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Simple Summary: Microvascular invasion (MVI) is regarded as a sign of early metastasis in liver
cancer and can be only diagnosed by a histopathology exam in the resected specimen. Preoperative
prediction of MVI status may exert an effect on patient treatment management, for instance, to
expand the resection margin. Radiomics can identify delicate imaging features from routinely used
radiological images that are invisible to the naked eye and has been increasingly adopted to predict
MVI. We reviewed the available radiomics models to evaluate their role in the prediction of MVI.
The discriminative capacity of the models ranged from 0.69 to 0.94. Even though the studies were
preliminary and the methodologic quality was suboptimal, radiomics models hold promise for the
accurate and non-invasive prediction of MVI. In accordance with a standardized radiomics workflow,
future prospective studies with external validation are expected to provide a reliable and robust
prediction tool for clinical implementation.

Abstract: Preoperative prediction of microvascular invasion (MVI) is of importance in hepatocellular
carcinoma (HCC) patient treatment management. Plenty of radiomics models for MVI prediction
have been proposed. This study aimed to elucidate the role of radiomics models in the prediction
of MVI and to evaluate their methodological quality. The methodological quality was assessed by
the Radiomics Quality Score (RQS), and the risk of bias was evaluated by the Quality Assessment
of Diagnostic Accuracy Studies (QUADAS-2). Twenty-two studies using CT, MRI, or PET/CT
for MVI prediction were included. All were retrospective studies, and only two had an external
validation cohort. The AUC values of the prediction models ranged from 0.69 to 0.94 in the test
cohort. Substantial methodological heterogeneity existed, and the methodological quality was low,
with an average RQS score of 10 (28% of the total). Most studies demonstrated a low or unclear
risk of bias in the domains of QUADAS-2. In conclusion, a radiomics model could be an accurate
and effective tool for MVI prediction in HCC patients, although the methodological quality has so
far been insufficient. Future prospective studies with an external validation cohort in accordance
with a standardized radiomics workflow are expected to supply a reliable model that translates into
clinical utilization.
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1. Introduction

Microvascular invasion (MVI) has been recognized as an independent predictor for
early recurrence and poor prognosis after liver resection or transplantation in hepatocellular
carcinoma (HCC) [1,2]. Its reported incidence ranges from 15% to 57% according to different
diagnostic criteria and study population [3]. The diagnosis of MVI, however, is only made
by a postoperative histopathology exam on the resected specimen, which exerts little or
no influence on the patient treatment management, while with the knowledge of MVI,
clinicians can optimize a patient treatment strategy, for example, to expand the resection
margin in operation or to adopt an alternative treatment option. To implement personalized
medicine, it is of utmost importance to preoperatively identify and stratify patients with
MVI. Therefore, a reliable, noninvasive biomarker for preoperative prediction of MVI is
urgently needed.

Medical imaging has evolved from a primarily diagnostic tool to an essential role in
clinical decision making. Clinically, radiologists use pattern recognition after establishing
links between radiological features at CT or MRI images and MVI [4,5], such as arterial
peritumoral enhancement, non-smooth tumor margins, and rim arterial enhancement [2].
The Liver Imaging Reporting and Data System (LI-RADS) has recently been developed
and has evolved as a comprehensive and standardized diagnostic algorithm for HCC
imaging reporting [6]. LI-RADS has been proven to be an effective tool not only for HCC
diagnosis but also for outcome prediction after liver resection, radiofrequency ablation, or
liver transplantation [6–8], exerting an increasing influence on the treatment management
of HCC. Previous studies have demonstrated the diagnostic value of LI-RADS in the
prediction of MVI [9,10]. However, these qualitative features suffer from their subjectivity
and high inter-observer variability [11].

Radiomics is an emerging field that can extract high-throughput imaging features from
biomedical images and convert them into mineable data for quantitative analysis [12,13].
Its basic assumption lies on that the alterations and heterogeneity of the tumor on the
micro scale (e.g., cell or molecular levels) can be reflected in the images [14]. Therefore,
through radiomics analysis, the cancerous cell emboli (i.e., MVI) in the hepatic vasculature
can be detected in the preoperative images, which holds promise for the preoperative
prediction of MVI and personalized treatment. In recent years, a number of radiomics
models for MVI prediction have emerged. However, there has not been any research
systematically summarizing current radiomics research for MVI prediction, and the overall
efficacy of the prediction model is still unknown. In addition, as radiomics research
is a sophisticated process and consists of several steps, it is important to evaluate the
methodological variability to obtain a reliable and reproducible model before translating
it to clinical applications. The current systematic review therefore aims (1) to provide an
overview of radiomics studies for MVI prediction in HCC patients and assess the efficacy
of the prediction models and (2) to evaluate the methodologic quality in the radiomics
workflow and the risk of bias in the research.

2. Materials and Methods

This study is registered at the PROSPERO website (https://www.crd.york.ac.uk/
prospero/, No: CRD42021250082, (accessed on 20 May 2021)) and was conducted under
the guidance of the Preferred Reporting Items for a Systematic Review and Meta-analysis
of Diagnostic Test Accuracy Studies (PRISMA-DTA) (Table S1).

2.1. Literature Research and Study Selection

Publications from databases of the PubMed, Embase, Web of Science, and Cochrane li-
braries were systematically retrieved by using the following key terms: “radiomics/texture

https://www.crd.york.ac.uk/prospero/
https://www.crd.york.ac.uk/prospero/
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analysis”, “microvascular invasion”, and “hepatocellular carcinoma”. Detailed searching
queries in each database can be found in Table S2. The last updated date of the literature
search is 29 May 2021.

Records satisfying the following criteria were considered as eligible: Inclusion cri-
teria: (1) retrospective or prospective studies; (2) studies considering patients who were
diagnosed with hepatocellular carcinoma by a pathology exam; (3) studies with radiomics
features extracted from CT, MRI, or PET/CT images used as predictors for MVI, solely or
as a variable in a model; (4) studies where MVI prediction is the main outcome or one of the
main outcomes; (5) publications in English. Exclusion criteria: (1) publications in the form
of a letter, conference abstract, editorial, review, or case report; (2) research considering
only semantic radiological features used for MVI prediction; (3) research with operator-
dependent imaging modalities, such as ultrasound-based studies; (4) deep-learning re-
search not involving any textural features in the model; (5) studies only evaluating the
predictive value of a single radiomics feature, without any combination into a multiple
features prediction model; (6) studies with a sample size of less than 30.

Study selection was conducted by two reviewers (Q.W. and C.L.) by screening the
title and abstract and then the full text. Any disagreement or uncertainty was resolved by
two senior researchers (K.M. and T.B.) to reach a consensus. Reference lists of the enrolled
studies as well as a pre-existing systematic review/meta-analysis were also searched
manually to recruit any potentially eligible studies.

2.2. Data Extraction

A pre-defined table was used to extract the following information from each paper: (1)
general study characteristics; (2) patient characteristics; (3) characteristics in development
of a radiomics model, including imaging modalities, tumor segmentation, imaging prepro-
cessing and feature extraction, and feature selection and modelling; (4) performance metrics
of a radiomics model, including area under the receiver operating characteristic (ROC)
curve (AUC), calibration statistics, and decision analysis. A typical radiomics research
workflow for MVI prediction is illustrated in Figure 1.

Figure 1. A typical workflow of radiomics research for microvascular invasion (MVI) prediction in hepatocellular carcinoma.

If several prediction models were developed in one study, the one with the best
performance in the test cohort was selected. For studies from the same medical center
with subjects overlapped, if the same imaging modality was adopted, the latest study was
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included; if different modalities or different contrast media used in the same modality
were applied, both studies were enrolled. Supplemental files of included studies were also
screened to extract required data, if necessary.

The terms “test cohort” and “validation cohort” were unified in this study to avoid
potential misunderstanding and confusion. A “test cohort” is a part of the model devel-
opment cohort and usually refers to an “internal test cohort”. A “validation cohort” is
independent from the model development cohort, be it temporal validation (data collected
from a later period) or geographic validation (data sampled from another hospital or
country) [15], and it is often called an “external validation cohort”.

2.3. Assessment of Radiomics Quality Score, Risk of Bias, and Research Type

The Radiomics Quality Score (RQS) is a scoring system proposed by Lambin in
2017 [16] and is commonly used for evaluating the methodologic quality of the radiomics
research [17,18]. The RQS tool contains 16 key items to quantify the quality of the radiomics
workflow and the reporting. Most items are designated to 0, 1, or 2 points, according to
how well a study achieves the signaling question. To highlight the importance of some
dimensions, a higher point is assigned; for example, 7 points is given to a prospective
validation study, and 5 points is given to a study validated in three or more datasets. The
ideal score of the RQS is 36 points, responding to a percentage of 100%. Table S3 provides a
detailed description of the RQS items.

As the radiomics model is also used as a diagnostic tool, the risk of bias and the
applicability concerns of the included studies were further assessed by using the revised
Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool [19]. QUADAS-
2 evaluates the risk of bias of a study in four domains: patient selection, index test, reference
standard, and flow and timing. The results of each domain were marked as low, high risk,
or unclear. Detailed description of QUADAS-2 is provided in Table S4.

An assessment of the RQS and QUADAS-2 was independently performed and cross-
validated by two reviewers (Q.W. and C.L.). When discrepancy occurred, agreement was
reached after discussion with two senior researchers (K.M. and T.B.).

3. Results
3.1. Literature Selection

The systematic literature search initially yielded 188 records from the four databases.
After removing 82 duplicates, 50 inappropriate types of publications, and 34 ineligible
studies, a total of 22 studies were included in this systematic review [20–41] (Figure 2).

3.2. General Characteristics and the Incidence of MVI

The included 22 studies were published between September 2017 and May 2021, with
two thirds (15/22) within the last two years. All studies were retrospectively designed and,
in total, included 5552 patients with a sample size varying from 69 to 637 patients (median:
174). Most studies (20/22) split the cohort into a training and a test cohort, while only
two of them further validated their model using an independent external cohort [25,29].
Nine studies (8/22) focused on solitary HCC, among which five focused on HCC with a
diameter of less than 5 cm.

The incidence of MVI ranged from 25.3% to 67.5% for an individual entire cohort, and
25.3% to 56.4% for HCC less than 5 cm. Around two thirds (16/22) of the studies explicitly
stated their definition of MVI. Table 1 gives more details about the general characteristics
of the reviewed studies.
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Figure 2. Flow chart of the study selection.

3.3. RQS and Risk of Bias Assessment

The average RQS score of the included studies was 10, accounting for 28% of the total
points. The highest RQS score was 15 points (42%), seen in only one study [16]. Around
half of the studies were credited between 11 and 14 points, corresponding to 30–40% of total
points (Figure 3A). As no research considered the items of “phantom study”, “prospective
study”, “detect and discuss biological correlates”, “cost-effectiveness analysis”, or “open
science and data”, these five items were assigned 0 points. Other poorly performed items
include “imaging at multiple time points”, “cut-off analysis”, and “calibration statistics”,
in which the average points for each item were less than 30% (Figure 3B). A detailed
description and a summary of the RQS score are provided in Table S5.

The summary of the risk of bias and the applicability concerns evaluated by the
QUADAS-2 tool are presented in Figure 4. Most studies showed a low or unclear risk of
bias in each domain. Detailed description in each domain is provided in Table S6.
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Table 1. Study and patient characteristics.

First Author Year Study Design No. of Patients
(Train vs. Test Cohort)

Independent
Validation Cohort Age (Mean/Median) Gender (M/F, %) Indication MVI Incidence

Jian Zheng [20] 2017 R# 120 (NA) No 70 73/27 HCC 44%
Jie Peng [21] 2018 R 304 (184:120) No 53 vs. 55 † 85/15 HCC (solitary) 66%

Xiaohong Ma [22] 2018 R 157 (110:47) No 53 vs. 55 † 85/15 HCC (≤6 cm, solitary) 35%
ShiTing Feng [23] 2019 R 160 (110:50) No 54.8 91/9 HCC 38.8%

Ming Ni [24] 2019 R 206 (148:58) No 57 vs. 59 † NA HCC (>1 cm) 42.7%
Rui Zhang [25] 2019 R 267 (194:73) No 57.9 86/14 HCC (solitary) 33.7%

Yong-Jian Zhu [26] 2019 R 142 (99:43) No 57 87/13 HCC (<5 cm, solitary) 37.3%

Giacomo Nebbia [27] 2020 R 99 (NA) No 51 vs. 54
(MVI vs. non-MVI) 84/16 HCC 61.6%

Qiu-ping Liu [28] 2020 R 494 (346:148) No NA 84/16 HCC 30.2%

Xiuming Zhang [29] 2020 R 637 (451:111) Yes
(75, external) 57.5 vs. 56.2 vs. 60.7 § 86/14 HCC 40%

Yi-quan Jiang [30] 2020 R 405 (324:81) No 48.5 85/15 HCC 54.3%

Mu He [31] 2020 R 163 (101:44) Yes
(18, internal) 50.0 vs. 47.5 vs. 52.0 § 82/18 HCC 67.5%

Huan-Huan Chong [32] 2021 R 356 (250:106) No 54.2 85/15 HCC (≤5 cm) 25.3%
Yidi Chen [33] 2021 R 269 (188:81) No 51.5 81/19 HCC 41.3%
Youcai Li [34] 2021 R 80 (50:30) No NA 91/9 HCC (BCLC 0/A) 45%

Danjun Song [35] 2021 R 601 (461:140) No 56.5 82/18 HCC (solitary) 37.40%
Houjiao Dai [36] 2021 R 69 (LOOCV) No 52.7 96/4 HCC (solitary) 42.0%

Peng Liu [37] 2021 R 185 (124:61) No 54 vs. 52 † 84/26 HCC (≤5 cm, solitary) 34.1%
Shuai Zhang [38] 2021 R 130 (91:39) No 57.8 vs. 58.6 † 68/32 HCC (>1 cm) 61.5%
Wanli Zhang [39] 2021 R 111 (88:23) No NA 88/12 HCC 51.4%

Xiang-pan Meng [40] 2021 R 402 (300:102) No 57 vs. 57 † 85/15 HCC (solitary) 40%
Yang Zhang [41] 2021 R 195 (136:59) No 57.7 88/12 HCC (≤5 cm) 56.4%

Note: #, respective study; †, train vs. test cohort; §, train vs. test vs. validation cohort; BCLC, the Barcelona Clinic Liver Cancer staging system; HCC, hepatocellular carcinoma; LOOCV, leave-one-out cross
validation; MVI, microvascular invasion; NA, not applicable.
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Figure 3. Methodological quality evaluated by using the Radiomics Quality Score (RQS) tool. (A). Proportion of studies
with different RQS percentage score. (B). Average scores of each RQS item (gray bars stand for the full points of each item,
and red bars show actual points).

Figure 4. Grouped bar charts of the risk of bias (A) and applicability concerns (B) of the included
studies assessed by using a revised tool for the Quality Assessment of Diagnostic Accuracy Studies
(QUADAS-2).
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3.4. Study Characteristics

According to the typical radiomics workflow, the study characteristics is summarized
as follows.

3.4.1. Imaging Acquisition

CT was applied in 10 studies, MRI in 10 studies, and both modalities in 1 [40], and
only 1 used PET/CT [34]. Most studies (16/22) exploited more than one phase/sequence
to construct their prediction model. The interval between the preoperative imaging exam
and liver resection (for histopathological diagnosis of MVI) varied from 1 week to 3 months
(median: 1 month).

3.4.2. Tumor Segmentation

A majority of studies performed 3D segmentation (20/22). In 15 of these studies, 3D
segmentation was achieved manually; in 3, segmentation was semi-automatic [21,28,34]; in
the remaining 2, it was achieved automatically [20,31]. Two studies manually delineated
the tumor on the cross-section slice with the largest tumor diameter [24,28]. Nine studies
expanded the segmented tumor with different distances, and the most common dilated
distance was 10 mm from the tumor margin.

3.4.3. Imaging Preprocessing and Feature Extraction

As imaging may come from different centers, different manufacturers, and different
scanners, imaging preprocessing prior to feature extraction is necessary to increase the
reliability of the textural measurements. Six studies (6/22) resampled the images before
feature extraction, most often to a voxel size of 1 × 1 × 1 mm3.

The most commonly used software to extract imaging features was pyradiomics
(9/22), followed by MatLab or its related software (6/22). The number of radiomics
features extracted from each phase/sequence ranged from 58 to 2932.

3.4.4. Feature Selection and Modelling

To avoid potential overfitting during development of a radiomics model, feature
selection and dimensionality reduction is necessary, as the radiomics features often out-
numbered the sample size. The most widely used algorithm was the Least Absolute
Shrinkage and Selection Operator (LASSO) regression, which is an efficient method to
select informative variables by introducing L1 regularization (15/22). The number of
imaging features included in the radiomics model ranged from 2 to 74 (median: 15), and
the event/feature ratio ranged from 0.7 to 35.5 (median: 4.2). Nine studies further in-
cluded clinical risk factors into a combined prediction model. High alpha-fetoprotein (AFP)
(9/22) and a large tumor size (4/22) were both frequently detected clinical risk factors for
MVI prediction.

It is worth mentioning that the reproducibility evaluation of imaging features can also
be used for feature selection. Among the 10 studies that performed interclass correlation
coefficient (ICC) analysis, 4 of them set a threshold of 0.8 for robust features and selected
those for further analysis [32,38,40,41].

3.4.5. Performance of the Prediction Model

A majority of studies (20/22) split the subjects into training and test subsets. The me-
dian AUC in the test cohort was 0.79, ranging from 0.69 to 0.94. Two studies validated their
models using an independent cohort with AUCs of 0.84 and 0.80 [29,31]. Only five studies
reported the cut-off value when presenting the performance metrics [21,26,32,34,41]. Nine
studies (9/22) evaluated the calibrated ability of their model in the form of a calibration
curve and clinical usefulness of the model in the form of decision curve analysis.

The abovementioned characteristics of the radiomics workflow has been provided in
detail in Table 2 and Table S7.
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Table 2. Characteristics of the radiomics research for microvascular invasion (MVI) prediction.

Study ID Imaging Modality Phase/Sequence Segmentation Extension of
VOI Feature Selection

Number of
Imaging Features
Included in the

Model

Event/Feature
Ratio during

Model
Development

Clinical Variables for
Modeling

AUC in Test
Cohort

Zheng 2017 CE-CT PVP 2D; auto Yes
(5-pixel) univariable logistic regression 21 1.6 AFP, tumor size, hepatitis NA

Peng 2018 CE-CT AP, PVP, DP 3D; semi-auto No LASSO 8 15.9
AFP, non-smooth tumor
margin, internal arteries,
hypoattenuating halos

0.84

Ma 2018 CE-CT AP, PVP, DP 3D; manually No ICC/CCC, LASSO 7 5.3 Age, tumor size, hepatitis B 0.80

Feng 2019 Gd-EOB-DTPA MRI HBP 3D; manually Yes
(10 mm) LASSO 10 4.2 NA 0.84

Ni 2019 CE-CT PVP 2D; manually No LASSO, neighbourhood rough set, PCA Unclear NA NA NA
R. Zhang

2019 Multimodel MRI AP, PVP, EP, T1, T2,
DWI 3D; manually Yes

(10 mm) mRMR 12 5.3 AFP, arterial peritumoral
enhancement 0.86

Zhu 2019 CE-MRI AP, PVP 3D; manually No Kruskal-Wallis test; Pearson correlation 4 9.3 AFP, tumor size,
differentiation 0.79

Nebbia
2020 CE-MRI AP, PVP, T1, T2, DWI 3D; manually Yes

(10 pixel) LASSO 17 3.6 NA NA

Q. Liu 2020 CE-CT AP, PVP 3D;semiauto No ICC, RF 28 5.3 NA 0.79

X. Zhang
2020 CE-CT DP 3D; manually Yes

(10 mm) LASSO 44 4.0 Age, AFP
0.80 (0.80 in

the validation
cohort)

Jiang 2020 CE-CT AP, PVP, DP 3D; manually Yes
(10 mm) Xgboost/3D-CNN Unclear NA AFP 0.91

He 2020 CE-CT PVP 3D; auto No LASSO 2 35.5 AFP, neutrophilic
granulocytes, hemoglobin

0.71 (0.84 in
the validation

cohort)

Chong
2021 Gd-EOB-DTPA MRI AP, PVP, HBP, DWI 3D; manually

Yes
(5 mm,10 mm,

50%)
ICC, LASSO, Univariate Feature Selection 74 0.9

AFP, TBIL, capsule
enhancement, peritumoral

enhancement
0.92

Chen 2021 Gd-EOB-DTPA MRI AP, PVP, HBP, T1, T2,
DWI 3D; manually No LASSO 21 NA NA 0.94

Li 2021 PET/CT [18F]FDG PET/CT 3D; semiauto No LASSO 11 0.7 NA 0.69

Song 2021 CE-MRI AP, PVP, DP, T1,T2,
ADC, DWI 3D; manually No PCA, analysis of variance Unclear NA NA 0.73

Dai 2021 Gd-EOB-DTPA MRI AP, PVP, HBP, T1 3D; manually No LASSO-RFE, LASSO, mRMR, SVM-RFE 5 5.8 NA 0.90
(LOOCV)

P. Liu 2021 CE-CT AP 3D; manually No ICC, LASSO 10 4.2 NA 0.75
Sh. Zhang

2021 Gd-EOB-DTPA MRI HBP (5, 10, 15 min) 3D; manually No LASSO 14 NA NA NA

W. Zhang
2021 CE-CT EAP, LAP, PVP, EP 3D; manually 2, 4, 6, 8, 10, 12,

14 mm 15 methods (Fisher score, t score, etc.) Unclear NA NA 0.81

Meng 2021 Multiparametric MRI
& multiphasic CT

AP, PVP, T2, DWI
(MRI)/AP, PVP (CT) 3D; manually Yes

(3 mm)
ICC, univariate analysis, feature

reduction, LASSO 16/16 8.1/1.9 # NA 0.80

Y. Zhang
2021 Multiparametric MRI AP, PVP, DP, T2,

DWI, ADC 3D; manually No ICC, analysis of variance, Mann-Whitney
U-test, correlation analysis, LASSO 47 1.6 Age, AFP, tumor size 0.84

Note: # for CT and MRI model respectively. 3D-CNN, 3D-convolutional neural network; ADC, apparent diffusion coefficient; AFP, alpha-fetoprotein; AP, arterial phase; CCC, concordance correlation coefficient;
CE-CT, contrast enhanced-CT; CE-MRI, contrast enhanced-MRI; DP, delay phase; DWI, diffusion-weighted imaging; EAP, early arterial phase; EP, equilibrium phase; HBP, hepatobiliary phase; ICC, interclass
correlation coefficient; LASSO, least absolute shrinkage and selection operator; LOOCV, leave-one out cross validation; mRMR, minimum redundancy-maximum relevance; NA, not applicable; PCA, principal
component analysis; PVP, portal vein phase; RFE, recursive feature elimination; SVM, Support vector machine; TBIL, total bilirubin; VOI, volume of interest.
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4. Discussion

The present study identified an ever-growing number of studies performing radiomics
analysis of HCC for MVI prediction, mostly published in the last two years. The added
value of radiomics in imaging modalities used in clinical routines has been explored
extensively, with an AUC as high as 0.80–0.84 in two independent validation cohorts,
shedding light on the management and prognosis prediction of HCC patients. Although
the initial results are promising and encouraging, the methodological variability of the
research is considerable, and the reporting quality is insufficient. Before translating the
radiomics model to clinical applications, it is urgent to standardize the reporting norms
to make the prediction models reproducible and reliable and to validate the models in
external cohorts.

Radiomics research is a complex, interdisciplinary, multi-step project, involving image
processing, big data handling, algorithm operating, model construction, and validation.
Each step in the radiomics workflow can be achieved by several different strategies and
approaches, which induces substantial methodological heterogeneity among radiomics
studies. The variability started with different imaging modalities, followed by different
tumor segmentation strategies and different categories of radiomics features, as well as
different algorithms and classifiers used for feature selection and modelling. Moreover,
variability existed even in the same imaging modality; e.g., MRI acquisition may vary in
terms of the manufacturers, scanning protocols, contrast media, and sequence/phase used,
and the various software and tools applied for feature extraction inevitably resulted in
radiomics features with different nomenclatures. Therefore, it seems hard to pool data
across studies and to enable a robust meta-analysis. Given that the radiomics workflow
involves multiple steps, it poses a challenge for other researchers to reproduce findings
when the original study does not supply sufficient detail. Instead, improving the reporting
quality seems to be a practical approach to validating the findings and translating them
into clinical utility. However, the present review has highlighted the insufficient reporting
quality of current radiomics HCC-MVI research, which was reflected by an average RQS
score of 10 (28% of the total points). This finding is similar to the result of a recent systematic
review that evaluated radiomics research quality in the area of HCC, with a mean RQS
score of 8.4 [42].

Five items of the RQS in which all included studies performed poorly are “prospec-
tive study”, “phantom study”, “biological correlates”, “cost-effectiveness analysis”, and
“openness of data and code”. A well-designed prospective study can reduce and minimize
the potential confounding factors, representing a higher level of evidence for the quality
validity. Thus, prospective studies are given the highest weighting in the RQS tool (7 points,
accounting for around 20% of the full scale). However, to date, no prospective radiomics
MVI research has been performed. A phantom study’s purpose is to detect potential feature
variability among different scanners and manufacturers. This is of great importance, as the
evaluated cohorts often involve many scanners or even different medical centers. The phan-
tom study process ensures that only robust features are included in the following radiomics
analysis. Biological correlates aim to link imaging findings with gene or molecular signa-
tures. However, none of the reviewed studies evaluated the gene or molecular levels of the
tumor samples. Previous studies have detected a 91-gene signature that highly correlates
with vascular invasion in HCC [43]. Based on this finding, a contrast-enhanced CT imaging
biomarker, i.e., radiogenomic venous invasion (RVI), which includes three imaging features
(internal arteries, a hypo-dense halo, and a tumor-liver difference), has been shown to be
an accurate predictor of MVI [44]. Future studies are required to explore and verify the
correlations between radiomics features and gene expressions. A cost-effectiveness analysis
can evaluate a radiomics prediction model in terms of health economics when applied
in clinical routines. It assumes that a novel predictor should not be more expensive than
currently available predictors when accuracy is comparable. It also compares the health
effect of a radiomics predictor with a condition without a radiomics predictor, such as a
quality-adjusted life year analysis. We think that evaluating this point seems less urgent,
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given that the methodological standardization and clinical/biological validation of current
radiomics models are still lacking. Data and code openness aims to repeat and reproduce
results and findings and to further validate and promote the prediction model in other
centers. Though some initiatives have been proposed in an attempt to remove the obstacles
in data sharing, other factors, such as legal/privacy issues, culture/language barriers, and
insufficient staff/time, still exist [10]. None of the studies shared their codes or imaging
data publicly.

Regarding the items of “imaging at multiple time points” and “multiple segmenta-
tions”, both aim to select stable imaging features for modelling considering subjective
and temporal variations. However, less than half of the studies performed ICC analysis
and seldom explicitly stated that imaging features from different phases/sequences were
evaluated during that analysis (i.e., test–retest analysis). Furthermore, there is no generally
accepted ICC threshold at which radiomics features can be considered robust. Generally,
when reporting ICC, values of 0.75–0.90 are regarded as indicating good reliability, and
values higher than 0.9 are regarded as excellent [45]. However, among the studies that
calculated ICC, the applied threshold varied among 0.75, 0.80, and 0.9. A future study
should be applied to determine the proper threshold at which robust radiomics features for
modelling can be defined. Interestingly, some of the studies reported here did not rule out
features with low ICC and constructed their model using only the full features extracted
from their images.

When evaluating the performance and clinical utility of the radiomics model con-
sidering the items of “cut-off analysis”, “calibration statistics”, “comparison with gold-
standard”, “potential clinical utility”, and “validation”, the included studies again were
insufficient. The performance metrics of a model, such as the sensitivity and specificity,
are often determined by a specified cut-off value, and this value can further classify a
patient cohort into high and low risk groups for a certain condition. A cut-off value is also
one of the prerequisites for reproducing the results of previous research. However, only
five studies reported their cut-off values. Regarding calibration analysis, which evaluates
the agreement between predictions and the actual events, less than half of the studies
performed one. Regarding the comparison with “gold-standard”, there is currently no
surrogate that can serve as a “gold-standard” for MVI prediction. As the value of semantic
imaging features have been extensively explored for MVI prediction, we therefore defined
conventional imaging features as the “gold-standard”. Among the 10 studies that com-
pared prediction performance between radiomics and radiologist models, all declared that
the radiomics models outperformed the radiologists’ semantic models (Table S7). How-
ever, the publishing bias should be borne in mind when interpreting these results. Only
two studies validated their models using independent external cohorts. However, one of
them validated their model in only 18 patients, which is not a sufficiently large validation
cohort according to the “10-EPV” principle (at least 10 events per variable) [16,46]. When
developing a prediction model, the ratio of event and variable should be maintained at a
certain level to avoid potential overfitting or underfitting. Among the 16 studies with an
EPV ratio available, the median EPV (MVI positive cases/features) ratio was 4.2, indicating
a potential risk of overfitting. Therefore, it is assumed that, before translating these models
into a clinical routine utility, some practical issues should be well addressed, such as the
reproducibility of the radiomics model, the standardization of imaging protocols, model
overfitting, and the external validation of the prediction models.

Though the RQS tool aims for high-quality radiomics research, there are concerns
that should be optimized in future revisions. The current RQS is mainly focused on
radiomics itself and ignores non-radiomics components during radiomics model/predictor
development, such as blindness to outcomes and measurement, intervals between the
index test and reference standard (in the case of MVI, the time between imaging and
liver resection), and the influence of sample size and enrollment of study subjects. All
these factors may also introduce bias. Under this context, the tool of QUADAS-2 can
serve as a vital supplement to RQS when evaluating the quality of radiomics research.



Cancers 2021, 13, 5864 12 of 14

Most of the studies reported in this systematic search showed a low or unclear risk in
the four domains of risk of bias evaluation. The missing or unclear parts observed using
the RQS and QUADAS-2 tools were obvious, which implies that these tools might not be
so well known or adopted. Future researchers will ideally apply the RQS or QUADAS-
2 as a checklist to improve the quality of their reports. In fact, a specified checklist, i.e.,
CLAIM (Checklist for Artificial Intelligence in Medical Imaging) for artificial intelligence
research [47], and a general guideline for diagnostic/prognostic prediction, i.e., TRIPOD
(Transparent Reporting of a multivariable prediction model for Individual Prognosis Or
Diagnosis) [15], have already been proposed.

This systematic review has some limitations. Firstly, high-level evidence from studies
with a prospective design and an independent external validation cohort is lacking, so a
definitive and convincing conclusion about the efficacy of the radiomics model for MVI
prediction cannot be drawn. Secondly, we did not synthesize the performance metrics of
the prediction model, given the high methodological heterogeneity of each study. Therefore,
model performance comparisons between semantic-feature-based models and radiomics
models, between CT-based models and MRI-based models, and between dilated-VOI-based
models and non-dilated models could not be performed. Thirdly, we did not evaluate the
specific radiomics features shared among different models due to the variability of imaging
modalities and the extraction software used.

5. Conclusions

Even though current studies were preliminary and the methodological quality was
insufficient, the radiomics model has the potential to provide an accurate and effective
tool to preoperatively predict MVI presence in patients with HCC. Future prospective
studies with an external validation cohort in accordance with a standardized radiomics
workflow and reporting norms are expected to supply a reliable, reproducible, and accurate
radiomics model for clinical implementation.
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