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AML Differentiation Therapy

Jing Jin,1,2 Adrian Britschgi,1 Anna M. Schläfli,1 Magali Humbert,1 Deborah Shan-Krauer,1

Jasmin Batliner,1 Elena A. Federzoni,3 Marion Ernst,1,4 Bruce E. Torbett,3 Shida Yousefi,5

Hans-Uwe Simon,5,6 and Mario P. Tschan 1,2,6

1Division of Experimental Pathology, Institute of Pathology, University of Bern, CH-3010 Bern, Switzerland
2Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
3Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
4Medi, School for Biomedical Analysts, CH-3014 Bern, Switzerland
5Institute of Pharmacology, University of Bern, CH-3010 Bern, Switzerland
6Members of the Horizon 2020 COST action TRANSAUTOPHAGY (CA15138), Brussel, Belgium

Correspondence should be addressed to Mario P. Tschan; mario.tschan@pathology.unibe.ch

Received 22 September 2017; Revised 21 December 2017; Accepted 31 December 2017; Published 18 March 2018

Academic Editor: Eva Žerovnik

Copyright © 2018 Jing Jin et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Autophagy is an intracellular degradation system that ensures a dynamic recycling of a variety of building blocks required for self-
renewal, homeostasis, and cell survival under stress. We used primary acute myeloid leukemia (AML) samples and human AML
cell lines to investigate the regulatory mechanisms of autophagy and its role in AML differentiation. We found a significantly
lower expression of key autophagy- (ATG-) related genes in primary AML as compared to healthy granulocytes, an increased
autophagic activity during all-trans retinoic acid- (ATRA-) induced neutrophil differentiation, and an impaired AML
differentiation upon inhibition of ATG3, ATG4D, and ATG5. Supporting the notion of noncanonical autophagy, we found that
ATRA-induced autophagy was Beclin1-independent compared to starvation- or arsenic trioxide- (ATO-) induced autophagy.
Furthermore, we identified PU.1 as positive transcriptional regulator of ATG3, ATG4D, and ATG5. Low PU.1 expression in
AML may account for low ATG gene expression in this disease. Low expression of the autophagy initiator ULK1 in AML can
partially be attributed to high expression of the ULK1-targeting microRNA-106a. Our data clearly suggest that granulocytic
AML differentiation relies on noncanonical autophagy pathways and that restoring autophagic activity might be beneficial in
differentiation therapies.

1. Introduction

Basal macroautophagy (thereafter referred to as autophagy),
a catabolic recycling system in cells, is key to maintaining cel-
lular homeostasis and survival. Furthermore, activation of
autophagy allows to extend cell survival when exposed to dif-
ferent types of stressors such as starvation or cytotoxic drugs.
The tightly regulated and dynamic process is characterized
by de novo formation of autophagosomes. Autophagosomes
engulf cytoplasmatic components and deliver these cargos,
for example, long-lived proteins or damaged mitochondria,

to lysosomes for degradation. Studies in yeast have identified
a series of autophagy- (ATG-) related genes forming the
autophagy machinery. These ATG genes are highly con-
served in mammalian cells, allowing to study their functions
also in higher eukaryotes [1–4]. Major steps in the autopha-
gic process include initiation, nucleation, elongation, and
maturation of the autophagosomes as well as fusion of the
autophagosomes to lysosomes. The process of canonical
autophagy follows a hierarchical-ordered recruitment of
autophagy-related (ATG) proteins to the phagophore assem-
bly site [5]. The autophagy-initiation complex is composed of
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ULK1, ATG13, FIP200, and ATG101. The ULK1 protein
complex including ULK1, ATG13, and FIP200 coordinates
the autophagy initiation from different upstream signaling
pathways to induce autophagy [6, 7]. Interestingly, recent
data suggest a function for ULK1 not only during autophagy
activation but also during elongation and closure of the
autophagosomal membrane via binding to ATG8 proteins
[8]. Nucleation is under the control of VPS34-Beclin1 class
III PI3-kinase complexes resulting in the formation of the
isolation membrane [4]. Subsequently, two ubiquitin-like
conjugation systems, ATG5/ATG12 and ATG8, the mam-
malian homologues of which include LC3, GABARAP, and
GATE-16, concert the formation of the double-membraned
autophagosome [9]. Both systems rely on ATG7, an E1-
like enzyme, for activation. Additional proteins involved in
these conjugation systems include ATG3, ATG4, ATG10,
and ATG16L1. In a last step, autophagosomes fuse with
lysosomes to form autolysosomes for the degradation of
their contents.

While the importance of autophagy for cell homeostasis
and survival has long been appreciated, its role in tumorigen-
esis and cancer progression is still developing [10, 11].
Autophagy functions in tumor suppression by, for example,
preserving protein and organelle homeostasis. Moreover,
genome instability was attributed to impaired autophagy
and several autophagy genes with tumor suppressor func-
tions (e.g., BECN1, ATG5, and ATG4C) were found [12–
14]. On the other hand, cancer cells display increased
autophagic activity to meet their increased metabolic needs,
and autophagy activated by cytotoxic drugs allows cell sur-
vival [15]. Generally, the role of autophagy in tumor develop-
ment is not fully understood and clearly differs among tumor
types and the stage of tumor development. Autophagy may,
on the one hand, provide tumor cells with a survival strategy,
suggesting a therapeutic use for autophagy inhibition; on the
other hand, autophagy may induce cell death by, for example,
targeting antiapoptotic proteins, indicating activation of
autophagy as novel tool in cancer therapy [16, 17].

Several studies suggested a function for autophagy in
mammalian development and cellular differentiation [18–
20]. During myelopoiesis, mature myeloid cells undergo a
reduction in cell size compared to common myeloid progen-
itor cells and acquire entirely new morphologies and func-
tions [21, 22]. Such a dramatic change in cell architecture
not only implies massive remodeling processes but also
requires a delicate balance in macromolecule synthesis and
degradation that might be attributed to autophagy. Accord-
ingly, Atg5 knockout mice showed severe developmental
defects [23–25]. In myeloid development, particularly during
erythrocyte maturation, the ATG-associated genes ULK1
(ATG1), ATG7, and NIX (BNIPL3) are critical for the clear-
ance of mitochondria and ribosomes [26, 27]. Furthermore,
FIP200, a component of the ULK1 autophagy-initiation
complex, is important for hematopoietic stem cell (HSC)
maintenance, and FIP200 knockout HCS displays increased
proliferation and myeloid expansion [28]. In general,
autophagy is required for HSC survival and the differentia-
tion of adult stem cells including myeloid progenitor cells
[6, 20, 27]. Additionally, autophagy is involved in myeloid

cell specific functions, such as phagocytosis by monocytes
and macrophages [29, 30] as well as antigen presentation
by dendritic cells [31]. Lastly, autophagy deficiency led to
defects in neutrophil degranulation and reduced the inflam-
matory potentials of neutrophils [32].

Acute myeloid leukemia (AML) is an aging-related,
genetically highly heterogeneous blood cancer subtype that
is characterized by the accumulation of myeloid blast cells
with altered self-renewal, proliferation, and differentiation
function [33]. Acute promyelocytic leukemia (APL), a partic-
ular AML subtype, is characterized by the translocation
t(15,17) encoding for the oncogene-retinoic acid receptor
alpha (PML-RARA) fusion protein [34]. PML-RARA pre-
vents effective transcription of RARA target genes important
for myeloid differentiation in a dominant negative manner.
Moreover, PML-RARA represses transcription of PU.1 tran-
scriptional targets by binding to overlapping DNA binding
sites. Since PU.1 controls transcription of a series of myeloid
genes, its inhibition by PML-RARA contributes to the
impaired differentiation seen in APL [35]. All-trans retinoic
acid (ATRA) in combination with anthracyclines or arsenic
trioxide (ATO) is able to induce complete remission in 90%
of the patients by inducing PML-RARA degradation via
the proteasome or caspase cleavage [36, 37]. In addition,
ATRA induces Beclin1-independent autophagy or aggre-
phagy that contributes to the degradation of PML-RARA
protein aggregates [38–40]. Furthermore, we and others
reported that ATRA-mediated AML differentiation depends
on active autophagic flux and that inhibition of autophagy
by pharmacological and genetic means attenuated ATRA-
induced neutrophil differentiation of APL and non-APL cell
lines [40–42]. This also indicates that autophagy is involved
in myeloid differentiation beyond its role in the degradation
of PML-RARA aggregates [38].

Despite several studies analyzing the function of autoph-
agy during myeloid differentiation [43–48], the myeloid
autophagy pathway active during this process is not yet fully
characterized, and clinical data on general ATG expression in
primary AML are rare. In this study, we show that ATG
expression is frequently repressed in primary AML patients
and that neutrophil differentiation of AML cells depends on
functional autophagy distinct from the canonical pathway.
We identified several ATG genes as novel transcriptional
targets of PU.1 and speculate that low ATG gene expression
in AML is partially due to low PU.1 levels. Lastly, AML dif-
ferentiation causes downregulation of microRNA-106a,
allowing for the expression of its target ULK1. Accordingly,
preliminary data indicate that low ULK1 expression is associ-
ated with increased miR-106a expression in a small cohort of
AML patient samples.

2. Results

2.1. ATRA-Mediated Cellular Differentiation of AML
(HL60) and APL (NB4) Cells Is Associated with Increased,
Noncanonical Myeloid Autophagy. To date, activation of
autophagic flux during ATRA-induced APL/AML differenti-
ation has mostly been studied during short time exposure to
ATRA and was not directly compared to starvation or arsenic
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trioxide- (ATO-) induced autophagy [38]. Thus, we investi-
gated in more detail how ATRA activates autophagy in
non-APL HL60 as well as in APL NB4 cells. We found a
marked induction of autophagy during neutrophil differenti-
ation starting from day 2 in both cell lines as indicated by a
marked shift from LC3B-I to LC3B-II (Figure 1(a)). As a sec-
ond autophagy marker, LC3B mRNA induction was ana-
lyzed upon ATRA treatment in HL60 and NB4 as well as in
their respective ATRA-resistant subclones. LC3B mRNA
was significantly upregulated in both parental cell lines upon
ATRA treatment but not in the resistant sublines, except for a
marked but less pronounced increase at day 6 in the ATRA-
resistant HL60 line (Figure 1(b)). Additionally, GFP-LC3B
redistributed from a diffuse pattern to a punctuate pattern
in HL60 and NB4 cells upon neutrophil differentiation, fur-
ther indicating active autophagy (Figure 1(c)). Interestingly,
quantification of GFP-LC3 dots revealed that starvation-
and ATO-induced autophagy in the same cells was clearly
different from ATRA-mediated induction of autophagy
(Figure 1(d), black bars). Still, the percentage of cells with
GFP-LC3B puncta was similar for all three treatments
(Figure 1(d), white bars). Lastly, to confirm induction of
autophagy flux upon ATRA treatment, we generated NB4
cells expressing the mCherry-EGFP-LC3B tandem construct.
Autolysosomes appear red since the lower pH in these organ-
elles quenches the EGFP signal. The ratio of mCherry to
EGFP fluorescence was determined by flow cytometry as
described earlier [49]. A threshold was set to identify the per-
centage of cells with high autophagic activity (high mCherry/
EGFP ratio). We found a shift towards red fluorescence in
NB4 cells treated with ATRA (Figure 1(e), left panel)
together with a significant increase of cells with high autoph-
agic activity (Figure 1(e), right panel).

To test whether autophagy is essential for neutrophil
differentiation of HL60 AML cells, we blocked autophagy
pharmacologically using the phosphatidylinositol 3-kinase
(PI3K) inhibitor 3-methyladenine (3-MA) or chloroquine
(CQ). Inhibition of ATRA-induced autophagy resulted in
diminished neutrophil differentiation of these cells as evi-
denced by significantly reduced CD11b surface expression
(Supplementary Figure 1a). In order to exclude that inhibit-
ing autophagy influenced neutrophil differentiation solely
by increasing apoptosis, we cotreated these cells with the
pan-caspase inhibitor z-VAD-fmk. Blocking apoptosis dur-
ing 3-MA or CQ-mediated inhibition of ATRA-induced
autophagy did not show any effects on neutrophil differenti-
ation (Supplementary Figures 1a and b, and data not shown).
Our data clearly suggest that induction of autophagy is a
prerequisite for ATRA-induced neutrophil differentiation
of AML cells per se whereas its role in ATRA-induced cell
death is negligible.

2.2. ATG Gene Expression Is Frequently Reduced in Primary
AML Patients.We previously published that ATG genes such
as DRAM1, WIPI1/2, and MAP1S were significantly down-
regulated in primary AML samples [42, 50, 51]. Nevertheless,
a more global ATG gene expression profile in clinical AML
patient samples is still missing. Therefore, we quantified the
expression levels of additional 18 ATG genes in a cohort of

114 AML patient samples with defined chromosomal aberra-
tions and compared them to the corresponding expression
levels in mature granulocytes from healthy donors (n = 13)
(Figures 2(a)–2(d) and Supplementary Figure 2). The
expression of 9/18 ATG genes, operative in different phases
of autophagosome biosynthesis, was significantly inhibited
in AML as compared to their expression in mature, healthy
granulocytes: ULK1, FIP200, BECN1, ATG14, ATG5, ATG7,
ATG3, ATG4B, and ATG4D. Our data suggest that low
ATG gene expression is associated with an immature
AML blast phenotype.

2.3. Granulocytic Differentiation of AML/APL Cells, Primary
Human APL Cells, and Healthy Human CD34+ Progenitor
Cells Is Paralleled by Increased ATG Gene Expression. Based
on our findings in clinical AML samples showing globally
reduced ATG gene transcription compared to mature granu-
locytes, we asked if these genes are induced during leukemic
and normal neutrophil differentiation. To this end, we first
analyzed expression of selected ATG genes, ATG3, ATG4D,
and ATG5 during neutrophil differentiation in APL cell lines
as well as in primary APL patients receiving ATRA therapy.
Due to limited patient sample RNA, we could only determine
ATG5 expression in APL patients. We found that all three
ATG genes investigated were significantly induced upon 4
days of ATRA treatment in parental but not in ATRA-
resistant NB4 cells (NB4-R2) (Figure 3(a)). Importantly,
marked ATG5 induction was seen in primary APL patients
upon ATRA therapy in vivo during short- and long-term
follow-up examinations (Figure 3(b)). Lastly, to test if ATG
gene expression is also induced during normal granulocytic
differentiation, we differentiated human CD34+ progenitor
cells towards neutrophils using G-CSF. Similar to leukemic
neutrophil differentiation, all three ATG genes analyzed
showed a significant increase in their expression levels
(Figure 3(c)). Together, neutrophil differentiation is posi-
tively correlated with increased expression of key ATG genes.

2.4. Inhibiting the Key ATG Gene ATG5 Significantly
Attenuates Granulocytic Differentiation and Autophagy of
AML Cells. To test if ATRA-induced autophagy depends on
the conserved elongation process during autophagy, we
knocked down ATG5 in two AML differentiation models.
We first analyzed ATG5 protein expression during neutro-
phil differentiation of HL60 AML and NB4 APL cells. We
found a time-dependent upregulation of ATG5 protein levels
in both cell lines during ATRA differentiation (Figure 4(a),
left panels). To exclude that ATG5 induction is solely a
consequence of a stress response to ATRA treatment rather
than being functional in myeloid differentiation, we ana-
lyzed ATG5 expression in ATRA-resistant HL60-R and
NB4-R2 sublines. Both cell lines did not upregulate ATG5
upon ATRA treatment compared to the parental cells
(Figure 4(a), right panels), further suggesting that upregula-
tion of ATG5 is associated with neutrophil differentiation.
Importantly, knocking down ATG5 using two independent
shRNAs significantly reduced ATRA-induced autophagy
(Figures 4(b) and 4(c)). In parallel with disabling ATRA-
induced autophagy, AML ATG5 knockdown cells showed
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Figure 1: Continued.
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impaired neutrophil differentiation (Figure 4(d)). Moreover,
inhibition of apoptosis using caspase inhibitors had no
effect on reduced neutrophil differentiation upon ATG5
inhibition (Figures 4(d) and 4(e)), suggesting that reduced
cellular differentiation is not due to increased cell death of
ATG5 knockdown cells. Importantly, combining ATRA
with the pharmacological autophagy inducers everolimus
or LiCl resulted in significantly enhanced neutrophil dif-
ferentiation as assessed by elevated CD11b surface expres-
sion paralleled by increased ATG5-ATG12 complex
formation (Figure 4(f)).

To further validate earlier findings regarding the type of
autophagy activated by ATRA, we knocked down Beclin1
in HL60 AML and NB4 APL cells. As described above, we
found significantly lower Beclin1 levels in primary AML
samples as compared to mature neutrophils. In line with
these data, we observed slightly increased Beclin1 protein
upon ATRA-induced neutrophil differentiation of both
AML cell lines (Supplementary Figure 3a). Importantly,
knocking down Beclin1 did not abrogate ATRA-induced
autophagy (Supplementary Figures 3b and c, left panels). At
the same time, inhibition of Beclin1 significantly reduced
starvation- and arsenic trioxide- (ATO-) induced autophagy
in HL60 and NB4 cells, confirming the functionality of the
Beclin1 knockdown (Supplementary Figure 3c, right panels).
In line with its negligible role in ATRA-induced autophagy,
Beclin1 knockdown AML cells displayed no significant
reduction in neutrophil differentiation (Supplementary

Figure 3d). Thus, ATRA-induced autophagy seems clearly
different—less intense and Beclin1-independent—from
canonical starvation- or ATO-induced autophagy.

2.5. Transcriptional Regulation of Key ATG Genes by the
Myeloid Master Regulator PU.1. The Ets family transcription
factor PU.1, a master regulator of myeloid cell development,
is significantly downregulated in AML. Our earlier findings
that the autophagy-associated genes MAP1S and WIPI1
are PU.1 transcriptional targets as well as our findings that
knocking down PU.1 significantly attenuates ATRA-
mediated autophagic flux [42] prompted us to further inves-
tigate if additional ATG genes are regulated by this transcrip-
tion factor. First, we determined ATG3, ATG4D, and ATG5
gene expressions in two independent NB4 PU.1 knockdown
cell lines upon ATRA treatment. Induction of all three genes
was significantly reduced at the mRNA level when PU.1 was
knocked down (Figure 5(a)). To verify PU.1-dependent
expression of these ATG genes, we used NB4 cells expressing
an inducible PU.1-ER construct, which can be activated upon
tamoxifen treatment leading to PU.1-ER translocation to
nucleus and transcriptional activity. mRNA levels of all three
genes were significantly induced upon PU.1-ER activation in
NB4 cells (Figure 5(b)). We then analyzed a 3.5 kb genomic
region up- and downstream of the transcriptional start site
of all three ATG genes using MatInspector. We identified
several putative PU.1 binding sites (Figure 5(c), left panel).
PU.1 chromatin immunoprecipitation revealed binding of
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Figure 1: Autophagy is associated with neutrophil differentiation of AML cells. (a) ATRA differentiation induces LC3B lipidation measured
byWestern blotting. HL60 AML andNB4 APL cells were treated with 1μMATRA for up to 6 days. GAPDHwas used as a loading control. (b)
qPCR analysis of LC3B mRNA of HL60 and NB4 as well as ATRA-resistant HL60-R and NB4-R2 cells after 4 and 6 days of ATRA treatment,
respectively. Data are shown as N-fold activation compared to untreated cells at days 4 and 6. (c) ATRA differentiation induces GFP-LC3 dot
formation. NB4 and HL60 cells stably expressing GFP-LC3 were treated with 1μM ATRA, starved for 8 hours, or treated with 6 (NB4) and
12μM (HL60) arsenic trioxide (As2O3), respectively. GFP-LC3 puncta were detected using confocal microscopy. Scale bar 10 μm. (d)
Treatment as in (c). Results are expressed as percentage of cells showing punctuated GFP-LC3 staining and as average number of puncta
per cell. Counts are mean± s.e.m.; n = 100; three independent experiments. (e) FACS analysis of NB4 cells expressing the tandem
construct mCherry-EGFP-LC3B. Left panel: histogram of the mCherry-Height/EGFP-Height ratio in cells treated with vehicle or with
ATRA (1 μM) for 48 h. Right panel: percentages represent cells with high autophagic activity based on a threshold set on control cells.
Mann–Whitney U test, ∗p < 0 05.
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PU.1 to the promoter region of ATG3, ATG4D, and ATG5
(Figure 5(c)). In summary, we identified three additional
ATG genes that are regulated by PU.1 during ATRA-
induced neutrophil differentiation of AML cells.

2.6. Posttranscriptional Regulation of ULK1 by miR-106a
during AML Differentiation. Given the widespread aberrant

microRNA (miRNA) expression in myeloid malignancies,
we asked if altered miRNA expression in AML might con-
tribute to ATG gene repression in this disease. Based on a
miRNA profiling study that identified the miR-17 and miR-
181 family members as the most downregulated miRNAs
during neutrophil differentiation of NB4 APL cells [52],
and our study identifying ULK1 as a novel target of the
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miR-17 family member miR-106a in lung cancer therapy
[53], we hypothesized that this miRNA also targets
ULK1 in AML. In a first step, we evaluated if knocking down
ULK1 similar to the other ATG genes analyzed would
attenuate neutrophil differentiation. Indeed, using two

independent shRNAs targeting ULK1, we found that inhibit-
ing ULK1 resulted in significantly reduced CEBPE and
CD11b levels (Figure 6(a)). Moreover, miR-106a expression
prevented ULK1 induction upon ATRA-induced differentia-
tion of NB4 paralleled by impaired neutrophil differentiation
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days; and ATG3, ATG4D, and ATG5 mRNA expressions were determined by qPCR. Data analysis as in (a). Mann–Whitney U test,
∗p < 0 05, ∗∗p < 0 01, ∗∗∗p < 0 001.
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Figure 4: Continued.
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as seen by significantly reduced induction of CEBPE
mRNA compared to control transduced cells (Figures 6(b)
and 6(c)). The expression of the known miR-106a target
p21CIP1, a gene induced during neutrophil differentiation,
was determined as a positive control for the functionality
of the miR-106a vector used (Figure 6(d)). Ectopic expres-
sion of miR-106a in NB4 cells is shown in Figure 6(e).
Accordingly, using an anti-miR-106a construct, we found
that blocking miR-106a resulted in increased protein
expression of ULK1 during ATRA treatment whereas
overexpression of miR-106a resulted in markedly reduced
ULK1 expression (Figure 6(f)). Lastly, our preliminary
data indicate that ULK1 mRNA is negatively associated
with miR-106a expression in a cohort of 16 primary
AML patient samples (Figure 6(g)). Our studies clearly
indicate that ULK1 is functional in neutrophil differentia-
tion of AML cells and that it is targeted by the oncogenic
miR-106a, providing a possible explanation for low ULK1
expression levels in AML.

3. Discussion

In this study, we identified a Beclin1-independent, low-
intensity autophagy during neutrophil differentiation of
AML cells. We determined the expression of key ATG genes
involved in different autophagy phases in a large panel of pri-
mary AML patients. Overall, we found that the expression of

a variety of ATG genes is significantly lower in primary AML
as compared to normal granulocytes. The expression of these
ATG genes is restored in AML cells upon induction of
neutrophil differentiation paralleled by an activation of the
autophagic flux. Moreover, we found that the Ets family
transcription factor PU.1, a master regulator of myeloid
differentiation, positively regulates expression of several
ATGs. These findings add ATGs to the list of PU.1-regulated
genes that are important for neutrophil differentiation. Thus,
decreased ATG gene expression can partially be attributed to
low expression of PU.1 in AML patients. We also showed
that miR-106a targets the important autophagy gene ULK1
in AML. Together, we provide first explanations for low
ATG expression in AML cells.

The role of autophagy during cell differentiation and
mammalian development [18] has been long appreciated,
and several studies show that disruption in autophagy
function contributes to a cellular differentiation block.
For example, autophagy is needed for elimination of mito-
chondria in red cell precursors, and deficiency in autophagy
genes impairs erythrocyte maturation and causes anemia in
mice [54]. During megakaryopoiesis and thrombopoiesis,
autophagy is required for proper cell cycle and mitochon-
drial function, and a study using Atg7-deficient mice
shows that autophagy deficiency causes impaired platelet
production and function [43]. Accordingly, megakaryo-
cytic differentiation of the chronic myelogenous leukemia
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Figure 4: ATG5 induction is essential for neutrophil differentiation AML cells. (a) ATG5 protein expression in HL60, NB4, and the ATRA-
resistant NB4-R2 and HL60-R upon ATRA-induced neutrophil differentiation. Cells were treated with 1μMATRA for up to 6 days. At time
points indicated, proteins were extracted and ATG5 levels were analyzed by Western blotting. GAPDH was used as a loading control. (b)
Inhibition of ATG5 precludes ATRA-induced autophagy. Cells stably expressing a scramble control shRNA (Ctrl) or shRNAs targeting
ATG5 (shATG5_1 and shATG5_2) were treated with ATRA for 4 days. Western blotting for ATG5 and LC3B is shown. GAPDH was
used as a loading control. (c) Inhibition of ATG5 prevents ATRA-induced autophagy as measured by GFP-LC3 dot formation. NB4 and
HL60 GFP-LC3 cells expressing scramble control shRNA (shCtrl) or shRNAs targeting ATG5 (shATG5_1 and shATG5_2) were treated as
in (b). The percentage of GFP-LC3 puncta-positive cells and average numbers of puncta were quantified by confocal microscopy. Counts
are mean± s.e.m.; n = 100; three independent experiments. (d) Inhibition of ATG5 impairs neutrophil differentiation of AML cells. FACS
analysis of CD11b expression in cells treated as in (b) is shown. Blocking apoptosis by z-VAD-fmk did not alter reduced differentiation in
ATG5 knockdown cells. Data are mean± s.e.m.; n = 1 × 104. (e) HL60 and NB4 ATG5 knockdown AML cells displayed increased
apoptosis upon ATRA treatment. Apoptosis was determined by annexin V staining and caspase 3/7 activity. z-VAD-fmk treatment
efficiently attenuated apoptosis induction in ATG5 knockdown cells during ATRA-induced differentiation. Cells treated as in (b). (f)
Pharmacological activation of autophagy enhances neutrophil differentiation of AML cells. HL60 cells were treated with 1μM ATRA
alone or in combination with 0.5 μM everolimus (left panel) or 25mM lithium chloride (right panel) for 4 days. The combination
treatment significantly enhanced neutrophil differentiation as measured by CD11b induction. ATG5 induction was assessed by Western
blotting. Data are mean± s.e.m. of three independent experiments. Mann–Whitney U test, ∗p < 0 05; n.s.: not significant.
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cell line K562 needs increased autophagy function [55].
During monocyte-macrophage differentiation, autophagy is
induced upon release of Beclin1 from Bcl-2 and promotes
not only cellular differentiation but also cell survival [45].
Another study using conditional Atg5 knockout in myeloid
progenitors described a mild expansion of precursor cells
[56]. We and others showed that autophagy is crucial for
therapy-induced neutrophil differentiation of AML cells
indicating a similar dependence on autophagy for neutrophil
development as in healthy individuals [38–40, 42]. Whether
there are different functions for ATG5 or noncanonical
autophagy in general during normal versus leukemic neutro-
phil differentiation is still under investigation.

The phosphoinositide-3-kinases (PI3K)/AKT and
mTOR signaling pathways are currently targeted in clinical
trials to treat AML by increasing cell death in combination
with chemotherapy [57]. Since our results showed decreased
ATRA-mediated differentiation when autophagy is inhib-
ited, autophagy modulation in cancer therapy could have a
potential negative effect on neutrophil differentiation. In
general, class I PI3K inhibits autophagic initiation, whereas
the class III enzymes stimulate autophagic activity. The net
effect of broad-spectrum PI3K inhibitors targeting both clas-
ses of PI3K typically induces a block in autophagy. This
block in autophagy might interfere with differentiation ther-
apy. Nevertheless, specific inhibitors of class I PI3K had no
impact on ATRA differentiation of APL cells and might be
considered to enhance cell death in combination with che-
motherapy [58]. Concerning our findings, we are confident
that reduced ATRA-induced autophagy and neutrophil dif-
ferentiation upon cotreatment with ATRA and 3-MA/wort-
mannin resulted in the inhibition of class III enzymes
leading to a block of autophagy initiation. Our hypothesis
is supported by earlier findings showing that knocking down
PIK3C3 resulted in a similar differentiation block as seen
with 3-MA treatment [42]. Why does inhibition of PIK3C3
but not of Beclin1 attenuate neutrophil differentiation
despite that both proteins are part of the autophagy-
initiation complex? Beclin1 might not be the limiting factor
for the PIK3C3 nucleation complex in ATRA-induced
autophagy. In favor of this explanation, we observed an
increase in ATG5-ATG12-conjugated protein upon inhibi-
tion of Beclin1 (data not shown), suggesting that cells com-
pensate the loss of Beclin1 by upregulation of other
autophagy-related proteins. Similarly, small amounts of
Beclin1 protein, which are released from Bcl-2 inhibition
through ATRA-mediated downregulation of Bcl-2 [59],
could be sufficient to activate and stabilize the PIK3C3 com-
plex. Further, PIK3C3 not only is involved in autophago-
some nucleation but also acts at several steps along the
signaling pathway associated with autophagy [60]. Thus, it
seems possible that the PIK3C3 knockdown phenotype dur-
ing neutrophil differentiation represents the consequences of
blocking autophagy at later stages.

Our findings in HL60 non-APL cells suggest that AML
differentiation requires functional autophagy not only for
the degradation of PML-RARA found in APL. Blocking
autophagy interferes with differentiation, for example, with
cell cycle arrest (data not shown), and results in cell death.

Autophagy may protect malignant HSCs with a normal
autophagy machinery or cancer cells under stress. However,
autophagy is also important for maintenance of normal
HSCs [61, 62]. Inhibition of autophagy by Bafilomycin A1
had no impact on differentiation, and VitD3 triggered
autophagy resulting in Beclin1-dependent cell death. In
line with previous finding that inhibition of autophagy
results in apoptosis of cells that are engaged in differenti-
ation [63], we now show a beneficial effect of cotreatment
with ATRA and autophagy inducers. This differentiation-
enhancing effect by combined activation of differentiation
and autophagy might have clinical implications. A consider-
able number of APL patients present with major complica-
tions during differentiation therapy (e.g., ATRA syndrome
or APL differentiation syndrome, 10–15%) [64]; thus reduc-
ing ATRA concentration in combination with autophagy
activators might be beneficial for these patients. Generally,
enhancing autophagy with FDA-approved drugs may rep-
resent a possible new strategy to treat APL patients and
possibly sensitize additional AML subtypes to ATRA treat-
ment. Promising autophagy-enhancing compounds to use
in combination with ATRA include rapalogs (sirolimus,
temsirolimus, and everolimus) and Ca2+ channel blockers
(verapamil, loperamide, and pimozide) [65].

In conclusion, our studies show that increased ATG gene
expression is associated with normal neutrophil differenti-
ation, and that differentiation of AML cells involves a nonca-
nonical autophagy pathway, which is Beclin1-independent.
Increasing levels of ATG3, ATG4D, and ATG5 mRNA
during neutrophil differentiation of healthy CD34+ hemato-
poietic progenitor cells and their high expression in mature
neutrophils point to a more general role for autophagy not
only during leukemic but also during normal neutrophil
differentiation. Key autophagy genes such as ULK1, ATG3,
ATG4D, or ATG5 are significantly downregulated in pri-
mary AML patient samples, and their expressions can be
restored upon ATRA therapy in APL patients and AML
cell lines. The low expression of these genes is partially due
to inhibition of their positive regulator PU.1, or in the case
of ULK1, by increased expression of its negative regulator
miR-106a. Clearly, ATRA-induced myeloid autophagy is
different from starvation- or chemotherapeutic-induced
autophagy, and further investigations are needed to clarify
its functions and to elucidate the signaling pathways
involved. This is an important task since knowing the exact
noncanonical autophagy pathway will serve to develop more
specific and improved autophagy drugs. Finally, clinical
applications planning to inhibit autophagy in order to
decrease cell survival may need to consider detrimental
effects on myeloid differentiation.

4. Materials and Methods

4.1. Primary Patient Samples, CD34+ Cells, and Cell Lines.
Primary AML patient cDNA samples were obtained from a
cohort of AML patient samples from HOVON/SAKK
(Dutch-Belgian Hematology-Oncology/Swiss Group for
Clinical Cancer Research Cooperative group) protocols 04,
04A, 29, and 42 (available at http://www.hovon.nl) between
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1987 and 2006. All patients provided written informed con-
sent in accordance with the Declaration of Helsinki. Patient
data represent log2 expression levels and were normalized
to the expression levels of the 2 housekeeping genes HMBS
and ABL. CD34+-mobilized peripheral blood cells from
healthy donors were expanded, cultured, and differentiated.
The human APL cell lines NB4 and its ATRA-resistant clone

NB4-R2, and the AML M2 cell line HL-60 and its ATRA-
resistant clone HL60-R were maintained in RPMI-1640
(Sigma-Aldrich), supplemented with 10% fetal bovine
serum (FBS), 50U/ml penicillin, and 50μg/ml streptomy-
cin (Sigma-Aldrich), in a humidified incubator containing
5% CO2 at 37

°C. The human embryonic kidney 293T cells
were cultured in DMEM (Sigma-Aldrich) supplemented
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Figure 5: PU.1-dependent regulation ofATG3, ATG4D, and ATG5 during ATRA-mediated differentiation of NB4 cells. (a) ATG3, ATG4D, and
ATG5mRNA expression levels were quantified in NB4 shPU.1 cells treated with ATRA for 4 days. (b) NB4 cells, transduced with an inducible
PU-1-ER expressing vector, were treated with 4-OHT to induce PU.1 translocation to the nucleus. ATG3, ATG4D, andATG5mRNA expression
levels were quantified as in (a). (c) Schematic representation of ATG3, ATG4D, and ATG5 proximal promoter regions. Putative PU.1 binding
sites in these promoter regions are indicated as black circles. In vivo binding of PU.1 to the indicated PU.1 binding sites was shown by ChIP
in NB4 cells using antibodies against PU.1. Antibodies against acetyl-histone H3 and IgG are used as positive and negative controls,
respectively. GAPDH amplification was shown as a negative control for the different pull-downs. Mann–Whitney U test, ∗∗p < 0 01.
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with 5% FBS, 1% penicillin/streptomycin, and 1% HEPES
(Sigma-Aldrich) and kept in a humidified atmosphere con-
taining 7.5% CO2 at 37°C.

For neutrophil differentiation, AML parental and
knockdown cell lines were seeded at a density of 0 2 ×
106/ml and treated with 1μM ATRA (Sigma-Aldrich) for
2–6 days as indicated. Neutrophil differentiation was
assessed by increased CCAAT/enhancer binding protein

epsilon (CEBPE) mRNA expression and by CD11b FACS
analysis. Arsenic trioxide (As2O3; Sigma) was dissolved
in 1M NaOH and used at 6–12μM. 3-Methyladenine
(3-MA; Sigma) was dissolved in H2O and used at
5mM. Chloroquine diphosphate salt (CQ; Sigma) was
dissolved in H2O and used at 25μM. Bafilomycin A1 was
dissolved in DMSO, used at 200nM, and added 2 hours
before analysis.
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Figure 6: miR-106a targets ULK1 and attenuates ATRA-induced AML differentiation. (a) Inhibition of ULK1 attenuates neutrophil
differentiation of APL cells. NB4 cells stably expressing a scramble control shRNA (Ctrl) or shRNAs targeting ULK1 (shULK1 #1 and
shULK1 #2) were treated with ATRA for 4 days. qPCR for ULK1 and CEBPE as well as FACS analysis of CD11b is shown. Data are mean±
s.e.m. of three independent experiments. (b) ULK1, CEBPE, and p21CIP1 expressions were detected by qPCR in NB4 cells stably transduced
with a scrambled control (NB4) or a lentiviral vector expressing miR-106a precursors (NB4 106a). Cells were treated with 1μM ATRA for 4
days. Results were normalized to HMBS and are shown as N-fold change relative to the corresponding untreated control cell line. (e) qPCR
analysis of miR-106a expression in NB4 control and miR-106a overexpressing NB4 cells. (f) Western blot analysis of ULK1 expression in
control, anti-miR-106a, and miR-106a-expressing NB4 cells upon ATRA treatment for 4 days. GAPDH was used as a loading control. (g)
Total RNA was isolated from 16 AML patients, and qPCR was performed to determine miR-106a and ULK1 mRNA levels, respectively.
SNORA38B and 5s rRNA were used as reference RNAs for the microRNA qPCR and HMBS and ABL1 as reference mRNAs for the
mRNA qPCR. ΔCt values of ULK1 and miR-106a were calculated and plotted against each other. Linear regression and Pearson r were
calculated using Prism software. Mann–Whitney U test, ∗p < 0 05, ∗∗p < 0 01, ∗∗∗p < 0 001.

12 Oxidative Medicine and Cellular Longevity



4.2. Lentiviral Vectors, Lentivirus Preparation, and
Transduction of Cell Lines. pLKO.1 lentiviral vectors express-
ing small hairpin (sh) RNAs targeting PU.1, ATG5, or
Beclin1 and a nontargeting shRNA control (SHC002)
were purchased from Sigma-Aldrich. These vectors con-
tain a puromycin antibiotic-resistant gene for selection of
transduced mammalian cells. PU.1-ER construct was gener-
ated by subcloning PU.1-ER fragment into pLV-EF1a-MCS-
IRES-Hyg vector containing hygromycin antibiotic-resistant
gene using the In-Fusion HD cloning kit (Takara) according
to the manufacturer’s instruction. Lentivirus production and
transduction were done as described [66]. Transduced AML
cell line populations were selected with 1.5μg/ml puromycin
for 4 days or with 250μg/ml hygromycin for 10 days.
Knockdown efficiency was assessed by Western blot and/or
qPCR analysis. An mCherry-EGFP-LC3-expressing lenti-
viral vector was kindly provided by Dr. Maria S. Soengas
(CNIO, Molecular Pathology Program, Madrid, Spain).

4.3. RNA Extraction and Quantitative RT-PCR (qPCR). Total
mRNA was isolated using miRCURY™ RNA isolation kits
(Exiqon) according to the manufacturer’s instruction. Total
RNA was reverse transcribed, and ATG gene expression in
AML patients was quantified using RT-PCR low-density
arrays to quantify ATG gene expression as described previ-
ously [67]. For quantification of ATG3, ATG4D, ATG5,
and CEBPE expression in cell line experiments, the TaqMan®
Gene Expression Assays Hs00223937_m1, Hs00262792_m1,
Hs00169468_m1, and Hs00357657_m1 were used, respec-
tively. Specific primers and probes for HMBS and PU.1
have been described [66]. miRNA expression was assessed
using the miScript SYBR Green PCR kit and primer assay
hsa-miR-106a (Qiagen). We used hsa-miR-SNORA-73A as
a housekeeping gene for miRNA normalization. N-fold
changes were calculated using the ΔΔCt method of relative
quantification. Data represent the mean± s.e.m. of at least
triplicate experiments.

4.4. Western Blot Analysis. Whole cell extracts were washed
in ice-cold PBS and lysed using urea lysis buffer consisting
of 8M urea and 0.5% Triton X-100 supplemented with pro-
tein inhibitor cocktail (Roche Diagnostics). The lysates were
sonicated for 3 s and then centrifuged at 13,000 rpm for 15
minutes at 4°C. Bradford assay with BSA as a standard was
used to determine the concentration of protein contents.
40μg of total proteins was analyzed by electrophoresis on
precast gel (Biorad). Blots were incubated with the primary
antibody anti-LC3B (NB600-1384; Novus Biologicals) in
TBS 0.05 Tween-20/5% milk or with anti-PU.1 in TBS 0.05
Tween-20/3% BSA overnight at 4°C and then incubated with
secondary antirabbit DyLight 650 for 1 hour at room tem-
perature. Additional antibodies used were anti-Beclin1 (Cell
Signaling, #3738), anti-ATG5 (Sigma, A2856), and mouse
monoclonal anti-GAPDH (Sigma). Blots were imaged using
the ChemiDoc (Biorad) and Image Lab software.

4.5. Immunocytochemistry, Confocal Microscopy, and Image
Analysis. We followed the methods of Wampfler et al. [68].
Briefly, NB4 cells were fixed in 2% paraformaldehyde in

PBS and permeabilized in 0.1% Triton X in PBS or fixed
and permeabilized in methanol (−20°C) after cytospin.
Cells were then washed in PBS and incubated with pri-
mary LC3B antibody (Cat. No. 3686; Cell Signaling Tech-
nology) for 1 h at room temperature. Then, cells were
washed twice in PBS-Tween and once with PBS, followed
by incubation with the secondary antibody (FITC-conju-
gated antirabbit; Cat. No. 111-096-045; Jackson ImmunoR-
esearch) for 1 hour at room temperature. Fluorescence-
labeled cells were analyzed using a confocal laser scanning
microscope, and quantification of LC3B dots was performed
using ImageJ.

4.6. Autophagy and Apoptosis Assays. Autophagy was
assessed by LC3 lipidation and GFP-LC3 redistribution. For
GFP-LC3 dot formation, stable GFP-LC3-expressing AML
cells were cytospun, fixed with 4% paraformaldehyde for
20min at RT, washed with PBS, and covered with fluorescent
mounting solution (Dako) prior to analysis by confocal
microscopy (LSM510, Carl Zeiss). To quantify GFP-LC3
dots, at least 100 cells per slide in three independent experi-
ments were assessed, that is, the percentage of GFP-LC3-
positive cells with punctuate staining; and the number of dis-
crete puncta per cell was counted.

Tandem mCherry-EGFP-LC3B-expressing cells were
treated for 2 days with 1μM ATRA. Data were acquired on
a FACS LSR-II (BD) using BD FACSDiva software and ana-
lyzed with FlowJo software. A gate was used based on paren-
tal cells to estimate the percentage of high autophagic activity
as previously described [49].

For annexin V staining, 0 5 × 106 cells were washed
with cold PBS/5% BSA, resuspended in 70μl binding buffer,
and labeled with phycoerythrin- (PE-) labeled antibody
against annexin V according to the manufacturer’s protocol
(BioVision). Caspase 3/7 activation was measured using
Caspase-Glo™ 3/7 Assay according to the manufacturer’s
protocol (Promega Corporation, Madison, USA).

4.7. Statistical Analysis and Bioinformatics. Each value
reported represents the mean± SD of at least three indepen-
dent experiments. N-fold changes were calculated using the
−ΔΔCt method of relative quantification. Nonparametric
Mann–Whitney U tests were applied to compare the differ-
ence between two groups using the program Prism software
(GraphPad). p values < 0.05 were considered to be statisti-
cally significant. Promoter and gene sequences were retrieved
from the online databases http://www.ncbi.nlm.nih.gov and
http://www.ensembl.org/index.html. Putative PU.1 tran-
scription factor binding sites were predicted by using MatIn-
spector 8.0 software (http://www.genomatix.de).

4.8. Chromatin Immunoprecipitation Assay (ChIP). ChIP was
performed using the ChIP-IT Express Chromatin Immuno-
precipitation Kit (Active Motif) according to the manufac-
turer’s recommendation. Chromatin from 15 × 106 NB4
cells was fragmented to an average size of 500 bp using the
provided enzymatic shearing cocktail. For immunoprecipita-
tion, we used anti-PU.1 (sc-352; Santa Cruz Biotechnology)
antibody. Immunoprecipitations with IgG (PP64B; Upstate)
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or an anti-acetyl-histone H3 antibody (Stratagene) were used
as negative and positive controls, respectively. Genomic
regions containing putative PU.1 binding sites were ampli-
fied by PCR using the following primers: ATG3 site A; for-
ward 5′-3′: AGCATCAATCCACTCAGCATTC and reverse
5′-3′: CTGGATGGCAGTGGAAAAGAC; ATG3 site B; for-
ward 5′-3′: TCAGGGGTAAACTTGGAGCG and reverse
5′-3′: TTGGGATCGCAGTCACAACT; ATG4D site A; for-
ward 5′-3′: CTGGAGCACTTCATTCATCCCT and reverse
5′-3′:TGAGACTGACTGCGCACC; ATG4D site B; forward
5′-3′: CGTTTTTGCCCCTCTCTGTA and reverse 5′-3′:
CGGCTTTTAACCACCCAACC; and ATG5; forward 5′-3′:
CAGCGTTGCCGGTTGTATTC and reverse 5′-3′: CTCCA
GGCAACTACTCACCC. In addition, an unrelated sequence
in the GAPDH gene was used as a negative control.
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Supplementary Materials

Supplementary 1. Supplementary Figure 1: attenuated neu-
trophil differentiation upon pharmacological inhibition of
autophagy is not due to increased apoptosis. (a) 3-MA or
CQ-mediated inhibition of autophagy impairs ATRA differ-
entiation of HL60 cells. Cells were treated for 4 days with
1μM ATRA alone or in combination with 5mM 3-MA or
with 25μM CQ. CD11b was measured by flow cytometry as
marker of neutrophil differentiation. In addition, apoptosis
was blocked in the same setting using the pan-caspase inhib-
itor z-VAD-fmk. CD11b median fluorescence intensity
(MFIs) data are mean± s.e.m.; n = 1 × 104. (b) 3-MA- and
CQ-mediated inhibition of autophagy resulted in increased
apoptosis in ATRA-treated HL60 cells. Apoptosis was deter-
mined by annexin V staining and caspase 3/7 activity. Cells
treated as in (a). Data represent the mean± s.e.m. of three
independent experiments. Mann–Whitney U test, ∗p < 0 05.
Supplementary 2. Supplementary Figure 2: ATG gene expres-
sion in AML patient subtypes. ATG gene mRNA expression
levels during autophagy initiation (a), nucleation (b),
ATG12 (c), and LC3 (d) conjugation phases were quantified
by qPCR. Analysis as in Figure 2. Mann–Whitney U test,
∗ p < 0 05, ∗∗p < 0 01, ∗∗∗p < 0 001.
Supplementary 3. Supplementary Figure 3: ATRA-induced
autophagy and neutrophil differentiation of AML cells is
Beclin1-independent. (a) Minor Beclin1 protein induction
during ATRA differentiation of NB4, HL60, and HT93
AML cells. Western blots of Beclin1 and GAPDH are shown.
(b) Inhibition of Beclin1 did not abrogate ATRA-induced
autophagy as measured by LC3B lipidation. Cells stably
expressing a scramble control shRNA (shCtrl) or shRNAs
targeting Beclin1 (shBeclin1) were treated with ATRA for
4 days. GAPDH was used as a loading control. (c) Inhibi-
tion of Beclin1 does not prevent ATRA-induced GFP-LC3
puncta formation. Left panels: HL60 and NB4 GFP-LC3
cells stably expressing a scramble control shRNA (shCtrl)
or shRNAs targeting Beclin1 (shBeclin1) were treated with
ATRA for 4 days. The percentage of GFP-LC3 puncta-
positive cells and average numbers of puncta were quantified
by confocal microscopy. Counts are mean± s.e.m.; n = 100;
three independent experiments; n.s.: not significant. Right
panels: starvation- and arsenic trioxide- (As2O3) induced
autophagy are inhibited by knocking down Beclin1. Cells
were starved or treated with As2O3, and autophagic activity
was assessed by confocal microscopy. Counts are mean±
s.e.m.; n = 100; three independent experiments. (d) Knocking
down Beclin1 does not impair neutrophil differentiation of
AML cells as determined by CD11b expression. Data are
mean± s.e.m.; n = 1 × 104. Mann–Whitney U test, ∗p < 0 05.
n.s.: not significant.
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