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Abstract

Small-angle scattering (SAS) technique is applied to study the nano and microstructural

properties of spatial patterns generated from chaos game representation (CGR). Using a

simplified version of Debye formula, we calculate and analyze in momentum space, the

monodisperse scattering structure factor from a system of randomly oriented and non-inter-

acting 2D Sierpinski gaskets (SG). We show that within CGR approach, the main geometri-

cal and fractal properties, such as the overall size, scaling factor, minimal distance between

scattering units, fractal dimension and the number of units composing the SG, can be recov-

ered. We confirm the numerical results, by developing a theoretical model which describes

analytically the structure factor of SG. We apply our findings to scattering from single scale

mass fractals, and respectively to a multiscale fractal representing DNA sequences, and for

which an analytic description of the structure factor is not known a priori.

Introduction

A multitude of artificial and natural processes ranging from nano to macro scales generate

self-similar [1] structures, which means that they look exactly or approximately similar to a

part of themselves under a transformation of scale [2–7]. These objects are referred to as deter-

ministic fractals (Cantor sets, Koch snowflake, Sierpinski gasket; SG) if the structure is exactly

self-similar, or random fractals (polymers, percolation clusters, surfaces, DNA sequences) if

the structure is statistically self-similar [8, 9]. At nano and micro scales, the self-similarity plays

an important role in the electromagnetic [10], optical [11, 12] or dynamical [13] properties,

and thus one of the main tasks is to understand the correlation between fractal microstructure

and its physical properties [14].

The main structural property of fractals with a single scaling factor is the fractal (Hausdorff)

dimension, which can be rigorously defined mathematically [15]. For mass fractals [16], we

adopt here a more simple definition of the dimension Dm: MðrÞ / rDm , where M(r) is the mass

inside a spherical surface of radius r [17]. For surface fractals [18], the fractal dimension Ds

describes the area measured by covering the surface with the smallest possible number of balls

with radius r, through the relation SðrÞ / r2� Ds . For a smooth surface, the value Ds is obtained.
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Using the ball-covering process, we can see that the mass and the surface of a mass fractal are

equivalent, and thus Dm = Ds, while for a surface fractal Dm = d and d − 1< Ds< d.

A very efficient experimental technique which can distinguish between mass and surface

fractals is small-angle scattering (SAS; X-rays, neutrons, light) [19, 20], which yields the differ-

ential elastic cross-section per unit solid angle as a function of the momentum transfer, and

describes the spatial density-density correlations in the investigated sample. The difference

between mass and surface fractals is revealed through the value of the scattering exponent in

the simple power-law decay of the scattering intensity I(q)/ q−τ, on a double logarithmic scale

[16, 18, 21–24]. Experimentally, if τ< d, the sample is a mass fractal with dimension τ = Dm,

while if d< τ< d + 1, the sample is a surface fractal. The above conclusions hold also for

generalized power-law decays given as a superposition of maxima and minima on a simple

power-law decay, and which are specific to scattering from monodisperse deterministic frac-

tals [24–29].

Theoretically, various fractal-generating algorithms are developed to reconstruct a large

number of real self-similar patterns, from well-known deterministic fractals to various classes

of disordered systems. A frequently used algorithm which allows a visual representation of

both local and global patterns, is chaos game representation (CGR) [30], with important appli-

cations in investigating biological samples, such as gene structures [31, 32]. Technically, CGR

is an iterative map that processes sequences of units in order to find their positions in a contin-

uous space [32]. For structural investigations using SAS, CGR is very convenient because it

gives directly the coordinates of the scattering centers, which can be used in an efficient expan-

sion of the Debye formula, for calculating the SAS intensity spectrum [33].

Here, we show that for fractal models based on CGR and which have a single scaling factor,

SAS allows us to reveal, besides standard fractal dimension, other structural properties such as

the fractal scaling factor, the number of scattering units inside the fractal, fractal overall size

and the minimal distance between the scattering units. For this purpose, we calculate both ana-

lytically and numerically the monodisperse scattering structure factor from a two-dimensional

SG generated deterministically, and respectively by CGR. However, for a fractal with multiple

scaling factors, the randomness leads to an almost complete smearing of the minima on the

scattering curve, and thus, the scaling factors can hardly be recovered. This is in agreement

with SAS curves obtained from mass random fractals built from deterministic ones [34].

1 Theoretical background

1.1 Small-angle scattering

Let’s consider a two-phase approximation where the microscopic scattering objects have scat-

tering length bj and scattering length density (SLD) ρs(r) = ∑j bj δ(r − cj). Here, cj are the posi-

tion vectors of the scattering objects, and δ is Dirac’s delta function. In a very good

approximation we can neglect multiple scattering since in the case of fractal aggregates, due to

such processes, the value of the fractal dimension is changed [35] and the scaling factor is lost

[36]. Thus, the corresponding differential elastic cross section is defined by dσ/dO = |At(q)|2,

where At(q) =
R
V0 ρs(r) exp(iq � r)dr is the total scattering amplitude and V0 is the volume irra-

diated by the incident beam. If we consider that the fractal objects are immersed in a solid

matrix of SLD ρ0, then the scattering contrast is defined by Δρ = ρ − ρ0, and the total scattering

intensity will be given by

IðqÞ �
1

V 0

ds

dO
¼ c jDrj

2 V2 hjFðqÞj2i; ð1Þ

where c is the concentration of fractal, V is the volume of each fractal, and F(q)� (1/V)
R
V
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exp(−iq � r)dr is the normalized form factor, with F(0) = 1. The symbol h� � �i denotes the

ensemble averaging over all orientations which, for an arbitrarily function f, is calculated

according to hf ðqÞi ¼ ð1=4pÞ
R p

0
dy sin y

R 2p

0
d�f ðq; y; �Þ. In what follows, since the fractals are

two-dimensional, the volume V in Eq (1) shall be replaced by the corresponding surface area.

Note that the above averaging procedure allows the rotation of the fractals in three-dimen-

sional space, with equal probability.

Furthermore, if each fractal is composed of the same number N of identical scattering

‘units’, then its form factor is given by [25]

FðqÞ ¼ rqF0ðqRÞ=N; ð2Þ

where F0(qR) is the form factor of scattering units of size R, ρq = ∑j exp(−iq � rj) is the Fourier

component of the density of units centers, and rj are the center-to-mass positions of units.

Taking into account that the structure factor can be defined as

SðqÞ � hrqr� qi=N; ð3Þ

then the scattering intensity becomes [25]

IðqÞ ¼ Ið0ÞSðqÞ jF0ðqRÞj
2
=N: ð4Þ

1.2 Iterated function systems

Iterated function systems (IFS) provide a useful framework for classification and description

of fractals. By definition, a (hyperbolic) IFS consists of a complete metric space (X, d) together

with a finite set of contraction mappings wn: X! X, with respective contractivity factors sn,

n = 1, 2, � � �, N [30]. Using a shorthand notation, an IFS is {X; wn, n = 1, 2, � � �, N} and s = max

{sn, n = 1, 2, � � �, N}. We recall here that, in general, a transformation f: X! X on a metric

space (X, d) is a contraction mapping if there is a constant (contractivity factor) 0� s< 1 such

that

dðf ðxÞ; f ðyÞÞ � s � dðx; yÞ 8x; y 2 X: ð5Þ

The main property used here is that by considering a hyperbolic IFS with contractivity fac-

tor s, and ðHðXÞ; hðdÞÞ denoting the space of nonempty compact subsets with the Hausdorff

metric h(d), the transformation W : HðXÞ ! HðXÞ defined by

W ðBÞ ¼ [N
n¼1

wnðBÞ; 8B 2 HðXÞ; ð6Þ

is a contraction mapping on the complete metric space ðHðXÞ; hðdÞÞ with the contractivity

factor s [30], i.e.

hðW ðBÞ;W ðCÞÞ � s � hðB;CÞ 8B; C 2 HðXÞ: ð7Þ

Its unique fixed point, A 2 HðXÞ obeys A ¼ [N
n¼1

wnðAÞ, is given by A = limm!1W⚬m(B) for

any B 2 HðXÞ, and is called the attractor (or deterministic fractal) of the IFS [30].

For rendering pictures of attractors, and in order to calculate the corresponding structure

factors from Eq (20), we will use a deterministic algorithm, based on the idea of computing a

sequence of sets {Am = W⚬m(A)} starting from an initial set A0, as well as a random iteration

algorithm, based on ergodic theory. For simplicity, we restrict ourselves to IFS of the form

fR2; wn; n ¼ 1; 2; � � � ;Ng, where each mapping is an affine transformation.
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Using the deterministic algorithm, we start by choosing a compact set A0 � R
2, and then

we compute successively Am according to the rule

Am ¼ [
N
n¼1

wnðAm� 1Þ; for m ¼ 1; 2; � � � ð8Þ

thus constructing the sequence fAm : m ¼ 0; 1; � � �g � HðXÞ, which converges top the

attractor of the IFS in the Hausdorff metric.

When using the random iteration algorithm, we start by assigning the probability pn> 0 to

wn for n = 1, 2, � � �, N, where
PN

n¼1
pn ¼ 1. Then we choose a point x0 2 X and then we choose

recursively, independently,

xk 2 fw1ðxk� 1Þ;w2ðxk� 1Þ � � � ;wNðxk� 1Þg; ð9Þ

where the probability of the event xk = wn(xk − 1) is pn, and k = 1, 2, � � �. This creates the

sequence {xk: k = 0, 1, � � �}� X which converges to the attractor of IFS.

2 Sierpinski gasket model

We consider a Sierpinski triangle of side length a = 1, and centered in the origin. Thus N = 3,

and the matrix representation of the IFS of affine maps is

w i

x

y

" #

¼
ai bi

ci di

" # x

y

" #

þ
ei

f i

" #

ð10Þ

where the coefficients ai, bi, ci, di, ei, fi with i = 1, 2, 3 are given in Table 1. In the upper part of

Fig 1 are shown the points (black) given by deterministic algorithm defined by Eq (10) up to

iteration m = 5.

However, when using the random iteration algorithm, several ways of introducing random-

ness could be used. Here, we create the SG by playing chaos game [30] on three vertices which

do not all lie on a line. The points of the SG fractal are obtained starting with an initial point

chosen at random, and calculating each subsequent point as a fraction (here βs = 1/2) of the

distance between the previous point and one of the vertices (selected randomly at each itera-

tion) of the triangle. By repeating this procedure for a large number of points, and selecting

the vertex at random on each iteration, the SG is obtained. The peculiarity of the chaos game

algorithm is that it plots points over the attractor in random order and with equal probabilities

(see Table 1), as opposed to other methods which test each pixel to see whether it belongs to

the fractal [30]. Fig 1, middle part, shows the result of chaos game for various values of the

number of points k. The main feature shown is that by increasing k, leads to a better agreement

with SG. One can notice that a value of k = 1000 is quite sufficient to generate a SG at m = 4

(see also Fig 1, lower part).

A comparison between SG obtained deterministically, and respectively using the random

iteration algorithm is made also in Fig 1, lower part, which clearly shows that, excepting few

Table 1. The coefficients ai, bi, ci, di, ei, fi of the affine transforms wn (first column) for deterministic

algorithm in Eq (10), and the probabilities pn (last column) for random iteration algorithm in Eq (9).

w a b c d e f p

1 1/2 0 0 1/2 0 1=ð2
ffiffiffi
3
p
Þ 1/3

2 1/2 0 0 1/2 -1/4 � 1=ð4
ffiffiffi
3
p
Þ 1/3

3 1/2 0 0 1/2 1/4 � 1=ð4
ffiffiffi
3
p
Þ 1/3

https://doi.org/10.1371/journal.pone.0181385.t001
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Fig 1. The structure of two-dimensional SG. Upper part: from deterministic algorithm up to m = 5 (black

points); Middle part: from random iteration algorithm, for k = 30, 100, 300, 500, 750 and respectively k = 1000

points (blue); Lower part: a superposition of SG obtained from the two algorithms.

https://doi.org/10.1371/journal.pone.0181385.g001
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dozen points which were omitted, all the others belong to the SG. In this way, a direct compar-

ison between their respective structure factors can be performed (see next section).

3 Results and discussion

3.1 Structure factor of sierpinski gasket: Analytic representation

Let’s consider that the two-dimensional SG is constructed from equilateral triangles, as shown

in Fig 1. At zero-th fractal iteration, the triangle is centered in the origin, it has the edge length

a, and area ST ¼
ffiffiffi
3
p

a2=4. At first iteration (m = 1), the initial triangle is divided into 4 smaller

triangles, each of edge length a/2, the three triangles in the corners are kept, and the middle

one is removed. At next iteration (m = 2) the same operation is repeated for each of the three

triangles. At an arbitrary iteration m, one obtains the SG which consists of

Nm ¼ 3m; ð11Þ

triangles of edge size am = a/2m. Thus, the fractal dimension is given by:

D ¼ lim
m!1

logNm

log ða=amÞ
� 1:585: ð12Þ

The centers of these triangles coincide with the positions of the points in Fig 1 generated from

IFS, using the deterministic algorithm (see previous section).

We can write the following product relation for the generative functions (Gi(q)) of the m-th

iteration of SG:

PmðqÞ �
Ym

i¼1

GiðqÞ; ð13Þ

where the generative function at m = 1 is given by

G1ðqÞ ¼
1

3

X2

k¼0

e� iq�bk ; ð14Þ

and GmðqÞ ¼ G1ðb
m� 1

s qÞ. The translation vectors are given by

bk ¼
a
ffiffiffi
3
p

6
cos

p

3
ð2kþ

3

2
Þ

� �

; sin
p

3
ð2kþ

3

2
Þ

� �� �

; ð15Þ

and the scaling factor is βs = 1/2. Using Eq (2) without the term F0(qR), together with Eq (13)

we can write that rðmÞq ¼ NmPmðqÞ, and from Eq (3), we obtain

SmðqÞ=Nm ¼
Ym

i¼1

jGiðqÞj
2

* +

ð16Þ

where G1(q) is given by Eq (14). Thus, by using Eqs (4) and (16), the total intensity is

ImðqÞ=Imð0Þ ¼ SmðqÞ=Nm; ð17Þ

which is equivalent with Eq (4) but without the term F0(qR) since we are interested only in the

contribution of the structure factor.

The scattering structure factors are shown in Fig 2. Generally, the main properties of the

curves are kept as for the case of scattering from Vicsek, Cantor or Koch fractals [25, 27, 29].

Since the overall size of SG is about a, the Guinier range extends up to about 2π/a. This is fol-

lowed by a fractal range up to 2p=ðb
m
s aÞ, and then the asymptotic region is attained. The fractal

Structural characterization of chaos game fractals using SAS analysis
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region is characterized by a superposition of maxima and minima on a power-law decay with

the exponent τ = 1.585, which is in agreement with the theoretical value given by Eq (12). As

expected, the values of the asymptotic values at high q, tend to 1/Nm.

3.2 Structure factor of sierpinski gasket: Chaos game representation

Since we employ a CGR to generate random positions of k units inside each fractal, computa-

tionally, for monodisperse systems, we can start with the Debye formula [37]

IDðqÞ ¼ kIsðqÞ þ 2FsðqÞ
2
Xk� 1

i¼1

Xk

j¼iþ1

sinqrij
qrij

; ð18Þ

where Is(q) is the intensity scattered by each fractal unit, and rij is the distance between units

i and j. When the number of units exceeds few thousands, the computation of the term sin

(qrij)/(qrij) is very time consuming, and thus it is handled via a pair-distance histogram g(r),

Fig 2. Structure factor for the first 5 iterations (m = 1, � � �, 5) of the SG. Vertical lines indicate the limits of the fractal region at m = 5.

Horizontal lines indicate the value of the asymptotes in the limit of high q values.

https://doi.org/10.1371/journal.pone.0181385.g002
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such as in Fig 3 and below, with a bin-width commensurate with the experimental resolution

[33]. Therefore Eq (18) can be rewritten as

IDðqÞ ¼ kIsðqÞ þ 2F2
s ðqÞ

XNbins

i¼1

gðriÞ
sinqri
qri

; ð19Þ

where g(ri) is the pair-distance histogram at pair distance ri. The latter quantity is calculated

from the positions of scattering units inside the fractal, according to the algorithm described

in Sec. III. For determining fractal properties we can neglect the form factor, and consider

IsðqÞ ¼ F2
s ðqÞ ¼ 1. Thus, the intensity given by Eq (19) becomes

IDðqÞ � SDðqÞ ¼ kþ 2
XNbins

i¼1

gðriÞ
sinqri
qri

; ð20Þ

and gives the structure factor of the fractal. Taking into account the normalization used in

Eq (4), subsequently, the final expression of the scattering structure factor in Eq (20), is repre-

sented as SD(q)/k2.

Fig 3 shows the scattering structure factor of SG built from the CGR, for different values of

the number of units composing the fractal. All the curves show the three main regions

Fig 3. Structure factor for different values of number of units k of the SG using CGR. The vertical dotted line indicate the beginning of the

fractal region. The horizontal lines indicate the value of the asymptotes in the limit of high q values.

https://doi.org/10.1371/journal.pone.0181385.g003
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characteristic to SG, obtained using the analytic representation (Fig 2). However, in the case of

CGR, a transition region appears between fractal and asymptotic regions. For k = 1000 this

region is at 102� qa� 8 � 102 (Fig 3), and it arises due to the fact that in this range the pair dis-

tribution function does not approximate anymore a period-like pattern with a power-law dis-

tribution of the number of distances, as in the case of deterministic mass fractals [25].

Although the corresponding radius of gyration of SG from CGR is different as compared with

the analytic representation (see Fig 4), the main features are that the length of fractal region

increases with the number of scattering units, and the corresponding scattering exponents

give the proper values of the fractal dimension. Note that, since SD! k at high values of q,

then SD/k2! 1/k, which is in very good agreement with theoretical predictions.

3.3 Radii of gyration for analytic and chaos game representations

A direct comparison between the structure factors of SG using analytic and chaos game repre-

sentations, requires a particular analysis, due to the algorithms involved in their construction.

As lower part of Fig 1 shows, the radius of gyration of SG from CGR (RCGR
g ) is slightly bigger

than the radius of gyration obtained analytically (RAN
g ), due to the fact that in former case,

some of the scattering units (blue) are situated further away from the center of the fractal, than

Fig 4. Guinier plot for the structure factors. Analytic representation (black), and CGR (red).

https://doi.org/10.1371/journal.pone.0181385.g004
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Fig 5. Structure factor of SG. Analytic and chaos game representations, at different iterations m, and

respectively for various number of units. (a) m = 4; (b) m = 5; (c) m = 6. Vertical lines denote the beginning,

and respectively the end of the fractal region corresponding to the analytic representation. Horizontal lines

denote the asymptotic values at high q.

https://doi.org/10.1371/journal.pone.0181385.g005
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the scattering units of SG from the analytic representation (black). In order to find the exact

amount by which the overall size of these two representations differ, we use a Guinier plot

which involves plotting log S(q) vs. q2 in order to obtain the slope R2
g=3 (Fig 4). Numerical val-

ues for the slopes gives RCGR
g ’ 3:18 and RAN

g ’ 2:19, and thus RCGR
g =RAN

g ’ 1:45. These values

have been calculated for a relatively high number of iterations (m = 5), and respectively, of

number of particles (k = 1000), which assures a very good approximation for the ratio

RCGR
g =RAN

g .

Now, by shifting the analytic curves to the right by the factor 1.45 determined above, we

obtain an exact superposition of scattering curves in the Guinier region, for both analytic and

chaos game representations, and a further analysis can be performed (see next section).

3.4 Structure factors of sierpinski gasket: Analytic versus chaos game

representations

The scattering structure factors of SG are shown in Fig 5, for iteration number m = 4, 5, 6 (and

thus for Nm = 81, 243, 729), and for different values of the number of scattering units k. For a

given value of iteration number m, the left border of the fractal region is determined by the

overall size of the fractal, while the right border is determined by the smallest distances

between scattering units inside the fractal. This region is delimited by vertical lines in Fig 5.

An important property is that under proper conditions the scattering curves obtained using

CGR, can reproduce the analytic fractal region, and this shows that the fractal dimensions of

chaos game fractals can also be obtained with good accuracy from SAS data. We found numer-

ically that for 3D SG, the fractal region and fractal dimension of the analytic structure factor

are reproduced when the minimum number of particles is about k’ 4 � Nm. This approxima-

tion becomes better with increasing Nm (see Fig 5).

Fig 6. Single scale fractals obtained by CGR with k = 4000 points. (a) fractal pentaflake; (b) Cantor set.

https://doi.org/10.1371/journal.pone.0181385.g006
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Fig 7. The structure factor of single scale fractals. (a) fractal pentaflake; (b) Cantor set.

https://doi.org/10.1371/journal.pone.0181385.g007
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The transition region, which follows the fractal one, is specific to structures generated from

CGR, and its length is inversely proportional with the number of scattering units. Since, from

one hand the upper border of transition region (here, at about qa’ 9 � 102) is fixed by the

smallest distances inside the fractal, while from another hand, the lower border is fixed by the

overall size of the fractal, then the decrease of the length of transition region is accomplished

by the increase of length of fractal region (see Figs 3 and 5). Experimentally, from SAS data,

such a behavior is a blueprint which can be used to identify structures generated from CGR.

The asymptotic region follows the transition one, and it’s characterized by a succession of

maxima and minima which are damped out with increasing q. Their limiting values are shown

by horizontal lines (see Figs 3 and 5), and they can be used to determine the number of units

inside the fractal.

4 Applications

We apply the above findings to study the structural properties of single and multiscale fractals,

and for which an analytical expression of the structure factor is not known. In the former case

we consider a pentaflake fractal and a Cantor set with the same scaling factor βs = 0.4, while in

the latter one we consider the CGR of a DNA sequence.

4.1 Single scale fractals: Pentaflake and Cantor set

The fractal pentaflake studied here is generated by starting with the center of an 5-sided poly-

gon and the Cantor set is generated by starting with the center of a square. In both cases, a new

point is drawn at a fraction βs = 0.4 of the distance between the center and a randomly chosen

vertex. Repeating the process for k = 4000 points, gives the structures shown in Fig 6a, and

Fig 8. A random sequence of 4000 moves in the chaos game in the ACGT square when the sequence

GC is eliminated.

https://doi.org/10.1371/journal.pone.0181385.g008
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respectively in Fig 6b. Since, the fractal dimension of a CGR fractal generated using n affine

transforms is

D � � logn= log bs; ð21Þ

then the fractal dimensions of the pentaflake and Cantor set, are 1.76, and respectively 1.51.

The corresponding structure factors of the pentaflake and Cantor set calculated using

Eq (20) are shown in Fig 7a and 7b. As expected, all the main features of SAS from CGR struc-

tures are preserved (see previous section) and the numerical value of the fractal dimension

coincides with the one given by Eq (21). The value βs = 0.4 of the scaling factor can be recov-

ered from the periodicity of minima in the fractal region (see also Ref. [25]), and this is a spe-

cific feature of scattering from fractals with a single scale.

4.2 Multiscale fractals: DNA sequences

It is known that in some cases the chaos game can be used to display visually certain kinds of

non-randomness. By considering the four bases “A”, “C”, “G” and “T” (or “U”) of DNA

sequences, then the actual DNA can be used to control the chaos game by assigning the

CGR vertices, to the four nucleotides labeled A = (−0.5, −0.5), C = (−0.5, 0.5), G = (0.5, 0.5),

and T = (0.5, −0.5). Then, the CGR coordinates are obtained by plotting the first nucleotide in

the sequence at half way between the center of the square ACGT and the corner with identical

Fig 9. The corresponding structure factor of the CGR of DNA sequence shown in Fig 8.

https://doi.org/10.1371/journal.pone.0181385.g009
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label. Next nucleotide is plotted half way between the point just plotted and the corner with

identical label. Repeating the process for at least few thousand of times, produces a graphic

with fractal patterns in the gene structures.

Missing subsequences are found in a number of genetic sequences, such as human serum

albumin or human adenosine deaminase genes, and a quick visualization of such patterns can

be performed if some restrictions on the moves of chaos game are imposed [31]. Fig 8 shows

the CGR of 4000 bases of a random sequence of moves in the square ACGT, where there is

never a move toward vertex G, followed by a move toward vertex C, thus the sequence GC
being eliminated.

By considering the coordinates of these bases as input coordinates in Eq (20), the corre-

sponding SAS spectrum will have the characteristics shown in Fig 9. Although the scattering

curve is characterized by the presence of a simple power-law decay, from which a fractal

dimension can be obtained, there is no clearly visible a superposition of maxima and minima

on a simple power-law decay, as in the case of the single scale fractals shown in Fig 6. We can

attribute this feature to the presence of multiple scaling factors, which is a signature of the mul-

tifractal structure of the sequence.

Conclusion

Structural properties of fractal structures generated using CGR are obtained from SAS inten-

sity. An analytical expression for the scattering amplitude of 2D Sierpinski gasket is derived

(see Eq 16).

It is shown that in the fractal region, the scattering curve of 2D Sierpinski gasket obtained

from CGR reproduces very well the corresponding analytical curve, when the number of parti-

cles used in CGR is at least 4 or 5 times higher than the total number of particles in the deter-

ministic case (see Fig 5). This is due to the random iteration algorithm used in generating

spatial positions of scattering centers. Thus, in building a model based on CGR, this could

serve as an indication of the minimum number of particles needed to approximate a given iter-

ation in a deterministic fractal.

We show that for single scale mass fractals, the main properties such as the overall size, scal-

ing factor, minimal distance between scattering units, fractal dimension, and the number of

units can be recovered from SAS data. However, for multiscale fractals (fractals with multiple

scaling factors) generated in the framework of CGR approach, the scattering curve does not

show any clear periodicity in the fractal region, and thus none of the scaling factors can be

recovered.

The main applications of the above findings can be found in investigating the structural

properties of various deterministic nano and micro fractals obtained in last years, such as 2D

Sierpinski hexagonal gasket [3], 2D Cantor sets [5], or 3D Koch-like fractals [7].
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