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Abstract

Background

Severely burned patients are highly susceptible to opportunistic infections and sepsis,

owing to the loss of the protective skin barrier and immunological dysfunction. Interleukin-

15 (IL-15) belongs to the IL-2 family of common gamma chain cytokines and stimulates the

proliferation and activation of T (specifically memory CD8), NK and NKT cells. It has been

shown to preserve T cell function and improve survival during cecal ligation and puncture

(CLP)-induced sepsis in mice. However, the therapeutic efficacy of IL-15 or IL-15 superago-

nist (SA) during infection after burn injury has not been evaluated. Moreover, very few, if

any, studies have examined, in detail, the effect of burn injury and infection on the adaptive

immune system. Thus, we examined the effect of burn and sepsis on adaptive immune cell

populations and the effect of IL-15 SA treatment on the host response to infection.

Methods

Mice were subjected to a 35% total body surface area burn, followed by wound infection

with Pseudomonas aeruginosa. In some experiments, IL-15 SA was administered after burn

injury, but before infection. Leukocytes in spleen, liver and peritoneal cavity were character-

ized using flow cytometry. Bacterial clearance, organ injury and survival were also

assessed.

Results

Burn wound infection led to a significant decline in total white blood cell and lymphocyte

counts and induced organ injury and sepsis. Burn injury caused decline in CD4+ and CD8+

T cells in the spleen, which was worsened by infection. IL-15 treatment inhibited this decline

and significantly increased cell numbers and activation, as determined by CD69 expression,
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of CD4+, CD8+, B, NK and NKT cells in the spleen and liver after burn injury. However, IL-15

SA treatment failed to prevent burn wound sepsis-induced loss of CD4+, CD8+, B, NK and

NKT cells and failed to improve bacterial clearance and survival.

Conclusion

Cutaneous burn injury and infection cause significant adaptive immune dysfunction. IL-15

SA does not augment host resistance to burn wound sepsis in mice despite inducing prolif-

eration and activation of lymphocyte subsets.

Introduction
Infection is a common cause of complications in severely burned patients. Burn injury causes
disruption of the protective skin barrier. This offers an ideal opportunity for microbial coloni-
zation and possible dissemination into blood and other organs, which can lead to sepsis. Thus,
infection is the leading cause of death among burn patients that survive the early burn shock
phase. A clinical observational study by Williams et al. showed that sepsis accounted for 47%
of death among burn patients at a major pediatric burn center [1]. Another study by Mann
et al. revealed that burn patients have a high prevalence of sepsis and associated poor outcomes
[2]. Further studies showed that burn size is directly proportional to the observed all-cause
mortality among burn patients. Studies by Kraft et al., reported that a burn size of 60% is a cru-
cial threshold for post burn morbidity and mortality [3]. However, many factors contribute to
morbidity and mortality in burned patients. Recent papers indicate that elderly patients (>65
yo) at a large adult burn center have a mortality rate of near 70% despite average burn sizes of
near 15% total body surface area (TBSA) [4,5]. Infection was a common complication in that
population. Thus, any size of burn that is complicated by infection is a major concern and can
lead to multi-organ failure and death.

Burn injuries have been reported to alter adaptive immune functions, which may further
increase susceptibility to infection. Valvis et al reported that cutaneous burn injuries induce
increased numbers of T cells in inguinal lymph nodes but cause suppressed splenic T cell cyto-
kine production [6]. Dendritic cell dysfunction after burns may also contribute to impaired T
cell functions [7]. In addition to the immune dysfunction caused by burn trauma, sepsis also
induces immunosuppression due, in part, to defects in adaptive immune system activity [8,9].
Thus, the presence of sepsis may further compromise the ability of the burned host to eradicate
primary infections and increase susceptibility to secondary nosocomial infections. Further-
more, sepsis induced multi-organ injury significantly contributes to increased morbidity and
mortality [10–12]. When combined with infection, the physiologic disturbances caused by
burn injury often lead to multiorgan failure, and death [13–16]. In fact, infection is the most
common cause of death in burn victims that survive the initial burn trauma and is a major
cause of prolonged hospitalization. The problem of infection in burn victims is becoming
increasingly troublesome due to the emergence of antibiotic resistant bacteria such as Pseundo-
monas sp and Acinitobacter sp as common pathogens in this population [17,18]. Consequently,
there is great interest in developing strategies to decrease the incidence and severity of infec-
tions in burned patients. Immunotherapies aimed at strengthening host resistance to infection
are one approach that could be efficacious in this setting [8,19].

Members of the interleukin (IL)-2 receptor activating family of cytokines, such as IL-7 and
IL-15, have been shown to improve survival in an experimental model of polymicrobial sepsis
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caused by cecal ligation and puncture (CLP) [20,21]. In addition to its role in treating bacterial
infections, IL-15 has been extensively studied for its protective anti-tumor efficacy in several
cancer pre-clinical studies [22]; as well as its ability to augment the efficacy of HIV vaccines
[23]. The major immune cells that produce IL-15 include dendritic cells, macrophages, mono-
cytes, endothelial cells, stromal cells and renal epithelial cells, which transpresent IL-15 in asso-
ciation with the IL-15 receptor alpha chain [24–27]. IL-15 can be induced by various stimuli
including endotoxin, interferons α/β/γ, double stranded RNA [28], and infection with viruses
[29]. Transpresented IL-15 signals its action through a heterodimeric receptor that shares the
IL-2R/IL-15Rβ (CD122) beta and common gamma chains [30]. Functionally, IL-15 has been
characterized as a T cell growth factor and stimulates T cell proliferation (memory CD8+ T
cells preferentially), immunoglobulin synthesis by B cells and is essential for the growth and
survival of natural killer (NK) and NKT cells [31]. Mice lacking IL-15 or IL-15 receptor-α (IL-
15Rα) have deficiency of these target cells in their immune system [32,33]. IL-15 is also known
to positively impact the functioning of innate immune cells, including protection of neutro-
phils from apoptosis and modulation of neutrophil phagocytic functions [34]; acting as an
inhibitor of apoptosis and serving as a growth factor for mast cells [35]; increasing phagocytic
action and cytokine secretion of macrophages [36]; and inducing maturation and inhibition of
apoptosis among dendritic cells [37]. Therefore, IL-15 is an essential cytokine to sustain the
normal coordinated functioning of both the innate and adaptive immune systems.

As noted above, IL-15 producing cells transport IL-15 to their surface complexed with IL-15
receptor-alpha (IL-15Rα) and present it to target cells (memory CD8+ T, NK and NKT cells)
expressing IL-15 receptor β and common γ chains, through a unique mechanism called as
trans-presentation [38–40]. Rubinstein and colleagues have shown that combination of IL-15
and IL-15Rα in solution generates a complex, termed as IL-15 superagonist (IL-15 SA), that
possesses a significantly enhanced half-life compared to native IL-15 and is more potent in vivo
[41]. Treatment with IL-15 SA has been shown to prevent T cell apoptosis, ameliorate innate
and adaptive immune system dysfunction and reduce mortality in the CLP model of sepsis
[20]. Furthermore, treatment with native IL-15 has been shown to protect against Escherichia
coli-induced septic shock [42]; enhance CD8+ T cell-mediated killing of pathogens such as
Cryptococcus neoformans [43]; improve clearance of Salmonella [44]; and improve survival in a
murine model ofMycobacterium tuberculosis [45]. These studies indeed suggest that treatment
with IL-15 or IL-15 SA might be helpful to prevent and/or treat the burn injury-associated
infections and sepsis.

Despite reports of altered adaptive immune function in burned mice, previous studies have
not investigated those alterations in detail. Furthermore, there are no reports on the effect of
combined burn injury and infection on adaptive immune cell populations. In the present
study, we investigated the effect of combined cutaneous burn and infection on adaptive
immune function. We further assessed the impact of IL-15 SA treatment on expansion of T,
NK and NKT cells and its ability to protect against Pseudomonas aeruginosa-induced sepsis in
a mouse model of cutaneous burn injury.

Materials and Methods

Mouse Model of Burn Injury
All animal procedures were in accordance with the National Institutes of Health guidelines and
were approved by the Institutional Animal Care and Use Committee at Vanderbilt University
Medical Center. Eight to ten week-old male BALB/c mice were purchased from Harlan Labora-
tories (Indianapolis, IN). A well-established mouse model of full-thickness cutaneous burn
injury was used [46–49]. Briefly, mice were housed in an appropriate institutional care facility
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and allowed to acclimate for 1 week after arrival. Buprenorphine (0.1 mg/kg, subcutaneously)
was administered 30 minutes prior to burn injury for analgesia. Under general anesthesia using
2.5% isoflurane, the dorsal surface of mice was shaved and 1 mL normal saline was injected
subcutaneously into the burn target area to prevent injury to the underlying tissues. Using a
molded template containing a rectangular opening, an approximately 35% total body surface
area scald burn was induced by exposing the shaved dorsal area to 97–98°C water for 10 sec-
onds. Immediately afterwards, 2 mL Lactated Ringers solution was administered by the intra-
peritoneal route for fluid resuscitation. All mice received a second injection of buprenorphine
at 8−12 hours after the burn procedure. Additional buprenorphine was administered if needed
(as indicated by decreased movement, eating, or drinking, restlessness or abnormal posture)
twice daily after burn injury. The burn injured mice were housed individually in sterile cages
and were provided sterile water and food. Sham mice underwent the same experimental proce-
dure except that mice were exposed to room temperature water.

Burn Wound Infection
The burn wound was inoculated on the surface with Pseudomonas aeruginosa bacteria
obtained from American Type Culture and Collection (Manassas, VA; ATCC 19660). The cul-
ture was grown in tryptic soy broth and diluted in sterile saline solution prior to inoculation.
On day 4 post burn, the burn wound was inoculated on the surface with 1 x 108 colony forming
units (cfu) of Pseudomonas aeruginosa to induce wound infection. Fig 1A provides a graphical
representation of the burn injury and wound infection time line. In some experiments, burned
mice were inoculated by intraperitoneal injection with 1 x 108 cfu of Pseudomonas on day 4
post-burn. That model induces an acute infection and allows for reproducible assessment of
bacterial clearance and leukocyte recruitment into the site of infection.

IL-15 Superagonist (IL-15 SA) Preparation
Mouse IL-15 Receptor α subunit Fc chimera (IL-15Rα) was obtained from R&D systems (Min-
neapolis, MN, Cat. No. 551-MR-100). Recombinant IL-15 was purchased from eBiosciences
(San Diego, CA, Cat no. 34-8151-85). IL-15 superagonist was prepared as described previously
[20,41]. Briefly, 20 μg of IL-15 and 90 μg of IL-15Rα were incubated in 400 μL of sterile phos-
phate buffered saline (PBS) at 37°C for 20 min to form the IL-15/IL-15Rα complex (IL-15 SA).
That preparation was further diluted with sterile PBS to prepare a stock concentration of 2 μg
IL-15 SA and stored at -80°C for future use.

IL-15 Treatment Protocol
The IL-15 SA doses reported in this study are based on the amount of IL-15 present in the IL-
15 SA complex. A study by Inoue et al., demonstrated IL-15 SA-mediated protection in a CLP
model of sepsis using a dose of 1.5 μg IL-15 SA. Recently published study from our laboratory
shows that repeated systemic administration of 2 μg IL-15 SA leads to significant toxicity in the
mice [50], with no toxicity observed at doses of 1 μg or less. Therefore, we utilized a dose of
1 μg IL-15 SA (in 0.5mL PBS) administered via intraperitoneal injection. IL-15 SA was admin-
istered daily starting one day post burn injury until day 4 and then every other day thereafter,
as shown below. Equivalent volume (0.5mL) of PBS was administered to the vehicle treated
groups. Blood, spleen and liver were harvested on day 4 post burn (prior to infection and after
three doses of IL-15 SA) and on day 2 following wound infection to assess lymphocytes num-
bers and activation. Mice were monitored for 7 days post wound infection in survival studies.
Fig 1A provides graphical representation of the IL-15 SA treatment time line.
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Preparation of Single Cell Suspensions
Peritoneal leukocyte harvesting. Intraperitoneal leukocytes were obtained by lavage

of the peritoneal cavity with 2 mL of cold PBS. Cells were counted, centrifuged (300 x g for
10 minutes at 4°C) and resuspended in PBS at desired cell concentrations. Cell counting was
performed using a TC20 automated cell counter (Bio-Rad, Hercules, CA).

Splenocyte preparation. Single cell suspensions of splenocytes were prepared by gently
pressing the isolated spleen through 70 μm cell strainer. The splenocytes were centrifuged
(300 x g for 10 minutes at 4°C) and red blood cells in the splenocyte pellet were lysed with Red
Blood Cell Lysis Buffer (Sigma Life Sciences, St Louis, MO). The cell count per spleen was then

Fig 1. IL-15 SA treatment does not protect against burn wound infection induced organ injury and
decreased survival. (Among the respective groups, the X axis symbols mean the following: S = Sham (no
burn), B = burn injury, V = Vehicle treatment, WI =Wound infection and IL-15 SA = interleukin 15 super
agonist treatment). IL-15 SA was administered at a dose of 1 μg via i.p route starting a day after burn injury.
(A) Time line depicting the burn injury and wound infection model along with IL-15 SA treatment. (B) To
evaluate the systemic spread of infection, Pseudomonas aeruginosa colony counts were measured on day 2
post wound infection and the graph depicts colony forming units of the bacteria in the blood (left half) and the
lungs (right half). Following parameters were measured on day 4 and day 6 (equivalent to day 2 post wound
infection) post burn injury and wound infection (C) serum alanine aminotransferase, ALT; (D) serum
aspartate amino transferase, AST; and (E) serum blood urea nitrogen. n = 8–10 in each group and P<0.05.
(F) Survival study: Three groups of mice including—burn injured (n = 18, black line); burn injured and vehicle
treated wound infected mice (n = 18, red line); and burn injured and IL15 SA treated wound infected mice
(n = 18, blue line) were monitored for survival for seven days post Pseudomonas aeruginosa wound
inoculation. The graph represents results from three separate experiments. *significantly different as
compared to respective day 4 and day 6 sham groups. For each of the figures, x-axis labels indicate the
following: S = Sham (no burn injury);B+V = burn injury + vehicle treated mice for 4 days;B+IL-15 SA = burn
injury + IL-15 SA treated mice for 4 days; B+WI+V = burn injury + wound infection performed on day 4
+ vehicle treated mice for 6 days;B+WI+IL-15 = burn injury + wound infection performed on day 4 + IL-15 SA
treated mice for 6 days.

doi:10.1371/journal.pone.0148452.g001
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measured using a TC20 cell counter; splenocytes were centrifuged (300 x g for 10 minutes at
4°C) and resuspended in PBS to achieve a concentration of 1x107 cells/mL, for further analysis
using flow cytometry.

Liver leukocyte preparation. As described previously [50], liver was perfused with cold
PBS through injection into the left ventricle of the heart and then harvested. Liver tissue was
gently pressed through a 70 μm cell strainer. The resulting homogenate was resuspended in
10 mL of 37.5% Percoll Plus (GE Healthcare Life Sciences) and centrifuged (680 x g for 12 min-
utes at room temperature). The supernatant containing the hepatocytes was discarded and red
blood cells lysed. The remaining mononuclear immune cells were counted and resuspended in
PBS to achieve a concentration of 1 x 107 cells/mL, for flow cytometry analysis.

Flow Cytometry
Leukocytes isolated from peritoneal cavity, spleen and liver tissues were suspended in cold PBS
(1 x 107 cells/mL) and incubated with 1 μl/mL anti-mouse CD16/32 (eBioscience, San Diego, CA)
for 5 minutes to block non-specific Fc receptor-mediated antibody binding. One million cells
were then transferred to polystyrene tubes and incubated with 0.5 μg of fluorochrome-conjugated
specific antibodies or isotype control antibodies (4°C, 30 minutes), followed by washing with
2 mL cold PBS and centrifugation (300 x g for 5 minutes). The cell pellet was then resuspended in
250 μL cold PBS. Flow cytometry was performed using BDAccuri C6 instrument (BD Biosci-
ences, San Diego, CA). Data were analyzed using Accuri C6 software. The following fluorochrome
conjugated anti-mouse antibodies (eBioscience, San Diego, CA) were used: anti-CD3-FITC, anti-
CD4-PerCPCy5.5, anti-CD4-FITC, anti-CD8-PE, anti-CD19-PE, anti-F4/80-FITC, anti-CD49b-
APC, anti-CD69-PE, anti-CD69-PerCPCy5.5 and respective isotype controls.

Measurement of Bacterial Counts and Temperature
Serial dilutions of blood, peritoneal fluid or lung tissue homogenates were grown on tryptic soy
agar overnight to determine colony forming units (CFU) of Pseudomonas aeruginosa per ml of
blood or per gram of tissue. Bacterial counts were measured on day 2 post wound infection and
6 hours post intraperitoneal inoculation of Pseudomonas aeruginosa. Body temperature was
measured using a lubricated rectal temperature probe and digital thermometer (Physitemp
Instruments INC., Clifton, NJ, USA).

Measurement of Complete Blood Count (CBC) and Organ Injury
Markers
Whole blood was harvested by carotid artery laceration under general isoflurane anesthesia. Blood
was collected in K3EDTA tubes (Greiner Bio-Obe, Kremsmunster, Austria) and kept on ice until
CBC and differential leukocyte counts analysis. CBCmeasurements were performed using a For-
cyte veterinary hematology analyzer (Oxford Science, Oxford, CT). Remaining blood was centri-
fuged (4750 rpm for 15 minutes at 4°C) to collect plasma for cytokine analyses or measurement of
liver injury markers–alanine aminotransferase (ALT) and aspartate amino transferase (AST); and
kidney injury marker—blood urea nitrogen (BUN). These were measured using Vet Axcel Chem-
istry Analyzer in the Translational Pathology Shared Resource facility at Vanderbilt University.

Cytokine Measurements
Concentrations of IL-6, IL-10, TNF-α, IFN-γ, KC and MIP-2 were measured in plasma using a
Bio-Plex Multiplex Assay and read with the Bio-Plex Magpix Multiplex Reader (Bio-Rad, Her-
cules, CA). Results were analyzed using Bio-Plex Manager Software 6.1.
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Survival Study
Following wound infection with Pseudomonas aeruginosa, mice were monitored at least three
times daily for seven days. Additionally, the animal care veterinary technicians also monitored
the health of mice on a daily basis. Mice were checked for signs of morbidity including
decreased activity and response to stimuli combined with abnormal posturing and labored
breathing. Core body temperature was also measured using a lubricated rectal temperature
probe and digital thermometer (Physitemp Instruments INC., Clifton, NJ, USA), as an indica-
tor of morbidity [10,50]. Mice displaying signs of morbidity and/or body temperature below
30°C, were humanely euthanized under isoflurane anesthesia as non-survivors. To assure
proper euthanasia, the unconscious mice underwent cervical dislocation and mortality was
confirmed.

Statistical Analysis
Graph preparations and data analyses were performed using Prism 6.0 (GraphPad Software
Inc., San Diego, CA). Data with three or more groups were analyzed using a one-way ANOVA
followed by the Tukey multi-comparison post-hoc test. Comparison between two groups was
analyzed using Students T test. All data values are presented as mean ± SEM, except for bacte-
rial counts, for which median values are designated. The median values derived from bacterial
clearance studies were evaluated using the non-parametric MannWhitney test. P-values less
than 5% levels were considered statistically significant. Survival curves were analyzed using a
Mantel-Cox log rank test.

Results

Burn Wound Infection Significantly Decreases Blood Lymphocyte
Counts and Induces Organ Injury and Sepsis, which Is Not Improved by
IL-15 SA Treatment
Wound infection was induced by topical application of Pseudomonas aeruginosa on day 4 after
burn injury (Fig 1A). This time point of inoculation represents a clinical scenario wherein
patients typically develop infection after burn injury [51]. Upon inoculation of the wound, the
bacteria gradually colonize the injured area and spreads systemically into surrounding tissues,
blood and eventually to distant organs, namely the lungs [49]. As shown in Fig 1B, Pseudomo-
nas was present in the blood and lungs on day 2 after wound infection, demonstrating systemic
spread. However, no difference in blood and lung bacterial counts was observed when compar-
ing vehicle- and IL-15 SA-treated mice (Fig 1B). Burn wound sepsis also led to a significant
increase in serum ALT and AST concentrations, as compared to sham or burn only mice,
implying liver injury (Fig 1C and 1D). Although a trend towards higher ALT and AST concen-
trations was observed in infected mice treated with IL-15 SA, differences were not statistically
significant among groups. Serum BUN concentrations were significantly higher in infected
mice treated with IL-15 SA compared to sham and vehicle-treated mice, suggesting kidney
injury in that group (Fig 1E). These findings were associated with approximately 80% mortality
on day 4 after wound infection in both vehicle- and IL-15 SA-treated mice, with no significant
difference noted among groups (Fig 1F).

Burn injury alone induced a significant decrease in blood absolute lymphocyte count, but
not total white blood cell count, on day 4 post-burn in vehicle- and IL-15 SA-treated mice (Fig
2A and 2B). Both total white blood cell and absolute lymphocyte counts were significantly
(>80%) decreased at 2 days after burn wound infection in both groups (Fig 2A and 2B, day 6
post-burn) compared to sham controls and burned mice on day 4. On the other hand, burn
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injury alone did not cause any change in blood neutrophil counts, but IL-15 SA treatment sig-
nificantly increased it, at day 4 post burn (Fig 2C). Wound infection lead to a significant
decline in the blood neutrophil counts both in the vehicle- and IL-15 SA-treated groups at day
2 post infection (Fig 2C).

IL-15 SA Treatment Significantly Increases CD4+, CD8+ and B
Lymphocyte Counts in the Spleen and Liver after Burn Injury, while
Subsequent Wound Infection Decreases These Cells
As shown in Fig 3A–3F, burn injury significantly decreased total splenocyte, CD4+ T, CD8+ T
and memory CD4+CD44+ T cell counts but not memory CD8+CD44+ T or B cell counts in
spleen. With the exception of a decrease in B cell numbers, burn injury did not decrease any of
those cell populations in liver (Fig 3G–3L). IL-15 SA treatment (1 μg, i.p, for 3 days starting a
day after burn injury) significantly increased the numbers of total leukocytes, T cells and B
cells in spleen and liver at day 4 after burn (Fig 3A–3L). However, on day 2 post Pseudomonas
aeruginosa wound inoculation, infection led to a significant loss of the CD4+, mCD4+, CD8+,
mCD8+ cells in the spleen as compared to the sham mice (day 6) (Fig 3A–3E). None of the T
cell counts were decreased in the liver post infection in vehicle treated group as compared to

Fig 2. Burn wound infection caused decline in white blood cell and lymphocyte counts. (A) Total white
blood cell counts. (B) Blood lymphocyte counts. (C) Blood neutrophil counts. n = 8–10 in each group,
*significantly different as compared to respective day 4 and day 6 sham groups; #significantly different from
burn plus vehicle group (B+V) and P<0.05.

doi:10.1371/journal.pone.0148452.g002

Interleukin-15 in Burn Injury andWound Infection

PLOS ONE | DOI:10.1371/journal.pone.0148452 February 9, 2016 8 / 20



sham mice (day 6) (Fig 3G–3K). Infection alone (vehicle treated) did not affect CD19+ B cell
numbers in the spleen (Fig 3F), but significantly decreased it in liver (Fig 3L). Although IL-15
SA-treated mice had relatively higher cell counts after wound infection as compared to the
respective (day 6) vehicle treated infected mice (Fig 3), infection still caused a significant
decline in all the T cell subsets and B cell numbers as compared to IL-15 SA expanded day 4
cell numbers (Fig 3).

Fig 3. Effect of burn injury and wound infection with or without IL-15 SA treatment on CD4+, CD8+ T
and CD19+ B lymphocyte cell counts.Wound infection and sepsis was induced by inoculation of
Pseudomonas aeruginosa on day 4 post burn injury. Upper half of the panel depicts cell counts in the spleen
and lower half of the panel depicts cell counts in the liver. Spleen and liver cell counts were analyzed on day
4, and day 6 (equivalent to day 2 post wound infection) post burn injury. (A andG) Total immune cell counts
among the respective groups of the single cell suspensions prepared from the spleen and liver. Flow
cytometry was used to measure the individual T and B cell lymphocyte cell population in the spleen and liver.
The bar graph represents the total cell counts of the CD4+ T cells (B andH), CD4+ CD44hi memory T cells (D
and J), CD8+ T cells (C and I), CD8+ CD44hi T cells (E andK), and CD3-CD19+ B cells (F and L); in the
spleen and liver. n = 8–12 in each group and P<0.05. *significantly different as compared to respective day 4
and day 6 sham groups; #significantly different from day 4 burn injury group (B+V) and $-significantly different
from day 6 burn injury + vehicle treated wound infected group (B+WI+V).

doi:10.1371/journal.pone.0148452.g003
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IL-15 SA Induces T and B Lymphocytes Activation
IL-15 SA treatment significantly activated CD4+ T, CD8+ T and CD3-CD19+ B lymphocytes in
the spleen and liver, as measured by increased percentage of cells expressing the early activa-
tion marker CD69 (Fig 4). IL-15 SA-induced cellular activation declined among splenic CD4+

and CD8+ T cells after wound infection as compared to day 4 post burn injury and were com-
parable to the respective day 6 sham group mice (Fig 4A and 4B). On the contrary, wound
infection led to an increase in the activation of CD4+ and CD8+ T cells in the liver as compared
to the respective sham control mice. (Fig 4D and 4E). IL-15 SA treatment accentuated the
CD4+ T cell activation more so than the CD8+ T cell activation in the liver after infection. In
this regards, IL-15 SA caused a substantially higher activation of CD4+ T cells (~ 55% CD69
expression) post infection as compared to the sham (~10%) and vehicle treated burn wound
infected group (~32%). On the other hand, IL-15 SA treatment caused CD8+ T cell activation
(~12% CD69 expression) post infection, which was significantly higher as compared to sham
(5%) but not statistically different as compared to the vehicle treated burn wound infected
group (~8%) (Fig 4D and 4E). IL-15SA treatment also activated B cells in spleen and liver from
burned mice (Fig 4C and 4F). Burn wound infection decreased CD19+ B cell activation in the
spleens of vehicle and IL-15SA-treated mice. However, B cell activation was sustained in the
liver after burn wound infection (Fig 4C and 4F).

Fig 4. Effect of burn injury and wound infection with or without IL-15 SA treatment on CD4+, CD8+ T
and CD19+ B lymphocytes activation status.CD69 surface expression was used as a marker of cellular
activation and measured by flow cytometry. Upper half of the panel depicts data for spleen cells and lower
half of the panel depicts data for liver tissue. Percentage of CD69 expression was measured on CD4+ T cells
(A andD), CD8+ T cells (B and E), and CD3-CD19+ B cells (C and F); in the spleen and liver. n = 8–12 in each
group and P<0.05. *significantly different as compared to respective day 4 and day 6 sham groups;
#significantly different from day 4 burn injury group (B+V), and $—significantly different from day 6 burn injury
+ wound infection + vehicle treated group (B+WI+V).

doi:10.1371/journal.pone.0148452.g004
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IL-15 SA Treatment Significantly Expanded NK and NKT Cells and
Activated NK Cells in the Spleen and Liver
Consistent with earlier reports, IL-15 SA treatment significantly increased NK (CD3-CD49b+)
and NKT (CD3+CD49b+) cell numbers both in the spleen and liver on day 4 after burn injury
(Fig 5A, 5B, 5E and 5F) as compared to the sham and vehicle treated mice. However, wound
infection led to a significant decline in the expanded NK and NKT cell numbers, both in the
spleen and liver. Burn injury alone significantly increased the activation (increased CD69

Fig 5. IL-15 SA treatment elicits expansion of NK and NKT cells post burn injury and wound infection
causes their decline.Upper half and lower half of the panel depicts cell counts and activation status (CD69+)
of NK (CD3-CD49b+) and NKT (CD3+CD49b-) cells in the spleen and liver respectively. The graphs A and E
depict NK cell counts in the spleen and liver respectively; and the graphsB and F show the NKT cell counts in
the spleen and liver respectively. The graphsC andG depict NK cell CD69 expression in the spleen and liver
respectively; and the graph D shows the NKT cell CD69 expression in the spleen. n = 8–10 in each group and
P<0.05. *significantly different as compared to respective day 4 and day 6 sham groups; #significantly
different from day 4 burn injury group (B+V), and $—significantly different from day 6 burn injury + wound
infection + vehicle treated group (B+WI+V).

doi:10.1371/journal.pone.0148452.g005
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expression) of NK cells in the liver, but not spleen, on day 4 in the vehicle treated group. IL-15
SA treatment induced activation of NK cells in the spleen and liver of burned mice (Fig 5C and
5G). On the contrary, IL-15 SA treatment significantly attenuated the basal NKT cell activation
after burn injury alone and there was a trend towards increase in the basal NKT cell activation
after wound infection in the spleen (Fig 5D).

Wound Infection Increased Pro-Inflammatory Cytokine Production,
which Was Not Affected by IL-15SA Treatment
As shown in Fig 6, burn wound infection substantially increased plasma concentrations of the
cytokines IL-6, IL-10, TNF-α, KC and MIP-2. Treatment with IL-15 SA did not modify post-
infection cytokine production when compared to vehicle-treated mice.

IL-15 SA Treatment Inhibits Neutrophil Recruitment to the Site of Local
Infection and Fails to Enhance Bacterial Clearance
In further studies, we utilized a two-hit model of infection, in which burn injured mice received
intraperitoneal challenge with Pseudomonas aeruginosa on day 4 after burn injury to assess leu-
kocyte recruitment to the site of infection. The effect of IL-15 SA treatment upon neutrophil
recruitment and bacterial burden was assessed in the peritoneal fluid at 6 hours after bacterial
inoculation. Body temperature was measured as an index of infection severity (Fig 7A). Infec-
tion significantly lowered the core body temperature of mice, both with and without IL-15 SA
treatment. IL-15 SA treatment did not change the bacterial burden in the peritoneal cavity as
compared to the vehicle treated mice (Fig 7B). Furthermore, IL-15 SA treatment significantly
reduced the percentage of peritoneal macrophages (F480+Ly6G-) after burn injury (Fig 7C).

Fig 6. Plasma cytokine levels post burn injury and wound infection. Plasma cytokines including (A) IL-6, (B) IL-10, (C) TNF-α, (D) IFN-γ, (E) KC and (F)
MIP-2 were measured using Bio-Rad Bio-Plex assay. n = 6–8 in each group and P<0.05. *significantly different as compared to respective day 4 and day 6
sham groups.

doi:10.1371/journal.pone.0148452.g006
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Infection markedly decreased intraperitoneal macrophages in both vehicle and IL-15SA-
treated mice. Infection increased the percentage of intraperitoneal neutrophils (Ly6G+F4/80-)
in vehicle and IL-15SA-treated mice, but IL-15 SA treatment attenuated neutrophil recruit-
ment at the site of bacterial inoculation (Fig 7D).

Intraperitoneal Infection Significantly Increased Cytokine Production,
which Was Amplified by IL-15SA Treatment
As shown in Fig 8, the levels of pro-inflammatory cytokines in plasma, including IL-6, TNF-α,
IFN-γ, KC and MIP-2, were significantly increased in both the vehicle and IL-15 SA treated
infected groups, as compared to uninfected mice. Treatment with IL-15 SA further augmented
cytokine production in this acute infection model (Fig 8). The levels of anti-inflammatory cyto-
kine IL-10 were also significantly increased after infection and were amplified by IL-15 SA
treatment.

Discussion
Infection is the most common cause of death in burn patients that survive the initial burn
trauma and a common cause of prolonged hospitalization [52]. Factors that predispose burned
subjects to infection include loss of the skin barrier and, potentially, immunologic dysfunction.

Fig 7. Effect of IL-15 SA treatment on neutrophil recruitment and bacterial clearance upon
intraperitoneal infection. Pseudomonas aeruginosa (1x108 CFU) was inoculated in the peritoneum of the
mice via i.p injection. This model was used to assess if IL-15 SA treatment causes neutrophil recruitment and
improves bacterial clearance. Mice were divided into four groups: 1) B+V = burn + vehicle treated non-
infected mice; 2) B+IL-15 = burn + IL-15 SA treated non-infected mice; 3) B+V+I = burn + vehicle treated
infected mice; 4) B+IL-15+I = burn + IL-15 SA treated infected mice. (A) At 6 hours post i.p infection, core
body temperature was measured using a rectal temperature probe. Also, peritoneal lavage was performed
using 2 mL sterile PBS solution and used for bacterial clearance (B); macrophage (C) and neutrophil (D) cell
counts measurements using flow cytometry. n = 8–16 in each group and P<0.05. *significantly different as
compared to B+V group; #significantly different from B+IL-15 group, significantly different as compared to B
+V group $—significantly different from B+V+I group.

doi:10.1371/journal.pone.0148452.g007
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Our results show that combined cutaneous burn injury and infection with Pseudomonas aeru-
ginosa leads to systemic dissemination of bacteria, liver and kidney injury, and systemic inflam-
mation. Burn and infection caused a remarkable decline in circulating lymphocyte counts and
a decrease in spleen CD4+ and CD8+ T cells on day 2 after infection. Treatment with IL-15 SA
did not improve bacterial clearance or survival in this model. In fact, treatment with IL-15 SA
caused a trend toward worsened liver and kidney injury in the wound infection model and sig-
nificantly enhanced systemic cytokine production in the burn and systemic Pseudomonas chal-
lenge infection model.

Previous studies demonstrated T cell dysfunction and low absolute lymphocyte counts con-
tribute to increased mortality in non-burned septic patients [8,19,53]. Sepsis is known to cause
significant apoptosis-mediated death of monocytes, T, B, dendritic, and NK cells, which is pos-
tulated to cause immunosuppression and increased susceptibility to infection [54,55]. How-
ever, the effect of burn injury and infection on lymphocyte numbers and function has not been
extensively studied. Previous studies using a mouse model of scald burn injury showed
increased apoptotic cells in lymphoid tissues such as thymus, spleen and intestinal Peyer’s
patches as early as 6 hours after burn injury [56,57]. Our study shows that burn injury causes a
significant decline in circulating absolute lymphocyte cell counts as well as total and memory T
cell numbers in the spleen. Superimposing infection upon burn injury caused further depletion
of circulating lymphocytes and sustained the loss of splenic T cells. Thus, burn injury, espe-
cially in combination with infection, causes significant declines in peripheral and central lym-
phocytes. However, it is not clear whether lymphocyte depletion enhances susceptibility to
infection after burn injury.

Fig 8. Plasma cytokine levels post intraperitoneal infection with Pseudomonas aeruginosa. Plasma cytokines including (A) IL-6, (B) IL-10, (C) TNF-α,
(D) IFN-γ, (E) KC and (F) MIP-2 were measured using Bio-Rad Bio-Plex assay. n = 6–8 in each group and P<0.05. *significantly different as compared to
burn injury + vehicle treated group (B+V); #significantly different from burn injury + IL-15 SA treated group (B+IL-15); and $significantly different from burn
injury + IL-15 SA treated infected group (B+IL-15+I).

doi:10.1371/journal.pone.0148452.g008
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Treatments aimed at augmenting adaptive immune functions may decrease the incidence
and severity of infection after burn injury. A previous study showed that IL-15 SA treatment
can reverse lymphocyte dysfunction and improve survival in the cecal ligation and puncture
(CLP) murine model of sepsis and in a model of Pseudomonas pneumonia [20]. IL-15 is
known to have potent anti-apoptotic activity and stimulate the expansion and activation of T
cells, especially memory CD8+ T (mCD8+ T), NKT and NK cells [30,50]. IL-15 super agonist
(IL-15 SA) was employed in our study because of its prolonged half-life and enhanced potency
as compared to IL-15 alone [41]. A recent study from our laboratory demonstrated that dosing
with 2 μg IL-15 SA for 4 days expands mCD8+ T, NKT and NK cells. However, IL-15 SA in
that regimen also caused liver injury and cachexia in the mouse, which was mediated by NK
cells and dependent on production of interferon γ (IFNγ) [50]. Therefore, we limited the dose
of IL-15 SA to 1 μg on alternate days after wound infection to minimize toxicity and because
three doses of IL-15 SA led to a robust expansion of CD4+ and CD8+ T, NK and NKT cells in
spleen and liver at day 4 post-burn injury. In addition to inducing lymphocyte expansion, IL-
15 SA treatment also caused significant activation of CD4+T, CD8+T and NK cells as reflected
by increased CD69 expression, in the spleen and liver. The augmented activation of lympho-
cytes might have had minor deleterious effects as indicated by marginally increased liver
enzymes and increased cytokine production in mice receiving IL-15 SA treatment.

IL-15 SA treatment did not impact blood absolute lymphocyte counts after burn injury or
burn plus infection, but increased CD4+T, CD8+T, NK, NKT and B lymphocytes in both spleen
and liver tissue Sepsis is known to cause significant apoptosis-mediated death of monocytes, T,
B, dendritic, and NK cells, which is postulated to cause immunosuppression and increased sus-
ceptibility to infection [54,55].of burned mice. However, all lymphocyte populations in spleen
and liver tissue declined markedly after infection in IL-15 SA-treated mice and were only mar-
ginally greater than in vehicle-treated infected mice. Thus, treatment with IL-15 SA did not
provide a sustained elevation in lymphocyte numbers after infection, which was reflected in its
inability to augment antimicrobial immunity in our model. Treatment with IL-15 SA did not
alter bacterial clearance in either the burn wound or systemic infection models nor did it effect
neutrophil recruitment to the site of infection in mice receiving intraperitoneal Pseudomonas
challenge. Innate immune cells, including neutrophils, monocytes and macrophages, form the
first line of defense against bacterial infection and are required for rapid elimination of bacte-
rial pathogens [58]. IL-15 is also known to prevent the apoptotic depletion of innate immune
cells including dendritic and NK cells during sepsis [20]. To test if IL-15 might facilitate the
innate immune cell recruitment and bacterial clearance, we employed an intraperitoneal Pseu-
domonas aeruginosa infection model. As shown in Fig 6, infection caused a significant decline
in intraperitoneal macrophages (F4/80+Ly6G- cells) and increase in neutrophils (Ly6G+F4/80-

cells). IL-15 failed to modify either macrophage or neutrophil populations in the peritoneal
cavity. As a result, all infected mice developed severe infections and associated hypothermia.
Our results are somewhat different than those reported by Inoue et al in which IL-15 SA was
tested in models of CLP-induced sepsis and Pseudomonas pneumonia [20]. Both our study and
theirs showed the ability of IL-15 SA to expand lymphocyte populations and to augment cyto-
kine production during infection. However, we were unable to show improvements in survival
or bacterial clearance in our model. The main difference between the studies is the presence of
burn injury, which was a major component of our models. Thus, the presence of burn injury
might significantly change the efficacy of IL-15 SA as an immunotherapeutic agent. It is also
worthwhile to mention that, Inoue et al., employed CD-1 mice strain as opposed to BALB/c
mice in our studies, which might also be one of the reasons for the observed differences in sur-
vival [20].
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Burn injury is also known to induce a state of inflammation with respect to increased pro-
inflammatory cytokine production [59]. In our study, burn injury alone caused a significant
increase in the classic pro-inflammatory cytokine IL-6 on day 4 following injury. Infection led
to a further increase in the levels of plasma pro-inflammatory cytokines including IL-6, TNF-
α, KC and MIP-2. IL-15 SA treatment did not induce a significant upregulation of pro-inflam-
matory cytokines in mice receiving burn injury alone. Moreover, IL-15 treatment did not sig-
nificantly augment pro-inflammatory cytokine production in mice with burn wound infection.
As seen in Fig 6, there was a trend towards increased plasma KC and MIP-2 after burn wound
infection in both vehicle and IL-15 SA treated groups, as compared to the sham group. But
none of these changes were statistically significant. This is likely due to wide variability in
plasma cytokines at the day 2 measurement point in the wound infection model. The dissemi-
nation of bacteria from wound to blood is variable in the wound infection model. Plasma cyto-
kine concentrations closely parallel blood bacterial counts. Thus, there is variability in both
blood bacterial counts and plasma cytokines in this model. Nevertheless, there was a strong
trend toward increased plasma KC and MIP-2 concentrations after burn wound infection that
was potentiated by IL-15 SA treatment. While the increased KC and MIP-2 levels might
increase PMN numbers, our data shows that PMN’s actually decline in the blood after wound
infection as compared to the sham group in both vehicle- and IL-15 SA-treated mice. This is
likely due to the active migration of PMN’s to the site of burn wound infection.

We used the intraperitoneal infection model to overcome the variability associated with the
wound infection model. The intraperitoneal challenge model provides for consistent dissemi-
nation of bacteria and more uniform induction of systemic cytokine production. The levels of
plasma IL-6, TNF-α, IFN-γ and MIP-2 were significantly higher in infected mice and in the IL-
15 SA-treated mice receiving intraperitoneal Pseudomonas infection as compared to vehicle
treated infected mice. This implies that IL-15 SA exacerbates the pro-inflammatory response
following burn injury and Pseudomonas aeruginosa sepsis. Although not statistically signifi-
cant, there was a trend towards higher bacterial CFUs in the IL-15 SA treated group (15.5x106

CFU’s) as compared to vehicle treatment (11.8x106 CFU’s) after intraperitoneal Pseudomonas
challenge, implying a relatively impaired bacterial clearance. That finding paralleled lower neu-
trophil counts in the peritoneal cavity of IL-15 SA-treated mice after infection. Infection also
caused a significant increase in the levels of plasma KC and MIP-2 and MIP-2 concentrations
were higher in IL-15 SA-treated mice than in vehicle controls. Based on these observations, it is
plausible that IL-15 SA treatment actually impaired PMN recruitment and bacterial clearance
as compared to vehicle treated group. This may be due to the higher plasma chemokine con-
centrations in the IL-15 SA-treated group, which can wash out plasma to tissue chemokine gra-
dients and result in impaired mobilization of neutrophils to sites of infection [60,61].

Conclusion
Our study demonstrates that burn injury reduces absolute lymphocyte numbers, and shows
that burned mice are highly susceptible to secondary burn-wound infection. However, while
IL-15 SA expands and activates T, B, NK, and NKT cells in burn injured mice, it fails to
improve survival after a Pseudomonas aeruginosa burn wound infection. The potential reasons
include failure of IL-15 SA treatment to enhance clearance of the systemic bacterial load and
possible potentiation of organ injury due augmentation of pro-inflammatory cytokine produc-
tion. Based on results of this study, one might hypothesize that impaired adaptive immune
responses might not be a significant contributing factor towards susceptibility to infection fol-
lowing burn injury. However, IL-15 SA predominantly expands NK, NKT, and mCD8+ lym-
phocytes, whereas preferential expansion of naïve and effector CD4 and CD8 T-lymphocyte
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populations, with therapies such as IL-7 [21,62], may provide more effective resistance to infec-
tion. Further work is needed to determine the impact of adaptive immune impairment after
burn and selective approaches to improve adaptive immunity in burned subjects merit further
investigation. Previous studies from our laboratory, and others, have shown that the dendritic
cell hemopoietic factor Flt3 ligand as well as TLR4 ligand monophosphoryl lipid A are very
effective in augmenting antimicrobial immunity in burned mice [63–66]. Thus, approaches
that improve innate immune function, in addition to adaptive immune function, may be a
more useful strategy to decrease mortality in burn-injured patients.
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