
Received: 22 June 2020; Revised: 17 July 2020; Accepted: 20 July 2020

© The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

1

Cerebral Cortex Communications, 2020, 1, 1–16

doi: 10.1093/texcom/tgaa034
Original Article

O R I G I N A L A R T I C L E

Brain Networks Sensitive to Object Novelty, Value, and
Their Combination
Ali Ghazizadeh 1,2, Mohammad Amin Fakharian1, Arash Amini1,
Whitney Griggs 3, David A. Leopold4,5 and Okihide Hikosaka3,6

1Bio-intelligence Research Unit, Electrical Engineering Department, Sharif University of Technology, Tehran
11365-11155, Iran, 2School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran
19395-5746, Iran, 3Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health,
Bethesda, MD 20892, USA, 4Laboratory of Neuropsychology, National Institute of Mental Health, National
Institutes of Health, Bethesda, MD 20892, USA, 5Neurophysiology Imaging Facility, National Institute of Mental
Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of
Health, Bethesda, MD 20892, USA and 6National Institute on Drug Abuse, National Institutes of Health,
Baltimore, MD 21224, USA

Address correspondence to email: ghazizadeh@sharif.edu.

Abstract

Novel and valuable objects are motivationally attractive for animals including primates. However, little is known about how
novelty and value processing is organized across the brain. We used fMRI in macaques to map brain responses to visual
fractal patterns varying in either novelty or value dimensions and compared the results with the structure of functionally
connected brain networks determined at rest. The results show that different brain networks possess unique combinations
of novelty and value coding. One network identified in the ventral temporal cortex preferentially encoded object novelty,
whereas another in the parietal cortex encoded the learned value. A third network, broadly composed of temporal and
prefrontal areas (TP network), along with functionally connected portions of the striatum, amygdala, and claustrum, encoded
both dimensions with similar activation dynamics. Our results support the emergence of a common currency signal in the
TP network that may underlie the common attitudes toward novel and valuable objects.
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Introduction
Both humans and animals are motivated to interact with novel
objects, even if their intrinsic value or utility is unknown (Dellu
et al. 1996; Arentze and Timmermans 2005; Ghazizadeh et al.
2016). Indeed, novelty preference seems to be genetically hard
wired as seen in human infants (Reynolds 2015) and in lower

animals (Fantz 1956; Glickman and Sroges 1966). One explana-
tion for this behavior could be that novelty carries an inherent
value, a value that can be gradually modified in the process of
learning (Kakade and Dayan 2002). This prospect is supported
by the proposal that reward processing areas are engaged in the
processing of novel stimuli (Schultz et al. 1992; Bardo et al. 1996;
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Bunzeck and Düzel 2006). These findings suggest that novelty
and value may be used as a common currency by particular brain
networks for goal-directed behavior (Jaegle et al. 2019).

Despite this behavioral and neural link, research that have
looked at processing of object novelty and value has traditionally
focused on somewhat separate regions (e.g., perirhinal, tempo-
ral, and prefrontal cortex for novelty (Xiang and Brown 1998;
Rolls et al. 2005; Eichenbaum et al. 2007; Eichenbaum 2017) and
orbitofrontal cortex and ventral striatum for value (Rolls 2000;
Padoa-Schioppa and Cai 2011; Levy and Glimcher 2012). Hence,
a holistic view of the degree of overlap or specialization across
the brain for encoding object novelty and value is currently miss-
ing. Subjective experience suggests that the distinction between
novel objects and valuable objects is not lost to the individual, yet
both dimensions seem to orchestrate similar sets of behaviors.
A comparative and whole brain mapping of both dimensions
can reveal the neural mechanism for common and dissociable
processing of object novelty and value.

Notably, for a complex system such as the brain with a patch-
work of interconnected regions, network level analyses have
become increasingly useful for understanding how functionally
connected areas engender, and constrain, neural processing and
cognitive functions (Menon 2011). In particular, graph theoretical
approaches based on resting state fMRI (rfMRI) have been quite
successful in revealing behaviorally relevant functional networks
across the brain (Van Den Heuvel et al. 2009) with implications for
health and disease. Thus, it would be reasonable to ask whether
functional networks have relevance for determining an area’s
role in encoding novelty and value dimensions.

The present study used fMRI in macaque monkeys to measure
brain-wide activations during novel versus familiar (NF) object
presentations as well as high versus low value (good/bad or GB)
object presentations. The experimental design created novelty
and value as orthogonal dimensions: NF objects varied in their
perceptual exposure but had no physical reward history, whereas
GB objects had equal perceptual exposure but varied in their
reward history prior to scanning. During the fMRI scanning ses-
sions, the GB and NF objects were viewed passively. This design
ensured that novelty dimension could be compared with value
dimension uninterrupted by further reward learning or reward
expectation during the scan.

Previously, systematic electrophysiological investigations
have revealed a special circuitry in prefrontal cortex (Ghazizadeh,
Hong, et al. 2018) and posterior basal ganglia (Hikosaka et al.
2018, 2019) for encoding value memories in macaque monkeys.
There is also some evidence about novelty coding in both
prefrontal (Matsumoto et al. 2007) and basal (Yamamoto et al.
2012) parts of this circuitry. The whole brain fMRI approach
in macaques will be crucial for discovering the brain-wide
circuitry involved in value and novelty processing to guide
future localized electrophysiological studies. Furthermore, given
that macaques are the primary animal model for cognitive
functions in humans especially those related to vision, macaque
fMRI provides valuable information for comparative and
evolutionary studies of brain function and for establishing
homologies across species (Orban et al. 2004; Sereno and Tootell
2005).

The results revealed the organization of object novelty and
value processing across the brain as a progression from differ-
ential to joint processing of each dimension. rfMRI connectivity
was utilized to identify and parse functionally coherent networks
using graph theoretical approaches. Notably, a core of intercon-
nected temporal and prefrontal cortical areas recently shown
to encode long-term value memories (Ghazizadeh, Griggs et al.

2018) was found to respond equally to novelty, whereas other
networks in ventral temporal and parietal cortex responded
preferentially to novelty and value, respectively.

Materials and Methods
Subjects

Two adult rhesus monkeys (U: female 6 kg, 10 years old, D:
male, 10 kg, 9 years old) were involved in the study. In order
to prevent head movements, the monkeys were implanted with
a MR compatible head post prior to the training procedure. In
addition, a scleral search coil was implanted in one eye of each
monkey for eye tracking during training outside the scanner.
Inside the scanner, eye position was monitored by an MR compat-
ible infrared camera (MRC camera 60 Hz, SMI IView × 2.6, tracking
resolution <0.1◦). All animal care and experimental procedures
were approved by the National Eye Institute Animal Care and Use
Committee and complied with the Public Health Service Policy on
the humane care and use of laboratory animals.

fMRI Scanning

Awake animals sat upright in an MR-compatible chair and
viewed visual stimuli via a mirror reflecting a display positioned
above their head. A 4.7-T, 60-cm vertical MRI scanner (Bruker
Biospec) equipped with a Brucker S380 gradient coil was used to
acquire the fMRI data while the monkeys performed the passive
viewing task. Functional MRI images were collected using a T2∗
echo planar images (EPI) sequence with 1.5 mm3 isotropic spatial
resolution, repetition time (TR) = 2.5 s, echo time (TE) = 14 ms, and
flip angle = 85◦. Prior to each scanning session, a T2∗ contrast
agent (MION) was injected to each subject (∼10 mg/kg). High-
resolution anatomical scans with 0.5 mm3 isotropic spatial
resolution were also collected from anesthetized monkeys by
a horizontal 4.7-T MRI (Bruker Biospec 47/60).

Stable Value Training

The biased reward training consisted of an object-directed sac-
cade task to train the values of each good and bad fractal objects
(Fig. 1A). Each training block of this task used a set of eight
fractals (four Good and four Bad fractals). Following the subject
fixating on a central white dot, an object appeared from the set
at one of the 8 peripheral locations (15◦ eccentricity). After a
400 ms period, the fixation dot disappeared, and the subjects
were supposed to make a saccade to the fractal and fixate on
it (500 ± 100 ms). Successful performance led to a large (0.3 mL)
or small (0.1 mL) reward (33–66% diluted apple juice) based on
the fractal identity (Good/Bad) concurrent with a correct tone.
Fixation breaks or premature saccades to the fractal resulted in
an error tone. Each trial was followed by an intertrial interval (ITI)
of 1–1.5 s with a blank screen. The training block consisted of 80
trials (10 presentations/object), and objects presentations were
shuffled pseudorandomly.

Familiarity Training

A random set of eight fractals was chosen for perceptual famil-
iarization for each monkey. Familiarization was done using pas-
sive viewing and free viewing over multiple days and sessions
(>10 days). The details of both tasks are described below.
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Figure 1. Stimuli and experimental paradigms. (A) Value training sessions included repeated association of abstract fractal objects with low or high rewards (good

and bad fractals, respectively) for >10 days. (B) Perceptual familiarization sessions included repeated exposure of abstract fractal objects in passive viewing and in the

absence of reward. (C) Example fractals used as good/bad and novel/familiar categories. (D) Schematic of independent novelty and value dimensions. (E) Test of GB and

NF coding in fMRI in a passive viewing task using a block design. In all blocks, subject kept central fixation. In the base blocks, no object was shown. In the probe blocks,

objects from one category (good/bad in GB scans and novel/familiar in NF scans, pseudorandomly ordered through sessions) were shown on the left or right hemifield

at 6◦ eccentricity.

Behavioral Training: Passive Viewing

An animal was required to keep a central fixation while familiar
objects were displayed randomly with 400 ms on and 400 ms
off schedule. The animal was rewarded (0.3 mL) for continued
fixation after a random number of 2–4 objects were shown fol-
lowed by 1–1.5 s ITI. Objects were shown randomly in eight
radial directions with eccentricities from 5◦ to 20◦. A session of
passive viewing with a set of eight familiar fractals had ∼20
presentations per object. Note that in this task, reward was
only contingent on successful maintenance of central fixation.
The animal lost the chance to get reward if he broke fixation
and he understood this contingency as evidenced by the low
number fixation breaks in the task (Supplementary Fig. 1). We
have also shown previously that passive viewing trials did not
modify object value responses of stable value-coding neurons
(e.g., Fig. 4F in Ghazizadeh, Hong, et al. 2018).

Behavioral Training: Free Viewing

Each free viewing session consisted of 15 trials. In any given
trial, four fractals would be randomly chosen from a set of four
good and four bad objects in GB-free viewing and from a set
of four novel and four familiar objects in NF-free viewing. For
familiarization training, all eight fractals were from the familiar
set. Location and identity of fractals shown in a trial would be
chosen at random in one of two possible configurations (for
details see Ghazizadeh et al. 2016). The chosen fractals in a given

trial were shown in any of the four corners of an imaginary
diamond or square around center (15◦ eccentricities). Fractals
were displayed for 3 s during which the subjects could look at (or
ignore) the displayed fractals. There was no behavioral outcome
for free-viewing behavior. Note that consistent with previous
reports (Ghazizadeh et al. 2016), this method did not result in
extinction of value memory (Supplementary Fig. 1). After 3 s of
viewing, the fractals disappeared. After a delay of 600 ± 100 ms,
a white fixation dot appeared in one of nine random locations
in the screen (center or eight radial directions). Monkeys were
rewarded (0.3 mL) for fixating that fixation dot. The next trial was
preceded by an ITI of ∼1.5 s with a blank screen.

Scanning: Passive Viewing

Each run consisted of 16 blocks lasting 30 s each (eight base/eight
probe). There were four different probe blocks: [good, bad] × [left,
right] in GB scans and [novel, familiar] × [left, right] in NF scans
(Fig. 1E). The order of four probe block types was pseudorandom-
ized such that in every four sequential probe blocks, all four types
were shown, and each run consisted of two such randomized
cycles. Each block was divided into trials with variable duration
(approximately four to five trials per block), which required cen-
tral fixation on a 0.5◦ white dot within a 3◦ × 3◦ window. During
probe blocks, fractals were flashed (600 ms on, 200 ms off) in
one hemifield (∼6◦ eccentricity) in horizontal and 45◦ oblique
directions (pseudorandom location for each object) while the
animal maintained central fixation. Three to five consecutive
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objects were shown during each trial. After the trial, central
fixation was extinguished and the animal was rewarded (0.3 mL,
50–100% apple juice) for keeping fixation leading to an ITI of
2.2 s. All objects in a given block were chosen from either good
or bad categories in GB scans and novel and familiar categories
in NF scans and were shown on either the right or left visual
hemifields. The NF scans were done in each run with a new
set of novel fractals that were briefly flashed in the periphery
(total exposure <5 s per novel fractal in a given run). This short
exposure time per fractal was intentionally used to avoid high
familiarization during the scanning run. No contingent reward
for objects was delivered during passive viewing. Breaking fix-
ation or failing to fixate centrally within 3 s of fixation dot
appearance resulted in extinction of all visual stimuli followed
by a 2.2 s ITI before start of the next trials. The base blocks had
the same duration and contingencies as the probe block except
that no object was shown in the periphery and the animal just
had to maintain central fixation for variable intervals matched
in duration to the intervals in probe blocks to get rewarded. The
number of scanning sessions were determined to have power to
detect effect size (eff = 0.1%) at P-value (P = 1e − 3) using the
formulation suggested by (Murphy et al. 2007) and modified by a
factor of 5 to account for increased effect size when using MION
(Vanduffel et al. 2001), we have:

Nrun = 8
TRnumrun

(
erfc−1

(p)

tSNR × eff × 5

)2

Temporal signal to noise ratio (tSNR) across the cortex in
our scans was 25 and the number of data points across a run
was 192 (16 blocks × 12 TRs per block) the first 3 TRs was
considered corrupt due to magnetization thus TRnumrun = 189
was used. This calculation gives a minimum of Nrun = 14.4 runs
for the desired effect size and P-value used in this study. The
data analyzed in this study consisted of 19 runs for monkey U
and 18 runs for monkey D in GB scans and 20 runs for monkey
U and 23 runs for monkey D in NF scans. The GB scans and
the value beta coefficients across the brain are the same as in
(Ghazizadeh, Hong et al. 2018). In cases where the value beta
coefficients are shown again in this paper (e.g., Figs 2A,B and
5A,B) the side by side displays between GB and NF scans were
required for the explicit comparison between value and novelty
dimensions. Apart from value beta coefficients, new results are
reported for the first time on the GB data in this paper including
the relationship between resting state connectivity graph and GB
coding (Fig. 3) and the dynamic causal modeling (DCM) (Fig. 4).
In addition, all of the data and analysis done on NF scans are
presented here for the first time.

fMRI Data Preprocessing

fMRI data is first converted form Bruker into AFNI file format.
Slice time correction (3dTshift), motion correction (3dvolreg),
and correction for static magnetic field inhomogeneities is per-
formed on the data. After aligning the data with the anatomical
FLASH images of each session, images were despiked, detrended
(fourth-order Legendre polynomials), and transformed into per-
cent change from the mean. The high-resolution anatomical
images were transformed into standard D99 atlas space. To make
whole-brain familywise correction, estimates of spatial smooth-
ness based on the residuals of the regression was obtained using
3dFWHMx and non-Gaussian spatial autocorrelation function
(ACF) was obtained (ACF parameters: a = 0.97, b = 1.10, c = 9.01

monkey U and a = 0.98, b = 1.04, c = 7.99 monkey D). Minimum
cluster size for two-sided α < 0.01 (familywise error) and voxel-
wise significance of P < 0.001 was found using 3dClustSim (10 000
Monte Carlo simulations) to be 4.7 and 4.2 voxels in monkeys U
and D, respectively (nearest neighbor face touching only; NN = 1,
same in all clustering analyses in this study). Therefore, in both
monkeys, a minimum cluster size of 5 at voxel P < 0.001 was
used subsequently. For more details on preprocessing steps see
(Ghazizadeh, Griggs et al. 2018).

fMRI Analysis

The analysis was performed in AFNI and SUMA software pack-
ages (AFNI_18.2.09), Statistical Parametric Mapping (SPM 12), as
well as custom-written MATLAB programs. The 3D + time series
were regressed against the model time series to calculate the
beta coefficients that represented the contribution of each factor
in percent change from the mean (GLM analysis using 3dDe-
convolve). The model time series consisted of eight regressors
([good, bad, novel, familiar] × [right, left hemifield]) that were
one during the block satisfying their condition and zero oth-
erwise and were then convolved with a MION hemodynamics.
Seventeen nuisance regressors were used including motion and
their first derivatives (12 parameters), reward delivery, blinks,
and eye position (horizontal, vertical, and interaction). All nui-
sance time series except the ones related to motion were con-
volved with MION hemodynamics before regression (the negative
change of MION agent was considered). A separate regression
with one regressor (probe vs. base) and the same nuisance fac-
tors was also carried out to find visual beta coefficients for
differential response to probe versus base blocks. These beta
coefficients reflected the degree of visual responsivity of voxels
and were orthogonal to value-coding and spatial-coding voxels
(i.e., switching the value or hemifield labels for a voxel does
not change its overall activity). These coefficients were used to
select the equal number of most visually active voxels across
different anatomical regions (Fig. 2C,D). This selection method
not only avoided the bias toward the number of selected voxels
through each region, but also orthogonalized the selection to
value-coding, novelty-coding, as well as spatial-coding. Blocks
where subjects refused to fixate or were asleep were excluded
from the analysis (<10% monkey D and <11% in monkey U of
all probe blocks and <6% in both monkeys base blocks). Also, the
first three TRs in each run were excluded from the regression due
to magnetization.

Functional Connectivity Analysis

The residuals of the GLM analysis were used for resting state
network extraction. In order to prevent common sources of
correlation (confounders), the average white matter and ventricle
time series were regressed out from this residual time series.
The result was band passed between the desired frequencies
(0.01–0.1 Hz) using the AFNI 3dBandpass function. The first
base block period at the beginning of each run was selected
and concatenated across all runs (excluding first three TRs
for magnetization). In addition to NF and GB scans, first rest
block from months-later GB scans were also used to increase
statistical power (see [Ghazizadeh, Griggs et al. 2018] for details).
ROIs for each anatomical region were selected based on union
of significant NF and GB coding masks for each monkey (NF-
GB mask) Regions with small number of significant voxels
were omitted from graph analysis (<3–5 voxels). The weighted
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Figure 2. Cortical regions with significant novelty and value coding. (A) Cortical regions’ beta coefficients in significantly responsive voxels for GB contrast (left: value

coding) and NF contrast (right: novelty coding) in monkey D shown in standard space (Reveley et al. 2017) (P < 0.001, α < 0.01 cluster corrected). (B) Same format as A

but for Monkey U (P < 0.001, α < 0.01 cluster corrected). (C) Average GB (horizontal axis) and NF (vertical axis) beta coefficients for top 10 visually activated voxels across

the entirety of a cortical area with at least one cluster of activated voxels in either GB or NF scans in monkey D. Each point represents one cortical region. A number of

key areas are annotated. The vertical and horizontal gray dashed lines specify mean values of NF coefficients and GB coefficients across all activated cortical regions,

respectively. The error bars indicate the standard error of the mean (s.e.m) across novelty and value dimensions. (D) Same format as C but for monkey U.

undirected graph was extracted from anatomical areas in the NF-
GB mask using a constraint-based method for causal structure
learning known as PC-stable algorithm. This algorithm uses a

series of conditional independence tests (i.e., partial correlations)
to extract the underlying Directed Acyclic Graph (DAG) associated
with a given dataset. The significance level of the test which
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Figure 3. Resting state cortical networks account for novelty and value coding for member areas. (A) Schematic of the functional connectivity analysis steps based

on resting correlation. The first base blocks from all of the runs were selected and concatenated after regression of nuisance parameters and band-pass filtering.

The representative graph is extracted via PC-stable algorithm (see Methods). Having estimated the weighted undirected graph, spectral clustering was used to

partition the graph into 4 networks. (B) Functional connectivity graph segmented into 4 networks using unsupervised spectral clustering in monkey D. Occipital:

yellow, TP: green, ventral-IT: red, and parietal: blue. (C) The 4 networks for monkey D color-coded and shown on standard brain surface (Reveley et al. 2017). (D)

The NF/GB distribution of beta coefficients in all subcortical and cortical areas (whether or not significant) was considered jointly as the null distribution and

iso-probability contours marking the 68% (dashed line) and 95% (dotted line) interval of the joint distribution were drawn. Cortical voxels falling outside these

confidence intervals were plotted and colored according to network membership (95% used for ventral-IT and TP networks and 68% used for parietal network).

The marginal distributions of beta coefficients for the null distribution and for the 3 networks are also depicted across the GB and NF axes. (E–G) same format for

monkey U.
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Figure 4. Similarity of time-course and dynamics of NF/GB activations in the TP network. (A) Average MION signal correlation coefficient between NF and GB time-courses

in voxels in each network. Error bars indicate s.e.m across voxels. (B) DCM model of the prefrontal-temporal interaction during good and novel object presentation.

Bayesian model selection was used to arrive at the best DCM model for each monkey. For both monkeys the best model had contralateral visual input to the temporal

node. The self-connections were modulated by input type (G,B,N,F) in monkey D but not in monkey U (see Supplementary Fig. 7 for details). The edge weights for

presentation of good (left) and novel (right) were combined (averaged) across right and left blocks and are presented in contra versus ipsi format (Tc, Ti: contra and

ipsilateral temporal nodes, Pc, Pi: contra and ipsilateral prefrontal nodes). The line widths are scaled by the absolute value of the edges. Edges with positive weights are

red and those with negative weights are blue. For Monkey U self-connections in P nodes were inconsistent between the 2 hemispheres and are grayed out. Monkey D:

T node included TEa, TEm, TEO, FST, IPa and P node included 8Av, 45b, 44, F5, F4, 12l, 45a, 46v. Monkey U: T node included TEa, TEm, TPO, FST, IPa and P node included

13m, 45b, 44, F5, F4, 45a, 46v.

controls the sparsity of graph edges was a hyper parameter that
was set manually for each monkey (1e−4 for Monkey D, 5e−6 for
Monkey U). The algorithm guarantees extraction of the skeleton
independent of the order of the conditional independence tests
levels. Having extracted the graph skeleton, the smallest partial
correlation associated with each pair of nodes was assigned
as the weight of the corresponding edge. Clustering of the
derived weighted undirected graph was performed using spectral
clustering algorithm on the largest connected components of
the graph. The representation of the nodes in the space of
Laplacian matrix eigenvectors lead to selection of clusters for
each monkey. The clustering in the spectral space was performed
using k-means algorithm with number of clusters set to four.
These analysis steps are depicted in Figure 3A. The contours in
Figure 3D, G are plotted using MATLAB function ‘contourspline’
(Duane Hanselman, 2020).

The functional connectivity of the subcortical substrates with
each cluster centroid was evaluated through averaging all areas
in each cluster together as the representative time-series of
each cluster. Then correlation coefficient (Pearson’s) between
all voxels of the four subcortical regions and the representa-
tive time series were obtained. The resulting correlations were
thresholded based on the P-value and small-volume cluster-
corrected to avoid false-positive clusters (P < 0.001, α < 0.01).

Dynamic Connectivity Analysis

The DCM algorithm was used to further analyze the novelty and
value processing between the temporal and prefrontal nodes of
the TP network. The method allowed us to evaluate the temporal
dynamics during the task in the TP network. Hence, the data used
for this analysis consisted of the task fMRI, with seventeen nui-
sance factors regressed out (see fMRI Analysis for description of
the nuisance factors). The DCM model considered here consisted
of a neural state equation and a hemodynamic model. The neural
state equation is formulated in equation (1).

ż =
⎛
⎝A +

m∑
j=1

ujBj

⎞
⎠ z + Cu. (1)

Where, state z and inputs u are time-dependent and represent
k nodes and m inputs of the model, respectively. A is a k×k input-
independent connectivity matrix. k × k matrices (B1, B2, . . . , Bm)

were input-dependent modulations on the connectivity matrix
by inputs (u1, u2, . . . , um) respectively, and k × m input matrix C is
the direct effect of inputs on the k nodes. In our case we had four
nodes (k = 4) and 8 different inputs (m = 8, see below).
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Four ROIs ([temporal, prefrontal] × [left, right hemisphere])
were selected based on the functional connectivity graph in
Figure 3. The mask was then used to extract the represen-
tative time-series of each node using the SPM volume of
interest toolbox. A total of nine model configurations were
investigated to arrive at the best of model. These models
consisted of three different configurations for the input matrix C
multiplied by three different conditions for modulation matrix B.
In all models the fixed connection matrix A was considered the
same (Supplementary Fig. 7). In addition, we forced all models
to satisfy the same matrix A for both NF and GB tasks. The
main question of interest, here, was addressing the differences
and similarities of TP network connections regarding the task
context and further analyzing the best model satisfying the
well-known reciprocal connection between these regions. The
competing architectures included three different input schemes
with direct contralateral visual input to the temporal node
(Temporal Input) to the prefrontal node (Prefrontal Input) and
to both nodes (Double Input) (These were differences concerning
input matrix C in the model). On the other hand, as the question
of interest was regarding the effect of the task type (NF or GB)
on the connection of these two distinct cortical regions, we set a
modulation of “Good” and “Novel” (left and right) stimuli on both
forward and backward connections of temporal and prefrontal
nodes in all models. In the first model (termed simple model)
we observed a significant negative feedback from the prefrontal
cortex to the temporal nodes in both monkeys. Given the need for
network stability, the observed negativity may be due to stability
requirements in the DCM model rather than real inhibitory role
of prefrontal region. To further check this possibility, we allowed
the modulation in matrix B to include self-connection terms
(the diagonal entries of matrix B). For each input configuration
(“Temporal Input”, “Prefrontal Input”, and “Double Input”) we
considered three variants with different modulations on self-
connection of nodes. These connections were considered as
free parameters to let the model stabilize itself without the
need for negative feedback between the nodes. The first model
named as “simple” had no modulation on the self-connections,
in contrast the second and third models consisted of G/N (left
and right) and G/B/N/F (left and right) self-modulation on all
nodes respectively. Bayesian model selection included in the
SPM package was used to choose among the nine competing
models (3 input architecture × 3 self-connection modulation).

Results
In order to study the neural correlates of object novelty and
value, we performed whole-brain fMRI imaging with two rhesus
monkeys (U and D), while exposing each monkey in separate
scans to either familiar versus novel objects or good versus
bad objects. Scans were performed using the contrast agent
monocrystalline iron oxide nanoparticles (MION), which, through
its isolation and enhancement of local cerebral blood volume,
leads to an improved signal-to-noise ratio compared with blood-
oxygenation-level-dependent (BOLD; Vanduffel et al. 2001). The
objects were computer-generated fractal images, for which
familiarity or value was established prior to the fMRI scans.
The fMRI scans themselves always involved passive viewing
with reward delivered only for maintaining central fixation at
random intervals in all blocks. The value dimension was created
prior to the scans by associating reward magnitudes with a
large number of fractals (>100). These were divided into two
groups, corresponding to large and small juice rewards. The
monkeys learned these values, thereby creating “good” and “bad”
object categories (G and B objects), in the context of a task that

involved making saccades to and fixating the fractals shown
in the periphery (Fig. 1A). To create stable values resistant to
forgetting or extinction, such training was repeated for at least
10 days for each fractal prior to the scans (Ghazizadeh et al.
2016; Ghazizadeh, Hong et al. 2018). For the familiarity-novelty
dimension, monkeys passively viewed a different group of eight
fractals for more than 10 days, creating a set of long-term familiar
objects (F objects, see Methods). There was no reward associated
with fractals during the process of perceptual familiarization
(Fig. 1B). Novel fractal images (N objects) were created later and
were seen only during a single fMRI run. Each monkey saw a
large number of novel objects (>160) along with the familiar set
during the scans (examples of objects in each dimension shown
in Fig. 1C). The large number of fractals used and their random
assignment to good/bad and novel/familiar groups ensured that
any observed fMRI response differences could not be attributed
to idiosyncratic features in the stimuli themselves.

Notably, the good and bad objects had differential reward
association but no novelty (equal exposure during the training
and test) and the familiar and novel objects had differential
perceptual exposure but no history of reward. Thus, past train-
ing experience created two distinct dimensions with behavioral
significance for the animal objects (perceptual axis and value
axis, Fig. 1D). The behavioral significance of each dimension was
confirmed by the strong free viewing bias toward good and
novel object. The pattern of the free viewing bias supported the
cognitive distinctiveness of the two dimensions: the good bias
was sustained across repeated exposures while the novelty bias
was transient and diminished as novel objects became more
familiar with repeated free viewing trials (Supplementary Fig. 1).

We mapped the differential responses to novel versus familiar
objects (NF scans) and to good versus bad objects (GB scans),
performed within a few days of value training or familiarization
procedure. The monkey’s task during the fMRI experiment was
to simply fixate a white center dot (Fig. 1E). A scanning run
consisted of alternating base and probe blocks, each lasting for
30 s (total of 16 blocks). During the base blocks, only a white
fixation dot was shown. During the probe block, the previously
experienced fractal objects were presented one at a time in
the periphery along with the central fixation. The probe blocks
consisted of either good or bad objects in separate blocks in
GB scans and novel or familiar objects in separate blocks in
NF scans. Objects were presented in the left or the right visual
hemifields resulting in four different probe blocks in a given scan
(Fig. 1E bottom). These four probe block types were presented in
a pseudorandom order.

All fMRI tests were carried out using passive viewing with
reward delivered at random time intervals for the successful
maintenance of central fixation. The total number of rewards
was similar across object types and tasks in both monkeys
(Supplementary Fig. 2 for NF scans and Supplementary Fig. 1
in Ghazizadeh, et al. (2018a) for GB scans). Both animals had
extensive experience with the passive viewing task, both outside
and inside the scanner (>3 months), before the actual scans.
As a result, fixation breaks were infrequent during the scans
(<12% fix-break/object) and were not significantly different for
object types for both monkeys. Thus, differences in activations
between object types were attributed to modulation caused by
previous reward or perceptual history. The number of rewards
and fixation breaks were also comparable for the left- and
right-presentation blocks (Supplementary Fig. 2 for NF scans and
Supplementary Fig. 1 in Ghazizadeh, et al. (2018a) for GB scans).
Thus, the interaction between object type and spatial coding
were not attributable to differences in reward or fixation breaks
between the two visual hemifields during the fMRI tests.
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Cortical Regions Sensitive to Novelty and Value

Cortical areas showing robust differentiation of NF and GB are
illustrated in Figure 2. As previously described (Ghazizadeh,
Griggs et al. 2018), results from GB scans showed robust
discrimination in several cortical regions most prominently in
posterior ventral superior temporal sulcus (pvSTS) including
areas such as TEO, FST, and TE and in ventrolateral prefrontal
cortex (vlPFC) including areas 45 and 46 (Fig. 2A,B) in both
monkeys. Interestingly, NF scans showed robust novelty-
familiarity discrimination in many of the same areas activated
by value discrimination (including pvSTS and vlPFC). Despite
the overall similarity, NF and GB coding across the brain showed
some notable differences. For example, the activation in STS
seemed to include more anterior regions (avSTS) in NF versus
GB scans (Fig. 2A,B). This difference was particularly evident in
stronger and broader activity in the anterior IT and perirhinal
cortex (TEav/d, 35, 36r/p/c) in NF versus GB scans. A quantitative
comparison of activity in the posterior vSTS (TEO, FST,IPa, V4,
MT) with anterior vSTS (TEm/a) confirms stronger NF versus GB
coding in anterior versus posterior vSTS (Supplementary Fig. 3).
Finally, area LIP in parietal cortex was more activated in GB versus
NF scans in both monkeys (Fig. 2A,B).

There were also some differences between the monkeys. In
monkey D the OFC (areas 13m/l) was more active in NF dis-
crimination task, while in monkey U, GB discrimination was
more prominent in this region. Also, the location of activity in
the occipital areas was inconsistent between the two monkeys
(Fig. 2). Finally, in monkey D, the right V1–V2 cortexes had nega-
tive GB coefficient with right lunate sulcus reaching significance.
This was the only negative GB coding found across the cortex
in either monkey (Fig. 2). The complete list of significantly acti-
vated cortical regions in NF and GB scans in each monkey is
reported in Table 1, and anatomical annotations are shown in
Supplementary Figure 4.

We then leveraged the independence of two task contexts
(Fig. 1D) to represent the average NF and GB beta coefficients
in a two-dimensional plot for all anatomical areas activated in
either scan type (Fig. 2C,D). To avoid selection bias, beta coef-
ficients were averaged for the 10 most visually active voxels
(beta coefficients in probe vs. base contrast) in each anatomical
area, regardless of NF or GB coding strengths. The vlPFC (e.g.,
46v, 45a/b) and vSTS regions (e.g., IPa, TEa/m) showed larger
than average NF and GB coding in both monkeys among regions
with significant coding in either dimension. On the other hand,
ventral IT including areas TEav/d, TEpd and perirhinal cortex
(36r/p) had larger than average NF beta coefficients and below
average GB beta coefficients in both monkeys. The GB discrim-
ination was small in monkey U and almost absent in monkey
D in ventral IT regions. Finally, parietal areas including area LIPd
showed below average NF discrimination but better than average
GB discrimination.

These findings show a gradient among regions in their sen-
sitivity to object novelty and value with areas close to the cardi-
nal axes showing preferential coding of either novelty or value
dimensions while others falling in the upper-right quadrant
exhibiting joint representation of novelty and value in support
of the common currency theorem.

Resting State Networks Among Novelty and Value-Coding
Cortical Areas

The gradient of GB and NF coding across cortical regions suggest
the existence of separate functional networks for processing of
object attributes. We examined this possibility by quantifying

the functional connectivity (FC) between activated regions
using the resting block data in the beginning of each scan.
Briefly, preprocessing steps for resting state correlation including
nuisance regression, bandpass filtering and white-matter and
ventricle signal cancellation was done on the first resting block
in each scan as shown in Figure 3A. Pairwise correlations based
on spontaneous activity of all activated regions were used to
arrive at a graphical representation of connectivity using a
causal search algorithm (PC-stable (Koster 2003), see methods
for details). Briefly, the PC-stable algorithm is a constraint-based
algorithm that aims to extract the causal graph skeleton based
on conditional independence tests (using partial correlations).
Starting with the fully connected graph, the algorithm removes
the edges between nodes that end up with nonsignificant partial
correlation given all possible combinations of neighboring node
subsets. For the remaining edges, in our implementation, the
weights were set to the lowest significant partial correlation
between node pairs representing the net correlation between
two nodes. The resulting graph is illustrated in Figure 3B,E
for monkey D and U, respectively in which anatomical areas
with significant NF or GB coding are represented as graph
nodes. Notably and despite the fact that the causal search
algorithm had no prior knowledge of anatomical connections
between the nodes, the resulting graph conformed well with
the known hierarchy of visual information starting from V1 and
moving successively across areas in the ventral stream from
the posterior to anterior IT cortex to finally arrive in prefrontal
cortex (Van Essen et al. 1992).

The pattern and strength of connectivity between nodes (cor-
tical areas) was used to divide the cortex into four clusters or net-
works. Clustering of graph nodes was done by first representing
the nodes in the eigenvector space of graph Laplacian matrix and
then using a clustering algorithm (k-means) to group the nodes
(spectral clustering). Interestingly, this approach delineated sim-
ilar networks in both monkeys namely: 1) an occipital network
including early visual areas V1-V4, 2) a vSTS and vLPFC network
including areas FST, IPa, TEa/m and areas 45a/b, 46 which was
previously found using a different analysis technique and was
referred to as the TP network (Ghazizadeh, Griggs et al. 2018), 3) a
ventral-IT network including areas TEav/d and perirhinal cortex
(areas 36r/p and 35), and 4) a parietal network including areas
LIPd and LIPv (Fig. 3B,E).

Besides the overall similarity, there were some variations
between the networks in two monkeys. First in monkey D, two
branches stemmed from the visual cortex; one of which led to
the TP network and the other to the ventral-IT network, while in
monkey U, the connectivity flow to ventral-IT network was via
the TP network. Second, OFC area 13m was grouped with ventral-
IT (network 3) in monkey D and with TP network in monkey U.
Third, the parietal network was stand alone in monkey D but
was connected to the prefrontal part of TP network in monkey U.
Despite the observed differences, the overlay of the four cortical
networks showed a qualitatively similar segmentation of the
cerebral cortex in both monkeys (Fig. 3C,F).

Segregation of Novelty and Value Coding by Resting State
Networks

Next, we wanted to know if the detected networks could account
for the differences in novelty and value coding across the cortical
areas and between subjects. To do so, we plotted the NF versus GB
beta coefficients for all activated voxels in TP network, ventral-
IT network and parietal network (Fig. 3D,G). In addition, the joint
distribution of NF and GB beta coefficients for all voxels across all
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Table 1. List of cortical ROIs active in NF and GB task for both monkeys

Region Area Monkey U Monkey D Cluster (U/D)

Frontal lobe 11l — NF(1) —
12l NF(3) GB(6) NF(10) GB(16) x/TP
12m NF(3) GB(11) NF(21) GB(12) x/IT
12o GB(5) NF(2) GB(1) —
12r NF(4) GB(23) NF(6) GB(4) x
13l — NF(10) GB(2) —/IT
13m NF(6) GB(22) NF(29) TP/IT
44 GB(20) NF(10) GB(23) TP
45a NF(13) GB(32) NF(44) GB(35) TP
45b NF(10) GB(40) NF(45) GB(25) TP
46d GB(5) GB(1) —
46v NF(5) GB(56) NF(23) GB(24) TP
8Ad — NF(2) —
8Av NF(1) GB(3) NF(7) GB(7) —/TP
8Bs GB(5) NF(7) GB(3) —/Par
F1 GB(5) — —
F4 GB(8) GB(8) TP
F5 (6Va/6Vb) GB(57) NF(42) GB(94) TP
G GB(1) GB(3) —
PrCO — NF(2) GB(2) —

Parietal lobe 1–2 GB(6) — TP/—
3a/b GB(1) NF(2) —
5 (PEa) NF(1) GB(3) NF(3) GB(8) Par
7b (PFG/PF) — GB(2) —
7op GB(1) NF(2) —
AIP NF(3) GB(5) GB(2) Par/—
LIPd NF(4) GB(22) NF(13) GB(27) Par
LIPv NF(5) GB(22) NF(11) GB(8) Par

Temporal lobe 35 NF(11) GB(2) NF(9) GB(1) IT
36c — NF(6) —/IT
36p NF(5) GB(1) NF(6) IT
36r NF(15) GB(4) NF(39) IT
ELr NF(2) GB(2) — —
FST NF(15) GB(34) NF(53) GB(9) TP
IPa NF(39) GB(64) NF(142) GB(18) TP
MST NF(2) GB(1) — —
MT NF(2) GB(3) NF(6) GB(6) —/x
PGa NF(6) GB(24) NF(35) GB(5) IT
PIP NF(5) — —
TAa GB(2) NF(18) —/x
TEO NF(37) GB(94) NF(160) GB (46) Occ/TP
TEa NF(24) GB(31) NF(69) GB(21) TP
TEm NF(28) GB(26) NF(98) GB(19) TP
TEad NF(30) GB(15) NF(71) GB(2) IT
TEav NF(72) GB(22) NF(121) GB(8) IT
TEpd NF(33) GB(34) NF(63) IT
TEpv NF(6) GB(13) NF(24) IT
TGsts NF(2) GB(4) NF(20) GB(4) x/IT
TGvd NF(2) NF(4) —/IT
TGvg NF(2) NF(13) —/IT
TPO NF(8) GB(9) NF(31) GB(2) IT/TP
Tpt GB(1) NF(1) —

Occipital lobe V1 NF(14) GB(54) NF(35) GB(39) Occ
V2 NF(31) GB(42) NF(66) GB(54) Occ
V3A NF(3) GB(3) NF(7) Occ
V3d NF(3) GB(3) NF(19) GB(16) Occ
V3v GB(7) NF(21) GB(4) Occ
V4 NF(34) GB(94) NF(111) GB(17) Occ
V4t GB(1) — —
V4v GB(6) NF(7) GB(2) Occ
V6Av — NF(1) —

Notes: Values in the parentheses are number of voxels with P < 0.001 which are cluster-corrected for the whole brain at α < 0.01. The rightmost column specifies the
cluster each region belongs to for monkeys U and D. (—, omitted; x, not in any cluster)
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the gray matter (cortical and subcortical areas) was constructed
as the 2D null distribution in this space. This allowed us to use
equiprobability confidence ellipses using the null distribution to
determine the voxels that show strong novelty or value coding
outside the confidence intervals. Figure 3D,G shows voxels lay-
ing outside the confidence ellipses, colored according to their
resting state network membership. Majority of voxels in parietal
network did not have strong GB or NF coding that fell outside
the 95% confidence ellipse. To visualize the relative coding of this
network, we lowered the confidence threshold for this network to
68% while for the other two networks 95% confidence ellipse was
used. Despite some differences between the two monkeys, the
relative spatial arrangement of voxels in the NF-GB coordinate
system for the three networks were strikingly similar. In both
monkeys, NF coding showed a gradient from high to low going
from ventral-IT to TP to parietal networks. TP network showed
strong co-coding of novelty and value while ventral-IT and pari-
etal cortex were more biased toward novelty and value coding,
respectively (Fig. 3D,G). Unlike the other 3 resting state networks,
the occipital network results were not well localized in the NF-
GB coordinate space (Supplementary Fig. 5) which may reflect
the inconsistent and variable beta coefficients in the occipital
regions across the two monkeys (Fig. 2). The similarity of atlas-
based results in Figure 2 and data-driven FC results in Figure 3D,G
is striking since there is no particular reason the FC networks
should abide by abide by cytoarchitectonic boundaries (Fig. 3C,F
networks vs. Supplementary Fig. 4).

These findings suggest that network membership for an area
can have consequences for its NF or GB coding. Thus, differences
in network membership for a given area across subjects could
be predictive of different roles in NF and GB coding for that area.
Interestingly, this seems to be the case for the OFC. In monkey D,
the OFC (13m/l) had better NF coding but weaker GB coding and
in this monkey, OFC was a part of ventral IT network (Fig. 3B).
In monkey U, the OFC (13m/l) had good GB and NF coding, and
here, it belonged to the TP network based on resting connectivity
(Fig. 3E). Furthermore, for monkey U whose ventral-IT network
had larger GB-coding in comparison with monkey D, ventral IT
network had connectivity to visual cortexes via the TP network
which encoded both NF and GB dimensions.

Similarity of Novelty and Value Coding Dynamics in the TP
Network

The fact that TP network showed strong activation to both object
novelty and value, suggests that this network may treat object
novelty and value similarly and for similar purposes. To further
test this idea, we looked at the temporal dynamics of GB and NF
signaling in the TP network. To this end, we first did a simple cor-
relation between the time course of activity during the NF scans
and GB scans in the TP networks as well as in the other functional
networks. The idea was that if TP network treats novelty and
value dimensions similarly, the time series of activations to NF
and GB scans, should have a higher correlation in this network
compared with other networks. The results showed higher corre-
lation in the TP network compared with other networks (Fig. 4A).
Notably, this effect was not due to higher visual activity in TP
compared with other networks since TP visual activation was not
necessarily higher than other networks (Supplementary Fig. 6A)
and furthermore a positive relation between NF/GB timeseries
correlation and visual activation across voxels was not found
(Supplementary Fig. 6B).

To compare the temporal activation dynamics between
NF and GB in the TP network more precisely, DCM (Friston
2003) was used. The proposed DCM model included one node
in the temporal and prefrontal cortex in each hemisphere (a
total of four nodes, Fig. 4). Model fitting was done for multiple
plausible architectures (Supplementary Fig. 7A,B). Figure 4B
shows the architecture with the highest posterior probability.
In this architecture, the temporal node in each hemisphere
receives direct visual information from the contralateral
visual hemifield. Interestingly, the dynamics of activations for
good and novel objects turned out to be similar within each
monkey as evident by the pattern of weights between the
nodes (Fig. 4B and Supplementary Fig. 7C). The same was true
for the dynamics of activations for bad and familiar objects
(Supplementary Fig. 7D,E). This further supports the hypothesis
that TP networks treats perceptual and value dimension as
interchangeable dimensions.

The DCM model also revealed the likely mechanism for the
interaction of prefrontal and temporal nodes in the TP network
for coding of GB and NF dimensions. In both monkeys, a negative
feedback from vlPFC to vSTS was found in both NF and GB
scans. Such inhibitory top-down influence was observed despite
the fact that negative self-feedback in vSTS and vLPFC was
allowed in the model (thus ruling out simple model stabilization
mechanisms). Such negative feedback may represent a top down
mechanism from higher level cortical areas (vlPFC) to control the
level of activation to good and novel signals in lower level sensory
areas in (vSTS). Together, these results suggest that up to the
fMRI temporal resolution the perceptual and value dimensions
are being coded similarly in the TP network.

Subcortical Substrates for Novelty and Value Coding

Previously, it was shown that value memory is well represented
in certain subcortical areas including ventral claustrum, ventral
putamen, caudate tail and lateral amygdala (Ghazizadeh, Griggs
et al. 2018). Notably, these regions were previously found to
have strong functional connectivity to the TP network. Given
the role of TP in co-coding of value and perceptual memory,
we hypothesized that the same subcortical regions should also
show GB and NF discriminations. This was indeed the case. As
can be seen in Figure 5A,B for monkey U, the aforementioned
subcortical regions in claustrum, striatum. and amygdala also
showed significant NF coding. In the striatum, the GB and NF
coding areas were localized in the caudal and ventral part, which
are called the tail of the caudate nucleus (CDt; Yamamoto et al.
2013) and the tail of the putamen (PUTt) (Kunimatsu et al. 2019).
Figure 5C shows the parcellation of the subcortical regions by
their resting state functional connectivity to the TP, ventral-IT,
and parietal cortical networks. One can see that ventral subcorti-
cal areas including the hippocampus and ventral amygdala were
connected to the ventral-IT network. The areas connected to the
TP network include somewhat more dorsal areas specially in
ventral putamen and ventral claustrum, while areas connected
the parietal network are mostly in the dorsal striatum. This
result is largely consistent with known anatomical connections
(Saint-Cyr et al. 1990; Eichenbaum et al. 2007; Sherk 2014). The
voxels with functional connectivity to TP network showed GB
and NF coding (Fig. 5D). However, the areas with connectivity
to ventral IT such as hippocampus did not show strong NF
coding and the areas connected with parietal network did not
show strong GB coding. Thus, despite having significant resting
correlation, at least in our task, the ventral-IT and parietal net-
works did not seem to share the value and perceptual memory
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Figure 5. Subcortical novelty and value coding in striatum, amygdala, claustrum, and hippocampus. (A) GB (left) and NF (right) significantly active voxels in coronal view

(P < 0.001, α < 0.01 cluster-corrected). (B) Same as A in sagittal view. (C) Voxels with significant resting correlation with ventral-IT, TP, and parietal networks in coronal

(top) and sagittal (bottom) views (P < 0.001, α < 0.01 cluster-corrected). (D) Overlay of TP-connected voxels (green transparent squares) and voxels with significant GB (left)

and NF (right) coding (beta coefficients of GB and NF shown). Data in this figure are from monkey U. Amyg: amygdala, CD: caudate, CDt: caudate tail, Claus: claustrum,

Hipp: hippocampus, Put: putamen.

information with their functionally connected subcortical areas.
Similar results for subcortical areas was observed in monkey D
(Supplementary Fig. 8). In this monkey, GB coding in subcortical
areas was somewhat weaker and NF coding was observed in a
few voxels in hippocampus. The complete list of significantly
activated subcortical regions in NF and GB scans for both mon-
keys is reported in Table 2.

Discussion
Novelty seeking guides decisions when interacting with unknown
objects. On the other hand, when dealing with familiar objects,
value seems to be a key driving force for decision-making and
choice. The aim of this study was to reveal the organization
of object novelty and value processing across the brain. Our
results show widespread cortical activation in both NF and GB

Table 2. List of subcortical ROIs active in NF and GB task for both
monkeys

Area Monkey U Monkey D

Striatum NF(12) GB(41) NF(31) GB(6)
Claustrum NF(22) GB(29) NF(43) GB(5)
Amygdala NF(13) GB(17) NF(33) GB(4)
Hippocampus — NF(4)

Notes: Values in the parentheses are number of voxels with P < 0.001 in
each area with small area cluster correction at α < 0.01. The voxels in hip-
pocampus of monkey D belonged to the most posterior part as depicted in
Supplementary Figure 8B.

discrimination in all four brain lobes with both overlapping
and nonoverlapping regions (Fig. 2 and Supplementary Fig. 4).
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Resting state analysis showed that the degree of NF-GB co-
coding across different cortical regions could be accounted for
by the functional connectivity among the regions. Specifically,
the FC between cortical regions with significant NF or GB coding
revealed four networks: an occipital network that included early
visual areas, a temporal-prefrontal network that included areas
in vSTS and vlPFC (the TP network), a ventral-IT network that
included TEa and perirhinal cortex, and a parietal network that
included area LIP (Fig. 3). Among these functional networks,
the TP network was found to be sensitive to both GB and NF
dimensions. The ventral-IT network was preferentially sensitive
to the NF dimension. The parietal network was preferentially
sensitive to the GB dimension (Fig. 3D,G). For the TP network, the
activation dynamics and interplay of the temporal and prefrontal
nodes in coding object novelty and value were also similar (Fig. 4
and Supplementary Fig. 7). Notably, the subcortical areas with
strong connectivity to TP but not the other two networks also
showed co-coding of NF and GB dimensions (Fig. 5).

The TP network was previously found to represent learned
object values in long-term memory (Ghazizadeh, Griggs et al.
2018). The coactivation of this network to object novelty sug-
gests that novelty maybe processed as an intrinsically valuable
property in the brain (common currency theorem). On the other
hand, areas in ventral IT including TEav and TEad and perirhinal
areas such as area 36r showed much stronger sensitivity to NF
dimension. This result is consistent with the role of medial
temporal lobe (MTL) in recognition memory (Eichenbaum et al.
2007). It is thus possible that the novelty is first detected in the
ventral-IT network and then transmitted to the TP network. Also
interesting was the fact that the parietal areas including area LIP
was more sensitive to object value rather than object novelty.
This result is among the few differences reported between LIP
and vlPFC for object prioritization. Given the role of parietal and
TP networks in attentional modulation, their different coding
sensitivity in GB-NF coordinate system indicate that the visual
attention mediated by the two networks may be of different types
and for different purposes.

Recent studies using monkey electrophysiology have revealed
hot spots in basal ganglia including CDt and PUTt to encode
object intrinsic values (Kim and Hikosaka 2013; Hikosaka
et al. 2014; Kunimatsu et al. 2019). Both CDt and PUTt are
known to receive direct inputs from vSTS (Saint-Cyr et al.
1990; Griggs et al. 2017) and to send signals indirectly to the
temporal cortex (Middleton and Strick 1996) and the prefrontal
cortex (Middleton and Strick 2002) the areas that are found to
form the TP network via the caudal-dorsal-lateral part of the
substantia nigra reticulata (cdlSNr) (Amita et al. 2019). Given
the observed rapid and robust value discrimination in SNr
(Yasuda and Hikosaka 2015) and the fact that basal ganglia
have connections to cortical areas through the thalamus and are
shown to lead cortex in value learning (Rainer and Miller 2002)
it is reasonable to assume basal ganglia as the source of value
coding for the TP network. Indeed, a recent study comparing
the latency of value signals showed delayed expression of
value memory signal in mediodorsal thalamus compared with
cdlSNr (Yasuda and Hikosaka 2019). Moreover, our fMRI study
shows that the PUTt encode both GB and NF dimensions (Fig. 5
and Supplementary Fig. 8). Previous electrophysiological studies
actually showed that CDt neurons responded to novel objects
more strongly than to familiar objects (Yamamoto et al. 2012),
in addition to their clear value coding (Kim and Hikosaka 2013;
Yamamoto et al. 2013). These data suggest that the GB and NF
coding of the TP network may be caused by the inputs from
the basal ganglia.

Interestingly, resting state correlations with the three
cortical networks revealed different patterns of connectivity
to subcortical areas across the dorsoventral axes (Fig. 5C and
Supplementary Fig. 8C). We found co-coding of NF and GB in
the ventral claustrum and lateral amygdala both of which
showed good connectivity to the TP network during rest (Fig. 5C).
However, despite the NF coding in ventral-IT network and GB
coding in parietal network, the subcortical areas connected
to these areas did not show significant NF or GB coding. This
result was most striking in the hippocampus that showed strong
connectivity to ventral-IT network but almost no significant NF
coding (Fig. 5, Supplementary Fig. 8 and Table 2). While the lack
of NF coding in hippocampus may be surprising, it is largely
consistent with what is known about the role of hippocampus
in recollection rather than recognition of familiar stimuli
(Eichenbaum et al. 2007). These results suggest that despite the
resting connectivity some of the active functionality of cortical
networks are not relayed subcortically. The factors that control
such information transmission or lack thereof requires future
investigations.

It may be argued that the differential activations seen to novel
versus familiar objects and to good versus bad objects is due
to visual object identification independent of novelty or value
dimension per se. Indeed, by definition, familiar objects should
be more recognizable than novel objects, and some studies have
shown that high-value objects tend to be remembered better
than their low-value counterparts ((Wittmann et al. 2005; Adcock
et al. 2006) but also see (Canli et al. 1999) for lack of such effects).
In this case, one would expect similar activation to familiar and
good objects across areas due to better recognition memory.
However, in most places including in the TP cluster which
encodes both dimensions, similar activation between novel
and good objects are observed (Figs 2 and 3). The free viewing
results also showed similarities between novel and good objects
and between familiar and bad objects (Supplementary Fig. 1).
Nevertheless, a direct examination of object identification
effects and recognition memory awaits further behavioral
testing.

Several studies have reported significant hemodynamic
responses from midbrain dopaminergic areas in Pavlovian like
tasks with active reward expectations (Wittmann et al. 2005;
Dreher et al. 2006; O’Doherty et al. 2006). However it is recently
shown that unlike tasks with active reward expectations,
value memory in passive viewing is only present in a group
of dopamine (DA) neurons at caudodorsolateral part of SNc
(cdlSNc) (Kim et al. 2015). This is largely consistent with our
results which did not show significant value memory coding
across SNc/VTA region which is expected given the small size
of cdlSNc and the spatial and noise limitations inherent to
fMRI. Observing hemodynamic signatures of value memory
in cdlSNc is further complicated by the fact that adjacent
GABAergic neurons in cdlSNr (par reticulata) are activated
to value memory with opposite polarity compared with DA
neurons (Yasuda et al. 2012).

DA activity is also implicated in novelty processing (Schultz
1998; Bromberg-Martin et al. 2010). However, in most cases
reported to-date pure novelty processing is hard to disentangle
from the alerting effects of an unexpected stimuli or reward
related activity (i.e., stimulus novelty is often confounded with
its potential for imminent reward). One exception to this is the
hemodynamic response observed for novel stimuli in an oddball
task using an fMRI paradigm optimized for midbrain imaging
(Bunzeck and Düzel 2006). In the current study, significant NF
coding was not observed in SNc. If pure novelty processing
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indeed exists in SNc, it may be limited to a smaller subregion
within it. One interesting possibility would be that the same
population of cdlSNr neurons that do GB coding could have NF
coding as well. This speculation is supported by the fact that
striatal target of cdlSNc (i.e., ventral putamen and caudate tail)
showed significant novelty coding in the current study (Fig. 5,
Supplementary Fig. 8) and previously (Yamamoto et al. 2012).
Since no electrophysiological report about novelty response in
passive viewing exists in SNc to-date, future experiments are
needed to investigate this possibility.

There are so many objects in real life, but we (and animals)
can choose only a few of them in many cases. We may have
experienced many of them previously (familiar objects), and
therefore, their values may be known already. The others are
novel objects whose values are unknown. Then, there are
two goal-directed behaviors. The first is to choose a valuable
(good) object among familiar objects. The second is to choose
and explore novel objects. Such a novelty bias could well be
related to the preference for obtaining information about objects
(Bromberg-Martin et al. 2010) which even though it activates
reward circuitry is shown to be independent from reward coding
(Bunzeck and Düzel 2006; Wittmann et al. 2007). Note, that even
in a world where many novel objects are aversive, novelty bias
may be justified to know what objects to avoid in the future
(Ghazizadeh et al. 2016). It is possible that evolution has
hard wired the brain to increase exposure to novel objects
to learn better models of the environment. The overlapping
representation of NF and GB dimensions in the TP network
suggests that many aspects of the neural and physiological
processing related to object novelty and value that is directed
by this network could be similar. Indeed, many of the behavioral
outputs toward novel and valuable objects are found to be similar
(Kakade and Dayan 2002; Ghazizadeh et al. 2016). However, as
expected, the source of motivation is not lost in the brain, since
there are networks that preferentially encode novelty or value
dimensions but not both (Fig. 3).

In summary and together with previous evidence, our results
suggest that perceptual memory (novelty vs. familiarity) that
arises from the ventral-IT network and value memory that arises
from the basal ganglia are integrated in the TP network. Value
and novelty both demand the attention of the animal and pro-
mote interaction with the objects. The TP network is involved
in both detailed object processing (the T node) and executive
planning (the P node). Thus, the common activation in TP for
good and novel objects can be key for preferential processing
and orientation toward these objects (common currency theo-
rem, Supplementary Fig. 1). Future experiments are needed to
address the differences in causal role of each regions in spe-
cific behaviors evoked by NF and GB dimensions. In this regard,
causal manipulation techniques such as transcranial magnetic
or ultrasound stimulation (Folloni et al. 2019) seem promising. It
would also be interesting to see whether aberrated processing
in TP network that affects GB dimension also affects the NF
dimension and vice versa. Finally, while there are fMRI studies
in humans that have investigated coding of value and aversive
salience (Litt et al. 2011; Zhang et al. 2017), a systematic study
that contrasts novelty and value memory is currently lacking and
is required to establish possible homologies between macaques
and humans.
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