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Abstract 16 

Recent human studies have suggested that aging interventions can reduce aging biomarkers 17 

related to morbidity and mortality risk. Such biomarkers may potentially serve as early, rapid 18 

indicators of effects on healthspan. An increasing number of studies are measuring intervention 19 

effects on epigenetic clocks, commonly used aging biomarkers based on DNA methylation 20 

profiles. However, with dozens of clocks to choose from, different clocks may not agree on the 21 

effect of an intervention. Furthermore, changes in some clocks may simply be the result of 22 

technical noise causing a false positive result. To address these issues, we measured the 23 

variability between 6 popular epigenetic clocks across a range of longitudinal datasets 24 

containing either an aging intervention or an age-accelerating event. We further compared 25 

them to the same clocks re-trained to have high test-retest reliability. We find the newer 26 

generation of clocks, trained on mortality or rate-of-aging, capture aging events more reliably 27 

than those clocks trained on chronological age, as these show consistent effects (or lack 28 

thereof) across multiple clocks including high-reliability versions, and including after multiple 29 

testing correction. In contrast, clocks trained on chronological age frequently show sporadic 30 

changes that are not replicable when using high-reliability versions of those same clocks, or 31 

when using newer generations of clocks and these results do not survive multiple-testing 32 

correction. These are likely false positive results, and we note that some of these clock changes 33 

were previously published, suggesting the literature should be re-examined. This work lays the 34 

foundation for future clinical trials that aim to measure aging interventions with epigenetic 35 
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clocks, by establishing when to attribute a given change in biological age to a bona fide change 36 

in the aging process. 37 

 38 

Keywords:  epigenetic clocks, biomarkers, aging interventions, age reversal, false positives  39 
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Introduction 40 

  In the pursuit of extending human healthspan, various interventions — such as dietary 41 

regimens, supplements, and pharmaceutical agents — are being developed to target the 42 

underlying biological mechanisms associated with aging (López-Otín et al. 2023; Rolland et al. 43 

2023). The primary aim of these interventions is to reduce age-related morbidity or mortality 44 

and to maintain function. Ideally, such interventions begin long before pathology leads to a 45 

notable decline. However, clinical trials spanning the many years or decades needed to observe 46 

the effect on human aging would be very difficult and expensive. Aging biomarkers have been 47 

proposed as a means for researchers to assess the impact of specific interventions within a 48 

feasible time frame for clinical studies (Moqri et al. 2023; Aging Biomarker Consortium et al. 49 

2023). Such biomarkers are trained to quantify biological age or pace of aging as a proxy for 50 

longer-term outcomes. However, research into how these biomarkers respond to interventions, 51 

and the significance of observed biomarker changes, remains in its infancy. 52 

Epigenetic clocks are aging biomarkers based on DNA methylation at cytosine-guanine 53 

dinucleotides (CpGs). These clocks have gained significant popularity over the past decade due 54 

to their prognostic power and the ease and speed of measurement, requiring a simple blood 55 

draw (Horvath & Raj 2018; Drew 2022). The first generation of epigenetic clocks, such as the 56 

Hannum (Hannum et al. 2013), Horvath multi-tissue (Horvath MT)(Horvath 2013), and Horvath 57 

skin-and-blood (Horvath SB) clocks (Horvath & Raj 2018), utilized penalized regression models 58 

(e.g., elastic net) to predict chronological age from DNA methylation patterns. Newer 59 

generations of clocks use similar techniques but are trained to predict mortality and morbidity 60 
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risk; these include PhenoAge (Levine et al. 2018) and GrimAge (Lu et al. 2019). Another recent 61 

clock model, DunedinPoAm38, was trained on longitudinal biomarkers to predict an individual’s 62 

pace of aging (Belsky et al. 2020). Many of these epigenetic-based measurements of biological 63 

age have been shown to be prognostic, correlating at least partially with outcomes such as 64 

mortality (Simpson & Chandra 2021). 65 

Beyond predictive capabilities, epigenetic clocks may be used in a clinical trial setting to 66 

rapidly calculate an individual’s biological age before and after an aging intervention and assess 67 

the impact of treatment. Epigenetic clocks have already been applied in this fashion for several 68 

interventions, such as diet, exercise, and supplements (Sae-Lee et al. 2018; Gensous et al. 2020; 69 

Fitzgerald et al. 2021; Yumi Noronha et al. 2022). However, there are several potential issues 70 

with using epigenetic clocks as metrics in longitudinal trials. 71 

The first potential problem with measuring the impact of an intervention on epigenetic 72 

age is longitudinal reliability. We previously demonstrated that re-testing the same individual, 73 

either by testing the same sample multiple times, or by conducting testing at multiple follow-up 74 

time points, can lead to fluctuations by several years owing to technical noise and other 75 

confounders (Higgins-Chen et al. 2022).  This concern led to the development of PC clocks 76 

(Higgins-Chen et al. 2022), re-trained versions of the canonical clocks mentioned above that use 77 

principal component analysis to identify age-related patterns across a larger number of CpGs 78 

and reduce the effect of noise from individual CpGs. These PC clock variants reduce longitudinal 79 

variability for a single individual, increasing our ability to reliably detect the impact of an 80 

intervention on biological age while reducing false positives. Similarly, DunedinPACE is a 81 
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modified version of the DunedinPoAm38 pace-of-aging predictor that increases reliability and 82 

longitudinal performance by only utilizing reliable CpGs as input (Belsky et al. 2022). 83 

While the development of reliable clock models may help with measuring biological age 84 

longitudinally, the existence of multiple unique clock models leads to additional practical issues 85 

that need to be addressed before the clocks can be used in a clinical setting. With an 86 

abundance of clock models, which one should a researcher select for their particular study? 87 

How can we be sure which clock is the most relevant? And if multiple clocks are calculated for a 88 

study, how do we interpret the situation where different clocks disagree? This is an ongoing 89 

problem in the literature - several studies that use epigenetic clocks to measure an aging 90 

intervention report results from a single clock model in their analysis (Sae-Lee et al. 2018; 91 

Gensous et al. 2020; Fitzgerald et al. 2021; Yumi Noronha et al. 2022) but it is unclear if the 92 

chosen clock is most appropriate. Under these conditions, the field is at risk for publication bias 93 

- opting for clocks that return significant results and ignoring the non-significant results. A direct 94 

comparison of the responsiveness of the various clocks to aging interventions is warranted to 95 

help correct this issue. 96 

We hypothesize that some significant epigenetic clock changes are not replicable using 97 

any other clock model because they are false positives due to noise. Meanwhile, significant 98 

clock changes that are replicable across multiple clocks are bona fide changes in epigenetic age. 99 

To investigate this hypothesis, we calculate 6 well-established epigenetic clocks along with their 100 

high-reliability counterparts, for 10 publicly available longitudinal DNA methylation datasets. 101 

Eight of these datasets contain methylation data before and after a proposed aging 102 
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intervention. We focus on diet, exercise, and lifestyle studies to increase comparability 103 

between studies. To act as positive controls, we analyze two datasets that capture an event 104 

likely to increase the biological age of subjects (i.e., cancer treatment or intensive surgery), 105 

reasoning it should be easier to accelerate aging than decelerate it. Our study shows that some 106 

clock changes are likely the result of technical noise and false positives, and provides guidelines 107 

for selecting combinations of clocks and multiple testing correction to increase the likelihood 108 

that an epigenetic clock change reflects a valid aging intervention effect. 109 

Results 110 

False Positives: Multiple intervention studies show sporadic changes in chronological-age 111 

clocks. 112 

We calculated the change in subject biological age residual (∆ resid, see methods) using 113 

12 epigenetic clocks for 6 publicly available datasets, before and after an intervention (Figure 1, 114 

Table 1 and 2). The interventions we examined included acupuncture (GSE184202), daily 115 

supplements (GSE63499, GSE74538), high intensity exercise (GSE171140), or a combination of 116 

diet and lifestyle changes (GSE149747, E-MTAB-8956). Datasets GSE149474 and GSE74538 117 

were associated with studies that previously reported changes in the Horvath MT clock, but did 118 

not examine any other clocks in their analysis (Fitzgerald et al. 2021; Sae-Lee et al. 2018). The 119 

timeframes for the studies chosen here varied in range from a few hours to 2 years. Details on 120 

the datasets and studies selected for this analysis can be found in the Methods section. We 121 

performed a Student’s paired t-test on epigenetic age residual (Methods) before and after the 122 

intervention for each of the 12 epigenetic clocks (Figure 1). In datasets which had control 123 
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cohorts, we also calculated unpaired t-tests between the subject and control groups age 124 

residual but found no significant changes (Supplemental Figure 1). Our initial analyses do not 125 

employ multiple testing correction, given that we are probing the possibilities of false positive 126 

results in these datasets, and are not rejecting a null hypothesis based on the significance of a 127 

single t-test. Additionally, as most studies do not employ multiple clocks, it is not well-128 

established which method of multiple hypothesis correction is appropriate. Later, we 129 

investigate the impact of multiple hypothesis testing on our results (Table 3). 130 

In 5 of the 6 longitudinal intervention datasets, there was a single clock which found a 131 

significant change in epigenetic age residual (either decreasing or increasing). This includes 132 

GSE74538, which previously reported a significant change in Horvath MT (Sae-Lee et al. 2018). 133 

The remaining dataset, GSE149747, showed a trend towards reduction in one clock, Horvath 134 

MT (p=0.066), consistent with previously published results (Fitzgerald et al. 2021). In all cases, 135 

the lone clock that reported a significant result was a first-generation clock, which had been 136 

trained to measure chronological age. In no cases did the PC version of these clocks corroborate 137 

the significant result. In 3 of the 6 datasets, the significant change in biological age is positive, 138 

suggesting that these interventions actually increase biological age – something which seems 139 

counterintuitive, given the known health benefits of these interventions. Their increase is more 140 

consistent with our hypothesis that these sporadically significant findings are a result of a type-141 

1 error. Even if the sporadic result is a bona fide change in a particular clock, the fact that no 142 

other clock shows any similar effect raises the question about the biological significance of the 143 

result. 144 
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 145 

Positive Control: Age-accelerating events are captured by multiple reliable clocks. 146 

If it is possible to capture an intervention that decreases biological age using epigenetic 147 

clocks, then it stands to reason that the reverse should be true: events that are known to 148 

increase mortality, and increase risk of death, should result in biological age acceleration. 149 

Indeed, a prior study showed that stressful events (surgery, pregnancy, severe COVID-19) lead 150 

to strong but reversible increases in epigenetic age according to multiple clocks (Poganik et al. 151 

2023). We reasoned that we could treat these age-accelerating events as positive controls. By 152 

observing their effects on epigenetic clocks, we can gain insight into what would constitute a 153 

trustworthy pattern of epigenetic clock changes in response to aging interventions. With this 154 

hypothesis in mind, we repeated our 12-clock analysis on two longitudinal datasets that 155 

captured events with a known association with mortality (Figure 2, Table 1). We examined 156 

epigenetic clocks before and after intensive surgery (GSE142536, previously analyzed by 157 

Poganik et al. 2023) as well as before and after radiation and chemotherapy (GSE140038, not 158 

previously analyzed). 159 

In both datasets, we found significant increases in at least 6 of the 12 clocks that we 160 

tested (Figure 2). All the mortality-based clocks (PhenoAge, GrimAge), their PC analogs, and the 161 

rate of aging clocks (DunedinPoAm38, DunedinPACE) agreed on a significant increase in 162 

biological age residual after the event. In the dataset comparing biological age before and after 163 

intensive surgery, all PC versions of the clocks captured a significant increase in biological age, 164 

while the standard versions of the chronological based clocks did not see a significant change. 165 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2024. ; https://doi.org/10.1101/2024.10.22.619720doi: bioRxiv preprint 

https://paperpile.com/c/QJhshU/CstI
https://paperpile.com/c/QJhshU/CstI
https://doi.org/10.1101/2024.10.22.619720
http://creativecommons.org/licenses/by-nc/4.0/


10 

 

Despite the intensity of the events that the subjects underwent, the chronological based clocks 166 

(Hannum, Horvath MT, and Horvath SB) fail to report a significant increase in biological age. In 167 

fact, Horvath2 indicates a significant decrease in biological age after radiotherapy and 168 

chemotherapy. Taken together, this reinforces our finding that the chronological trained clocks 169 

are poor proxies for measuring aging interventions. Instead, the high-reliability clocks, as well 170 

as clocks predicting mortality or pace of aging, are better suited for detecting intervention 171 

effects. 172 

 173 

True Positives: Validated lifestyle interventions modify reliable and Gen 2 clock 174 

 The insights from the previous analysis on positive control datasets suggests 175 

interventions that impact aging should be present in multiple clocks, including the mortality, 176 

rate of aging, and PC variant clocks. We identified a single longitudinal aging intervention study 177 

that showed this type of epigenetic clock response. We repeated our 12-clock analysis for a 2-178 

year diet trial (E-MTAB-12527) with two arms. One cohort ate a standard Mediterranean-style 179 

diet (MED) and another cohort ate a Mediterranean diet with more red meat restrictions and 180 

enriched with green plants and polyphenols (green) (Figure 3). We examined changes in 181 

epigenetic age after each dietary intervention. 182 

 We found a significant decrease of biological age in 5 and 7 of the 12 epigenetic clocks 183 

in the MED and green diet, respectively (Figure 3). These significant decreases present in one of 184 

the three clock groups: PC clocks, mortality-based clocks, and rate-of-aging clocks. None of the 185 

first-generation chronological-based non-PC clocks reported a decrease in biological age. These 186 
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results mirror the positive control results in Figure 2. Therefore, we suggest the epigenetic clock 187 

results in this study are indeed capturing some positive health benefits related to aging and are 188 

sharply distinct from the false positive results in Figure 1. 189 

 190 

True Positives, but not False Positives, pass multiple testing correction. 191 

 We hypothesized that the sporadic significant results found in the datasets in Figure 1 192 

are the result of multiple hypothesis testing. That is, repeating 12 t-tests on different metrics of 193 

the same dataset compounds the risk of a false positive result. If this is the case, then 194 

correcting for multiple comparisons should remove those type-1 errors. Likewise, if the effect 195 

we are seeing in the positive controls (Figure 2) and true positive results (Figure 3) are genuine 196 

responses to the interventions, and not statistical noise, then they should remain even after the 197 

testing correction. 198 

We applied the Bonferroni and Benjamini-Hochberg methods in each study separately 199 

to evaluate the impact of multiple comparisons. The Bonferroni method adjusts the family-wide 200 

error rate, by dividing the p value threshold for significance by the number of statistical tests (in 201 

our case, 12), and is therefore the most stringent method. The Benjamini-Hochberg method 202 

ranks the p values and sets a dynamic critical threshold, where the smallest p value receives the 203 

strictest test (essentially a Bonferroni) and the largest p value receives the most lenient 204 

threshold (the standard 0.05 false discovery rate). 205 

We find that 4 of the 5 initial datasets with sporadic significance in the non-PC 206 

chronological based clocks lose their significance after multiple hypothesis correction with 207 
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either Bonferroni or Benjamini-Hochberg (Table 3, life-style intervention GSE171140; 208 

acupuncture GSE184202; folic acid supplements GSE63499; and folic acid and vitamin B12 209 

supplement GSE74548). Compare this to the positive control datasets (GSE140038, GSE142536) 210 

-- most of the clocks (8 out of 9 for GSE142536 and 4 out of 7 for GSE140038) remain significant 211 

even with the more stringent multiple hypothesis correction (Bonferroni). Similarly, our 212 

hypothesized “true positive” interventions (E-MTAB-12527) remain statistically significant in all 213 

but one clock after Benjamini-Hochberg. Of note, the clocks that did not pass Benjamini-214 

Hochberg correction in these positive control or true positive interventions tended to be lower-215 

reliability clocks (original PhenoAge or DunedinPoAm38) or chronological age clocks 216 

(PCHannum, PCHorvathSB, HorvathSB). In contrast, high-reliability mortality clocks like 217 

GrimAge, PCGrimAge, PCPhenoAge, or DunedinPACE were much more likely to pass multiple 218 

testing correction. This brief analysis validates our hypothesis that a single significant clock after 219 

an intervention is likely a false positive, whereas multiple highly significant clocks that stand up 220 

to multiple hypothesis correction suggest a genuine intervention-based impact on the biological 221 

mechanisms of aging.   222 

  223 
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Discussion 224 

Epigenetic clocks represent a promising biomarker candidate for assessing the impact of 225 

an aging intervention. However, not all clocks are designed the same, and the ability to respond 226 

to an aging intervention is not necessarily conserved across all epigenetic clock models. 227 

In the datasets we analyzed, clocks trained on chronological age, i.e. first-generation 228 

clocks (Hannum, Horvath MT, and Horvath SB), failed to concur with any other clock models on 229 

the impact of an aging intervention. They almost always responded alone, and they often failed 230 

to respond when their PC variant or multiple other clock models did detect a significant change. 231 

This observation suggests that first-generation clocks, while accurate at predicting 232 

chronological age, are inaccurate for detecting biological age changes and therefore they 233 

should not be used to assess the impact of an intervention. This result is not surprising when 234 

you consider how the clock models were trained – to predict chronological age. This training 235 

process prioritizes methylation sites that are more dependent on time, and less dependent on 236 

additional confounders, such as lifestyle or a particular diet or supplement. Furthermore, their 237 

lower reliability means that first-generation clock changes are more likely the result of technical 238 

noise rather than bona fide changes in biological age. 239 

Moreover, recent findings suggest that epigenetic age may fluctuate as much as 2 years 240 

during the course of a single day (Koncevičius et al. 2024). This inherent rhythmicity may be 241 

introducing false positives when relying on single clock tests, as the daily variation can be 242 

misinterpreted as an intervention effect. This further underscores the need for more reliable 243 
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models that are less vulnerable to time-of-day, but also other potential confounders such as 244 

fasting status, acute stress, menstrual cycles, time-of-year, etc.   245 

Conversely, the clocks trained on mortality, or the pace of aging clocks DunedinPoAm38 246 

and DunedinPACE, only indicated a significant change in biological age in concert with other 247 

clocks. This agreement between the clock models regarding the impact of a particular 248 

intervention or aging event reaffirms our confidence in their results. In contrast to the first-249 

generation clocks, these clocks are trained to predict aging outcomes and it is reassuring that 250 

they respond, in unison, to aging interventions and events. It is likely that the methylation sites 251 

that these clocks use to predict age have more relevance to health and aging hallmarks than 252 

those sites used in the first-generation clocks. 253 

Our finding that the non-PC first generation clocks respond sporadically and unreliably 254 

to a range of aging interventions has implications for past, ongoing, and future clinical aging 255 

interventions trials that use one or more epigenetic clocks. One significant clock is not enough 256 

to indicate a reliable decrease in biological age, especially if the PC variant of that clock fails to 257 

show a significant trend. There are several studies, already published, that recognize this 258 

concern a priori and utilize multiple epigenetic clocks in their analysis. The impact of calorie 259 

restrictions (Waziry et al. 2023) and umbilical cord plasma transfusions (Clement et al. 2022) on 260 

biological age have both been investigated using multiple epigenetic clocks, providing more 261 

nuance in the interpretation of their intervention’s impact on biological age. However, this is 262 

not the norm, and even recent intervention studies that use and report multiple clocks will 263 

interpret one positive result from a chronological clock, while ignoring the mortality-trained, or 264 
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pace-of-aging, clocks that show no significant change (da Silva Rodrigues et al. 2024; Patterson 265 

et al. n.d.).  266 

This selective reporting of positive results raises concerns about potential publication 267 

bias. Researchers may unintentionally favor clocks that show significant changes, even if other, 268 

more reliable clocks do not. This bias highlights the need for a more holistic approach where a 269 

battery of clocks is tested simultaneously to avoid overinterpreting the result of a single, 270 

potentially unreliable clock. If an intervention is decreasing biological age, the change should 271 

register with more than one epigenetic clock, ideally a later generation reliable clock model 272 

such as the PC clocks, PhenoAge, GrimAge, and DunedinPACE. 273 

 The use of multiple, diverse epigenetic clock models to assess the impact of an aging 274 

intervention or event is critical, as it significantly reduces the chance of interpreting a stray 275 

result as a genuine reduction in biological age. Here, we present one possible battery of clocks 276 

to apply to any longitudinal intervention study, that contains a diverse variety of models. This 277 

multi-clock approach provides researchers with a more nuanced understanding of the impact of 278 

an intervention, as each clock was trained slightly differently, and each therefore measures a 279 

slightly different definition of biological age. This method will help to bolster confidence in the 280 

use of epigenetic clock models for measuring aging interventions, and will drive future clinical 281 

trial development aimed at extending human healthspan. 282 

  283 
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Methods 284 

Data Acquisition and Preprocessing 285 

Where available, DNA methylation data were downloaded as beta values from public 286 

repositories, specifically the Gene Expression Omnibus (GEO) database (NIH) or the European 287 

Molecular Biology Laboratory’s European Bioinformatics Institute (EMBL-EBI). For datasets 288 

where methylation beta values were not directly available (E-MTAB-8956, E-MTAB-12527), we 289 

retrieved the raw fluorescence intensity files (idat files). These raw files were subsequently 290 

processed and converted into methylation beta values using the minfi package in R (version 291 

1.48.0), following Normalization of Oligonucleotide Arrays by Background Subtraction (NOOB) 292 

and Quantile Normalization. DNA Methylation datasets used either Illlumina 450k or Illumina 293 

850k array platforms. 294 

Phenotypic data was not directly modified, rather, six additional curated columns were 295 

appended to the phenotypic data frame. The six columns were adapted from the source data, 296 

and included sample ID, subject ID, sex, age, group (control vs subject), and time (in days). This 297 

step was done for all datasets, to ensure standardized and replicable data handling in 298 

downstream analysis.  299 

In cases of missing methylation beta values, mean imputation was performed within the 300 

subject cohort. Missing beta values (NAs) were replaced with the average beta value for all 301 

individuals in the cohort, ensuring a complete dataset for downstream analysis. 302 

 303 

Datasets 304 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2024. ; https://doi.org/10.1101/2024.10.22.619720doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.22.619720
http://creativecommons.org/licenses/by-nc/4.0/


17 

 

For datasets containing multiple timepoints, only two timepoints were selected for the 305 

analysis: the pre-intervention baseline sample and a post-intervention follow-up sample. For 306 

these datasets, the time point selected for the follow-up sample was always the first follow-up 307 

time point. This approach was applied to maintain consistency and reduce complexity in 308 

longitudinal comparisons. Dataset GSE74548 was subset to include only female participants 309 

with the MTHFR 677CC genotype, aligning with the significant findings reported by (Sae-Lee et 310 

al. 2018). Intensive surgery, for the case of dataset GSE142536, includes elective colorectal 311 

surgery, elective hip replacement surgery, and emergency hip surgery following fracture 312 

(Sadahiro et al. 2020). 313 

 314 

Epigenetic Clock Calculation 315 

We calculated scores for 12 well-established epigenetic clocks, as summarized in Table 2. These 316 

clocks include both first-generation clocks trained to predict chronological age (e.g., Hannum, 317 

Horvath MT, Horvath SB) and newer generation clocks trained to predict mortality risk or rate 318 

of aging (e.g., GrimAge, PhenoAge, DunedinPACE). We also calculated the PC version of these 319 

clocks, where available. Epigenetic clock scores for the two Horvath clocks, Hannum, PhenoAge, 320 

and DunedinPoAm38 were computed from the methylation beta values using the 321 

MethylCIPHER R package (version 0.20, https://github.com/HigginsChenLab/methylCIPHER). PC 322 

clock scores were calculated using the PC clocks package 323 

(https://github.com/HigginsChenLab/PC-Clocks). GrimAgeV1 was calculated with a custom R 324 

function adapted from the biolearn python package (https://bio-learn.github.io/). DunedinPACE 325 
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was calculated using the DunedinPACE R package (version 0.99.0, 326 

https://github.com/danbelsky/DunedinPACE).  327 

 328 

Statistical analysis 329 

The primary outcome measure, age residual, was calculated for each subject by regressing 330 

predicted epigenetic age (DNAmAge) on chronological age by using the following linear model: 331 

𝑟𝑒𝑠𝑖𝑑'𝑙𝑚(𝐷𝑁𝐴𝑚𝐴𝑔𝑒	~	𝐴𝑔𝑒)2.	332 

Models were built in R using the stats package (version 4.3.2). Paired t-tests were conducted to 333 

compare age residuals before and after the intervention, paired by subject ID, also in R using 334 

the stats package. The change in age residual (∆ resid) for one subject across the intervention 335 

was computed as follows:  336 

∆ resid = age residual after – age residual before. 337 

In Figures 1-3, DunedinPoAm38 and DunedinPACE are plotted against a separate y-axis (on the 338 

right) which was scaled to 1/20 of the left y-axis. This was done to better visualize the smaller 339 

absolute outputs from those clocks. 340 

 341 

Multiple Testing Correction 342 

We performed Bonferroni and Benjamini-Hochberg corrections to account for multiple 343 

hypothesis testing (Table 3). Calculations were performed in R using a custom-built function. 344 

Scripts for multiple hypothesis correction can be found at GitHub. 345 

  346 
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Tables 463 

Accession # Reference Intervention / Event Type Duration N 
GSE184202 (Petitpierre et al. 2022) Acupuncture Hours 11 

GSE171140 (Voisin et al. 2020) High Intensity Interval Training 
Exercise 4 weeks 36 

GSE149747 (Fitzgerald et al. 2021) Diet, Supplements, Exercise, and 
Lifestyle 8 weeks 19 

GSE63499 (Shade et al. 2017) Folic Acid Supplements 8 weeks 12 

E-MTAB-8956 (Yaskolka Meir et al. 2016; Gepner et 
al. 2018) Low Carb Diet and Exercise 1.5 years 30 

GSE74548 (Sae-Lee et al. 2018) Folic Acid and Vitamin B12 
Supplements 2 years 14 

GSE142536 (Sadahiro et al. 2020) Intensive Surgery 1 day 30 

GSE140038 (Sehl et al. 2020) Radiotherapy with or without 
Chemotherapy Months 72 

E-MTAB-12527 (Yaskolka Meir et al. 2021) Mediterranean Diet with Red Meat 2 Years 81 
E-MTAB-12527 (Yaskolka Meir et al. 2021) Mediterranean Diet with No Red Meat 2 Years 87 

 464 
Table 1. Ten longitudinal human DNA methylation datasets that capture either an aging intervention or an aging event. 465 

 466 

Clock Trained to predict… # of CpGs Reference 
Hannum Chronological Age 71 (Hannum et al. 2013) 
Horvath multi-tissue (MT) Chronological Age 353 (Horvath 2013) 
Horvath skin and blood (SB) Chronological Age 391 (Horvath et al. 2018) 
PhenoAge Mortality Risk 513 (Levine et al. 2018) 
GrimAge Mortality Risk 1,030 (Lu et al. 2019) 
DunedinPoAm38 Pace of aging 47 (Belsky et al. 2020) 
DunedinPACE Pace of aging 173 (Belsky et al. 2022) 
PC clocks Chronological Age/Mortality Risk 78,464 (Higgins-Chen et al. 2022) 

 467 
Table 2. Summary of the epigenetic clocks used in this study. 468 

 469 

  470 
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 471 
Dataset Clock  ∆ p value Uncorrected BH Bonferroni 
GSE184202       
 Horvath SB 

 
0.96 0.0454 *   

GSE171140       
 Hannum 

 
0.70 0.0303 *   

GSE63499       
 Hannum 

 
2.14 0.0352 *   

E-MTAB-8956       
 Hannum 

 
-1.78 8.8e-04 * * * 

GSE74548       
 Horvath MT 

 
-3.18 0.0111 *   

GSE142536       
 PCHannum 2.80 4.8e-05 * * * 
 PCHorvath MT 1.97 9.8e-06 * * * 
 PCHorvath SB 1.90 2.1e-05 * * * 
 PhenoAge 2.98 5.4e-03 * *  
 PCPhenoAge 3.58 3.7e-05 * * * 
 GrimAge 1.74 1.1e-04 * * * 
 PCGrimAge 1.90 1.3e-05 * * * 
 DunedinPoAm38 0.05 7.6e-06 * * * 
 DunedinPACE 

 
0.09 6.7e-05 * * * 

GSE140038       
 Horvath SB -0.70 0.0409 *   
 PhenoAge 1.80 0.0302 *   
 PCPhenoAge 3.09 2.3e-03 * * * 
 GrimAge 1.68 2.7e-07 * * * 
 PCGrimAge 1.59 2.6e-04 * * * 
 DunedinPoAm38 0.03 5.9e-03 * *  
 DunedinPACE 

 
0.06 1.8e-07 * * * 

E-MTAB-12527 (MED)       
 PCHannum -0.29 0.0212 *   
 PCPhenoAge -0.53 4.7e-03 * *  
 PCGrimAge -0.25 3.1e-03 * * * 
 DunedinPoAm38 -0.01 7.9e-03 * *  
 DunedinPACE 

 
-0.02 0.0140 * *  

E-MTAB-12527 (green)       
 PCHannum -0.61 7.2e-03 * *  
 PCHorvath SB -0.44 0.0465 *   
 PCPhenoAge -0.84 1.7e-03 * * * 
 GrimAge -0.62 3.2e-03 * * * 
 PCGrimAge -0.30 7.2e-03 * *  
 DunedinPoAm38 -0.02 5.1e-06 * * * 
 DunedinPACE -0.02 0.0101 * *  

 472 

Table 3. Multiple hypothesis testing of the significant changes in epigenetic age. 473 
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Figures 474 

 475 
Figure 1 476 

 477 
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 478 
Figure 2 479 

 480 

 481 
Figure 3 482 

483 
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Supplemental Figures and Tables 484 

   485 

Supplemental Figure 1  486 
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Table and Figure Legends 487 

Table 1: Summary of the publicly available human DNA methylation datasets which had 488 

multiple timesteps per subject (longitudinal) and which captured an intervention or event 489 

during the trial. 490 

 491 

Table 2: Summary of the epigenetic clock models, trained to predict either chronological age, 492 

mortality risk, or pace of aging. The PC clocks represent a group of clocks, including PCHannum, 493 

PCHorvath MT, PCHorvath SB, PCPhenoAge, and PCGrimAge. 494 

 495 

Table 3: Results from multiple hypothesis correction for 12 statistical tests. ∆ indicates the 496 

mean change in epigenetic age residual from before to after intervention/event. Uncorrected 497 

column has no multiple hypothesis correction. BH: Benjamini-Hochberg. An asterisk represents 498 

a significant result for that statistical test with the particular hypothesis correction method as 499 

defined by the column. 500 

 501 

Figure 1: Twelve epigenetic clock models measuring six aging intervention datasets with 502 

sporadic significance. Black diamonds represent the mean change in epigenetic age residual (∆ 503 

resid) for all subjects in the cohort. Upper and lower black error bars indicate standard error of 504 

the mean. Secondary y-axis (right) resolution is increased by 20x for DunedinPoAm38 and 505 

DunedinPACE. Red asterisk indicates a significant result for that clock for that dataset, as 506 
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calculated by a paired t-test (p value < 0.05). Red hash for GSE149747 indicates a p-value of 507 

0.066. 508 

 509 

Figure 2: Positive control datasets, capturing age accelerating events, measured with 12 510 

epigenetic clock models. Black diamonds indicate the average change in epigenetic age residual 511 

(∆ resid) amongst subjects. Error bars indicate standard error of the mean. Red asterisks 512 

indicate a significant change, as measured by a paired t-test.   513 

 514 

Figure 3: Two examples of two year-long Mediterranean diets significantly reducing multiple 515 

different epigenetic clock models, including reliable (PC), mortality-trained, and pace-of-aging 516 

clocks. Black diamonds indicate mean change in epigenetic age residual (∆ resid) for a particular 517 

clock model. Error bars represent standard error of the mean. Red asterisks indicate a 518 

significant change for that clock model, as measured by a paired t-test.  519 

 520 

Supplemental Figure 1: Comparison of changes in epigenetic age residuals (∆ resid) across 521 

various interventions. Diamonds represent the average change in age residual for control (cyan) 522 

and subject (pink) groups. Error bars represent standard error of the mean. 523 

 524 
 525 
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