of the spatial
autocorrelation inherent to geo-referenced data has been often reported as a possible
methodological limitation [27]. Due to the nature of the unit of analysis (i.e., census tract),
the tendency of spatial autocorrelation and/or heterogeneity is often reported. In other
words, a value observed in one location not only relies on the values observed at neigh-
boring locations but also tends to be more clustered than distanced ones. Ignoring this
spatial data issue in employing a statistical model might lead to biased results [27,28]. A
Moran’s I test on the residuals from the OLS regression model for the correlation confirmed
a significant spatial autocorrelation (0.782 of Moran’s Index, 66.734 of z-score, and 0.000 of
p-value). Based on this result, we verified that, rather than OLS model, spatial regression
model is a more reasonable and relevant method for this paper. This is because spatial
regression models can explicitly incorporate the mechanisms underlying the geo-spatial
dependency of observed data in the real world.

3. Analysis and Findings

Prior to spatial regression modeling, this paper summarized the descriptive statistics
for the variables (Table 2). Possible collinearity of independent variables might affect the
relationships between the explanatory variables and asthma morbidity. Given this concern
about potential bias due to multicollinearity, we conducted VIF test and then confirmed that
all VIF values are below 5. Based on this result, we reject the possibility of multicollinearity
between explanatory variables [29] The majority of the tree and open/greenspace variable
values present relatively small standard deviation values, except semi-public greenspaces
(SemiGrn) and public open/greenspaces (GrnRec). Small standard deviation values men-
tion that the variables are consistent in the study area with less variation, since it denotes
that the variables observed are closely distributed around the mean value. The relatively
large standard deviations for SemiGrn and GrnTec indicate the uneven spatial distribution
of semi-public and public open/greenspaces. For example, semi-public greenspaces are
concentrated around the periphery of and between major cities, due to urban land use
patterns. Similarly, the ratio of public open/greenspaces in dense urban areas and along major
transportation corridors is extremely low, while they are distributed in suburban areas.

Table 2. Descriptive statistics of variables.

Variables Minimum Maximum Mean Std. Deviation VIF

Asthma 0.00 154.14 52.07 25.36 -

Tree Variables
TreeCov 0.00 0.42 0.11 0.06 4.666
TreeClus 8.00 212.00 76.38 21.33 4.413
TreeAgr 0.20 1.14 0.81 0.15 1.088

Open/Greenspace Variables

PrvtGrn 0.00 0.31 0.09 0.05 1.567
GrnRec 0.00 0.53 0.01 0.02 1.057

SemiGrn 0.00 0.85 0.01 0.04 1.046

Socio-Demographic Variables

PovRt 0.00 100.00 18.82 13.01 1.395
EduAtn 0.00 100.00 1.79 21.90 1.013
EtnGrp 0.00 89.98 8.17 13.08 1.162

ChldPop 0.00 40.60 12.80 4.26 1.626
SnrPop 0.00 100.00 11.02 6.05 1.537

Air Quality Variables

PM2.5 5.34 12.89 11.53 1.28 1.726
Ozone 0.04 0.07 0.05 0.01 1.720

Note: Std. Deviation = standard deviation.
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Overall, the R-squared and log likelihood values from the two models indicate a good
model fit. The R-squared value of the SE model, 0.785, presented a slightly better general
model fit in comparison with the one of the SL model (0.718). Since the best model is the
model with the lowest AIC score, the AIC scores are consistent with the R-squared values
(Table 3). The outputs from both models are consistent. While the SL model confirms the
correlation of three variables, PrvtGRN, SnrPop, and Ozone, with the dependent variable
at a statistically significant level (0.10 level), the correlation at the level is not found from
the SE model. Otherwise, the output of the two models remains the same.

Table 3. The outputs of spatial regression models.

Variables
SL Model SE Model OLS Model

Coef. Standardized S. E. Z Coef. Standardized S. E. Z Coef. S. E.

Constant 7.586 24.613 6.376 1.190 48.153 50.304 15.520 3.103 52.075 0.375

Tree Variables

TreeCov −44.692 −3.660 5.702 *** −7.838 −52.911 −2.054 7.196 *** −7.353 −1.616 0.809
TreeClus −0.034 −1.830 0.016 ** −2.202 −0.033 −0.820 0.016 ** −1.979 −3.660 0.787
TreeAgr 15.687 1.616 2.693 *** 5.824 15.232 2.138 2.908 *** 5.238 0.309 0.397

Open/Greenspace Variables

PrvtGrn −12.998 −1.232 6.954 * −1.869 13.428 0.357 8.178 1.642 −0.166 0.469
GrnRec 3.876 0.169 12.406 0.312 9.543 0.231 10.126 0.942 0.265 0.385

SemiGrn −1.567 0.033 7.267 −0.216 1.014 0.031 5.971 0.170 0.183 0.383

Socio-demographic Variables

PovRt 0.172 2.059 0.027 *** 6.406 0.061 0.746 0.024 ** 2.531 4.485 0.443
EduAtn −0.003 −0.037 0.013 −0.231 −0.008 −0.208 0.009 −0.955 0.546 0.377
EtnGrp 0.365 5.018 0.025 *** 14.891 0.280 3.733 0.029 *** 9.647 9.763 0.404

ChldPop 0.843 3.612 0.087 *** 9.680 1.045 4.503 0.096 *** 10.906 7.490 0.478
SnrPop −0.105 −0.623 0.058 * −1.798 −0.073 −0.524 0.046 −1.585 −0.226 0.464

Air Quality Variables

PM2.5 0.583 −0.764 0.320 * 1.822 1.711 −2.105 0.796 ** 2.149 −2.138 0.492
Ozone 114.113 0.528 65.976 * 1.730 21.651 −0.200 166.955 0.130 0.215 0.491

R-Squared 0.718 0.785 0.501
Log likelihood −9341.340 −9184.231 N/A

Akaike info
Criterion (AIC) 18714.7 18398.5 N/A

Lag coefficient (Rho) 0.541 (Lambda) 0.797 N/A

Note: *, **, *** Correlations are significant at the 0.10, 0.05, and 0.01 levels, respectively (2-tailed) Coef. = Coefficient; Standardized =
Standardized coefficient; S. E. = Standard error; Z = Z-value.

The outputs of both models suggest interesting findings and discussion topics. The SL
model displays the relationship between the dependent variable and four tree /greenspace
variables: TreeCov, TreeClus, TreeAgr, and PrvtGrn. The significant socio-demographic
variables from both models are the poverty rate (PovRt), the ratio of the African American
population (EthGrp), and children population (ChldPop), which indicate positive correla-
tions with asthma morbidity. The output confirms previous research that identified the
correlation between asthma incidence and the patients’ socio-economic cohorts, including
the children, low income, and minority population [24,30]. Consistent with the earlier
studies, the result also indicates the positive correlations of asthma emergency room visits
with poverty rate, the ratio of the African American population, and the ratio of children
population [22,31]. As expected, the air quality variables also present a positive correlation
with asthma emergency room visits. A positive correlation between PM 2.5 and the depen-
dent variable at a statistically significant level is identified from both models, while the SL
model only presents the correlation of ozone with the dependent variable.

By controlling the socio-demographic and air quality factors, the outputs from the
models suggest clear correlations of tree and greenspace with asthma morbidity in Los
Angeles County. The findings infer a strong relationship between trees and asthma mor-
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bidity. All of the three tree variables present a correlation with asthma emergency room
visits at a statistically significant level. The models also indicate that the ratio of the areas
covered by tree canopies (TreeCov) negatively correlates with asthma morbidity. Overall,
this finding is consistent with the previous research at the ecological level, which suggested
the positive influence of trees and greenspaces on asthma [8–10,32,33].

However, the models add a new perspective on the relationship between the charac-
teristics of tree cluster and asthma morbidity. Both models present a negative correlation
of TreeClus with the dependent variable. In other words, there are a smaller number of
asthma emergency room visits in the areas with larger clusters of trees. This suggests that
larger patches of trees (extended and connected canopy of trees) have a stronger capability
to capture particles on their leaf surface than smaller patches or an individual tree does.
This also suggests that mature trees with a relatively large canopy are more effective than
smaller trees in terms of purifying the air. The improved air quality by this critical mass of
tree patch probably contributes to the reduction of asthma emergency room visits.

In like manner, the positive correlation between TreeAgr and asthma morbidity il-
lustrates that the aggregated tree patches have positive impacts on asthma. This implies
that the configuration of trees, as well as the quantity of trees, is also relevant to asthma
morbidity. The finding indicates that people have fewer emergency room visits for asthma
in areas where the pattern of trees is aggregated rather than dispersed. In the consideration
of the finding that asthma morbidity is associated with the size of the tree patch, it is clear
that large, aggregated tree patches positively contribute to asthma morbidity.

Another interesting finding is the negative correlation between the variable, PrvtGrn,
and the dependent variable confirmed by the SL model. In other words, the model
indicates that people in the areas with more private greenspaces and landscaped areas
have less chance of making have asthma emergency room visits. However, none of
the models identifies the correlation of the other variables, GrnRec and SemiGrn, with
asthma morbidity. Semi-public and public open/greenspaces do not contribute to asthma
morbidity.

In comparison to semi-public and public open/greenspace (e.g., golf course, school’s
playgrounds, parks, and cemeteries), individual private greenspaces (e.g., yards of residen-
tial properties and landscaped spaces in commercial properties) occupy a small geograph-
ical extent. Private greenspaces are instead available within close proximity of people’s
everyday life and activities. This finding implies that the accumulation of small-scale
spaces around daily activities is an important contributing factor to asthma. The large scale
open/greenspaces, such as golf courses, parks, and school fields do not strongly associate
with asthma morbidity, unless perhaps they are close enough to people.

4. Discussion

Findings from analytic models provide insights into the current environmental projects
of many cities based on a better understanding of the complete relationship between
greenspaces/trees in the neighborhood level and asthma morbidity and for exploring
air-quality mitigation policies from the perspective of asthma prevalence. For example,
the Million Tree Initiative started by the City of Los Angeles in 2006 is a project that has
the goal of adding a million more trees to its existing forests. This project was adopted
by many cities in the U.S., like Denver and New York City, as well as international cities
as London and Shanghai [34]. The original purpose of the project was to mitigate climate
change and to reduce air pollution, especially carbon dioxide, by expanding urban forestry.
Therefore, when planning and assessing the project, the public health benefits of the project
were unfortunately underestimated, while emphasizing its benefits in energy saving, air
quality, and aesthetics [35]. As the models indicate, the increase of tree and green spaces can
contribute to the improvement of asthma-related public health. Therefore, when planning
a project like the Million Tree Initiative, it is important for municipalities to increase the
public health benefits by strategically planting trees in the areas with the high concentration
of asthma patients.
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Speaking of the strategic locations of urban forestry, a considerable policy recommen-
dation and guidance is to maintain 500-feet distance between the development of new
schools, housing or other sensitive land uses and major highways [36]. Due the significant
negative contribution of major highways to air quality, consequentially to asthma morbid-
ity [31,37], governments require the buffer distance. Based on the results from our empirical
models, in tandem with maintaining the buffer distance, planting trees in these buffer
areas will help to improve poor air quality and hence to reduce asthma morbidity. Thus, in
practice, targeting these areas for creating urban forestry is crucial for local governments
and transportation agencies to mitigate air pollution.

When creating urban forestry, it would be ideal to strategically select the sites of urban
forestry in a way that they are clustered and aggregated. This is because aggregated rather
than dispersed trees contribute to the relief of asthma. Furthermore, it is important to plant
trees in a clustered form. Although larger trees have a stronger positive impact on asthma,
it is not easy to start by planting mature, large trees. Therefore, it is necessary to have a
strategic, long-term vision that plants trees close enough, so that the canopy of the trees
will be extended and connected in the future.

The findings indicate the positive contributions of private green spaces like front/back
yards and landscaped areas to the reduction of asthma morbidity. The private green spaces
are small, but proximate greenspaces in comparison to the semi- and public greenspaces.
Therefore, it is important to create small-scale greenspaces near people’s everyday activities.
For example, a pocket park can be an excellent alternative. A pocket park is a small
park for the general public, which is typically created on a single vacant lot or on small,
irregular pieces of land, especially in dense urban environments. Another example is
the conversion of surface parking lots to greenspaces. With the movement of sustainable
parking management that suggests the reduction of surface parking lots [38], cities have
been putting significant efforts into turning parking lots into parks, community gardens,
and/or other greenspaces. These efforts will have a positive effect on the reduction of
asthma morbidity.

5. Conclusions

We offered an investigation of the role of neighborhood tree and greenspace, partic-
ularly in terms of the area, configuration, and feature, on asthma patients. Employing
high-resolution land cover and tree data derived from advanced LiDAR technologies, this
paper pays special attention to improving the measurement of tree and greenspace factors.
The data facilitate the accurate measurement of not only the area of neighborhood tree and
greenspaces but also the configuration and characteristics. The results from two spatial
regression models indicated that the relationships between neighborhood tree/greenspaces
and asthma are much more complicated than the well-known effect of the quantity of
urban greenspace acreages on asthma incidence. In addition to the areas of greenspaces,
which are conventionally identified as a contributing factor to asthma, the findings suggest
that the configuration of trees and the characteristics of greenspaces at the neighborhood
level influence asthma morbidity in Los Angeles County. They include the size of the tree
canopy, the level of tree cluster, and private small-scale neighborhood greenspaces.

Overall, the relationship between greenspace and asthma morbidity is a topic that
much research has conventionally addressed. However, the relationship can be articulated
by new high-resolution spatial data, which become more accessible by the latest advances
in computer technologies and geo-spatial science. We expect that future studies with
the emergence of big data and relevant analytic technologies will help us to reach more
scientifically generalized and convincing empirical evidence. In addition to improving the
accuracy of measurement on land cover, this trend can make it possible to introduce new
variables and perspectives to the field of greenspace and asthma morbidity research. As
an exemplary case, this research demonstrates the contribution of advanced spatial data
to asthma morbidity-related literature. Although this paper articulates the measurement
of multiple tree and greenspace factors, there is a limitation that should be addressed
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by future studies. The limitation is the aggregated asthma patient data by census tract.
It would be ideal to identify the location of individual asthma patients and analyze the
ambient green environment by the individual location. However, this paper employed the
aggregated asthma patient data, mainly due to the limitation of individual asthma patient
data availability. Therefore, it would be ideal for future research to employ asthma patient
data at the individual level.

Author Contributions: Conceptualization, D.K. and Y.A.; methodology, D.K.; validation, D.K. and
Y.A.; formal analysis, D.K. and Y.A.; investigation, D.K. and Y.A.; resources, D.K.; data curation, D.K.;
writing—original draft preparation, D.K.; writing—review and editing, Y.A.; funding acquisition,
Y.A. Both authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Seoul National University of Science and Technology [Re-
search fund by the SeoulTech].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Party Data. Restrictions apply to the availability of these data. The
tree-canopy and high-resolution land cover data were obtained from Los Angeles Regional Imagery
Acquisition Consortium (LARIAC) and are available from https://lariac-lacounty.hub.arcgis.com/
(accessed on 30 September 2019) with the permission of LARIAC. The land use data were obtained
from Southern California Association of Governments (SCAG) and are available from https://scag.
ca.gov/ (accessed on 30 September 2019) with the permission of SCAG. The other data used in the
paper are publicly available. This includes CalEnviroScreen 3.0. (available from https://oehha.ca.
gov/calenviroscreen/report/calenviroscreen$-$30) (accessed on 30 September 2019) and U.S. Census
data (available from https://www.census.gov/) (accessed on 30 September 2019).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hsu, J.; Sircar, K.; Herman, E.; Garbe, P. Exhale: A Technical Package to Control Asthma; Center for Disease Control and Prevention

(CDC): Atlanta, GA, USA, 2018.
2. Peden, D. The epidemiology and genetics of asthma risk associated with air pollution. J. Allergy Clin. Immunol. 2005, 115, 213–219.

[CrossRef] [PubMed]
3. Markevych, I.; Tesch, F.; Datzmann, T.; Romanos, M.; Schmitt, J.; Heinrich, J. Outdoor air pollution, greenspace, and incidence of

ADHD: A semi-individual study. Sci. Total Environ. 2018, 642, 1362–1368. [CrossRef] [PubMed]
4. Selmi, W.; Weber, C.; Riviere, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in

Strasbourg city, France. Urban For. Urban Green. 2016, 17, 192–201. [CrossRef]
5. Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities?

Just green enough? Landsc. Urban Plan. 2014, 125, 234–244. [CrossRef]
6. Yang, J.; McBride, J.; Zhou, J.; Sun, Z. The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green.

2005, 3, 65–78. [CrossRef]
7. De Ridder, K.; Adamec, V.; Banuelos, A.; Bruse, M.; Burger, M.; Damsgaard, O.; Dufek, J.; Hirsch, J.; Lefebre, F.; Perez-Lacorzana,

J.M. An integrated methodology to assess the benefits of urban green space. Sci. Total Environ. 2004, 334, 489–497. [CrossRef]
8. Alcock, I.; White, M.; Cherrie, M.; Wheeler, B.; Taylor, J.; McInnes, R.; Kampe, E.O.; Vardoulakis, S.; Sarran, C.; Soyiri, I. Land

Cover and Air Pollution Are Associated with Asthma Hospitalisations: A Cross-Sectional Study. Environment International; Elsevier:
Amsterdam, The Netherlands, 2017; pp. 29–41.

9. Feng, X.; Astell-Burt, T. Is neighborhood green space protective against associations between child asthma, neighborhood traffic
volume and perceived lack of area safety? Multilevel analysis of 4447 Australian children. Int. J. Environ. Res. Public Health 2017,
14, 543. [CrossRef]

10. Lovasi, G.S.; Quinn, J.W.; Neckerman, K.M.; Perzanowski, M.S.; Rundle, A. Children living in areas with more street trees have
lower prevalence of asthma. Epidemiol. Community Health 2008, 62, 647–649. [CrossRef]

11. Lovasi, G.S.; O’Neil-Dunne, J.P.M.; Lu, J.W.T.; Sheehan, D.; Perzanowski, M.S.; MacFaden, S.W.; King, K.L.; Matte, T.; Miller, R.;
Hoepner, A. Urban tree canopy and asthma, wheeze, rhinitis, and allergic sensitization to tree pollen in a New York City birth
cohort. Environ. Health Perspect. 2013, 121, 494–500. [CrossRef]

12. Andrusaityte, S.; Grazuleviciene, R.; Kudzyte, J.; Bernotiene, A.; Dedele, A.; Nieuwenhuijsen, M.J. Associations between
Neighbourhood Greenness and Asthma in Preschool Children in Kaunas, Lithuania: A Case-Control Study. BMJ Open 2016, 6,
e010341. [CrossRef]

https://lariac-lacounty.hub.arcgis.com/
https://scag.ca.gov/
https://scag.ca.gov/
https://oehha.ca.gov/calenviroscreen/report/calenviroscreen$-$30
https://oehha.ca.gov/calenviroscreen/report/calenviroscreen$-$30
https://www.census.gov/
http://doi.org/10.1016/j.jaci.2004.12.003
http://www.ncbi.nlm.nih.gov/pubmed/15696070
http://doi.org/10.1016/j.scitotenv.2018.06.167
http://www.ncbi.nlm.nih.gov/pubmed/30045516
http://doi.org/10.1016/j.ufug.2016.04.010
http://doi.org/10.1016/j.landurbplan.2014.01.017
http://doi.org/10.1016/j.ufug.2004.09.001
http://doi.org/10.1016/j.scitotenv.2004.04.054
http://doi.org/10.3390/ijerph14050543
http://doi.org/10.1136/jech.2007.071894
http://doi.org/10.1289/ehp.1205513
http://doi.org/10.1136/bmjopen-2015-010341


Int. J. Environ. Res. Public Health 2021, 18, 3487 12 of 12

13. Dadvand, P.; Villanueva, C.M.; Font-Ribera, L.; Martinez, D.; Basagana, X.; Belmonte, J.; Vrijheid, M.; Grazuleviciene, R.;
Kogevinas, M.; Nieuwenhuijsen, M.J. Risks and benefits of green spaces for children: A cross-sectional study of associations with
sedentary behavior, obesity, asthma, and allergy. Environ. Health Perspect. 2014, 122, 1329–1335. [CrossRef] [PubMed]

14. Zandbergen, P.A. Methodological issues in determining the relationship between street trees and asthma prevalence. J. Epidemiol.
Community Health 2009, 63, 174–175. [CrossRef]

15. Zhou, X.; Kim, J. Social disparities in tree canopy and park accessibility: A case study of six cities in Illinois using GIS and remote
sensing. Urban For. Urban Green. 2013, 12, 88–97. [CrossRef]

16. California Environmental Protection Agency (CalEPA) and Office of Environmental Health Hazard Assessment (OEHHA).
CalEnvirScreen 3.0; California Environmental Protection Agency (CalEPA) and Office of Environmental Health Hazard Assessment
(OEHHA): Sacramento, CA, USA, 2017.

17. Mar, T.F.; Koenig, J.Q.; Primomo, J. Associations between asthma emergency visits and particulate matter sources, including
diesel emissions from stationary generators in Tacoma, Washington. Inhal. Toxicol. 2010, 22, 445–448. [CrossRef] [PubMed]

18. Stieb, D.M.; Burnett, R.T.; Beveridge, R.C.; Brook, J.R. Association between ozone and asthma emergency department visits in
Saint John, New Brunswick, Canada. Environ. Health Perspect. 1996, 104, 1354–1360. [CrossRef]

19. Villeneuve, P.J.; Leech, J.; Bourque, D. Frequency of emergency room visits for childhood asthma in Ottawa, Canada: The role of
weather. Int. J. Biometeorol. 2005, 50, 48–56. [CrossRef]

20. Mohr, L.B.; Luo, S.; Mathias, E.; Tobing, R.; Homan, S.; Sterling, D. Influence of season and temperature on the relationship of
elemental carbon air pollution to pediatric asthma emergency room visits. J. Asthma 2008, 45, 936–943. [CrossRef] [PubMed]

21. Kim, D.; Ahn, Y. Built Environment Factors Contribute to Asthma Morbidity in Older People: A Case Study of Seoul, Korea. J.
Transp. Health 2018, 8, 91–99. [CrossRef]

22. Ahn, Y.; Kim, D. The Prevalence of Asthma and Severe Asthma in Children Influenced by Transportation Factors: Evidence from
Spatial Analysis in Seoul, Korea. Cities 2019, 85, 30–37. [CrossRef]

23. Mitchell, A. The Esri Guide to GIS Analysis: Geographic Patterns and Relationships; ESRI, Inc.: Redland, CA, USA, 2020.
24. Miller, J.E. The effects of race/ethnicity and income on early childhood asthma prevalence and health care use. Am. J. Public

Health 2000, 90, 428–430. [CrossRef] [PubMed]
25. Weiss, K.; Gergen, P.; Crain, E. Inner-city asthma: The epidemiology of an emerging US public health concern. Chest 1992, 101,

S362–S367. [CrossRef]
26. Cressie, N.A.C. Statistics for Spatial Data; John Wiley & Sons: New York, NY, USA, 1993.
27. Ahn, Y.; Sohn, D. The effect of neighbourhood-level urban form on residential building energy use: A GIS-based model using

building energy benchmarking data in Seattle. Energy Build. 2019, 196, 124–133. [CrossRef]
28. Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic: Dordrecht, The Netherlands, 1988.
29. Judge, G.G.; Hill, R.C.; Griffiths, W.E. Introduction to the Theory and Practice of Econometrics; Wiley: New York, NY, USA, 1982.
30. Wissow, L.S.; Gittelsohn, A.M.; Szklo, M.; Starfield, B.; Mussman, M. Poverty, race and hospitalization for childhood asthma. Am.

J. Public Health 1998, 78, 777–782. [CrossRef] [PubMed]
31. Kim, D. Transportation contributing factors to asthma morbidity: The case of Los Angeles County. Int. J. Urban Sci. 2019, 23,

16–29. [CrossRef]
32. Ayres-Sampaio, D.; Teodoro, A.C.; Sillero, N.; Santos, C.; Fonseca, J.; Freitas, A. An investigation of the environmental determi-

nants of asthma hospitalizations: An applied spatial approach. In Applied Geography; Elsevier: Amsterdam, The Netherlands,
2014; Volume 47, pp. 10–19.

33. Erdman, E.; Liss, A.; Gute, D.; Rioux, C.; Koch, M.; Naumova, E. Does the presence of vegetation affect asthma hospitalizations
among the elderly? A comparison between rural, suburban, and urban areas. Int. J. Environ. Sustain. 2015, 4, 1–14. [CrossRef]

34. Pincetl, S. Implementing Municipal Tree Planting: Los Angeles Million-Tree Initiative. Environ. Manag. 2010, 45, 227–238.
[CrossRef] [PubMed]

35. McPherson, G.E.; Simpson, J.R.; Xiao, Q.; Wu, C. Los Angeles 1-Million Tree Canopy Cover Assessment; Technical Report. PSW-GTR-
207; US Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2008.

36. California Environmental Protection Agency (CalEPA) and California Air Resources Board. Status of Research on Potential
Mitigation Concepts to Reduce Exposure to Nearby Traffic Pollution; California Environmental Protection Agency (CalEPA) and
California Air Resources Board: Sacramento, CA, USA, 2012.

37. California Environmental Protection Agency (CalEPA) and California Air Resources Board. Air Quality and Land Use Handbook:
A Community Health Perspective; California Environmental Protection Agency (CalEPA) and California Air Resources Board:
Sacramento, CA, USA, 2005.

38. Willson, R. Parking Management for Smart Growth; Island Press: Washington, DC, USA, 2015.

http://doi.org/10.1289/ehp.1308038
http://www.ncbi.nlm.nih.gov/pubmed/25157960
http://doi.org/10.1136/jech.2008.081430
http://doi.org/10.1016/j.ufug.2012.11.004
http://doi.org/10.3109/08958370903575774
http://www.ncbi.nlm.nih.gov/pubmed/20384437
http://doi.org/10.1289/ehp.961041354
http://doi.org/10.1007/s00484-005-0262-6
http://doi.org/10.1080/02770900802404082
http://www.ncbi.nlm.nih.gov/pubmed/19085586
http://doi.org/10.1016/j.jth.2017.12.002
http://doi.org/10.1016/j.cities.2018.12.002
http://doi.org/10.2105/AJPH.90.3.428
http://www.ncbi.nlm.nih.gov/pubmed/10705865
http://doi.org/10.1378/chest.101.6.362S
http://doi.org/10.1016/j.enbuild.2019.05.018
http://doi.org/10.2105/AJPH.78.7.777
http://www.ncbi.nlm.nih.gov/pubmed/3381951
http://doi.org/10.1080/12265934.2018.1500493
http://doi.org/10.24102/ijes.v4i1.526
http://doi.org/10.1007/s00267-009-9412-7
http://www.ncbi.nlm.nih.gov/pubmed/20016982

	Introduction 
	Methodology 
	Analysis and Findings 
	Discussion 
	Conclusions 
	References

