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Abstract

As neuroimaging data increase in complexity and related analytical problems follow

suite, more researchers are drawn to collaborative frameworks that leverage data

sets from multiple data-collection sites to balance out the complexity with an

increased sample size. Although centralized data-collection approaches have domi-

nated the collaborative scene, a number of decentralized approaches—those that

avoid gathering data at a shared central store—have grown in popularity. We expect

the prevalence of decentralized approaches to continue as privacy risks and commu-

nication overhead become increasingly important for researchers. In this article, we

develop, implement and evaluate a decentralized version of one such widely used

tool: dynamic functional network connectivity. Our resulting algorithm, decentralized

dynamic functional network connectivity (ddFNC), synthesizes a new, decentralized

group independent component analysis algorithm (dgICA) with algorithms for

decentralized k-means clustering. We compare both individual decentralized compo-

nents and the full resulting decentralized analysis pipeline against centralized coun-

terparts on the same data, and show that both provide comparable performance.

Additionally, we perform several experiments which evaluate the communication

overhead and convergence behavior of various decentralization strategies and

decentralized clustering algorithms. Our analysis indicates that ddFNC is a fine candi-

date for facilitating decentralized collaboration between neuroimaging researchers,

and stands ready for the inclusion of privacy-enabling modifications, such as differen-

tial privacy.
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1 | INTRODUCTION

The prospects of sharing data across studies provide researchers with

clear and exciting prospects for collaborative analysis. Although the

possible advantages to data-sharing are clear—increasing sample size

and diversity, for example—directly transferring samples between

sites is not always feasible, or desirable. Lack of post hoc sharing pro-

visions, tedious negotiations of data usage agreements (DUAs), and
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limitations on local storage and bandwidth may all impede efforts for

direct sharing. Additionally, in privacy-sensitive settings, direct sharing

of data comes at the risk of reidentification, which becomes especially

important in cases where samples belong to particularly rare groups,

such as rare patient populations. Although steps toward

anonymization in direct sharing scenarios can be taken, this anonym-

ity often comes at the expense of data richness, or in the best cases,

at the expense of significant effort by the collaborators involved.

Direct sharing of data is most often favored by centralized analy-

sis frameworks, which pool data in one location. Though centralized

sharing efforts can be powerful, to overcome the limitations outlined

above, the research community requires a new family of decentralized

approaches, where the analysis is performed without any direct data

transfer, and data remains stored on disparate sites. One such

decentralized alternative utilized by the ENIGMA framework performs

meta-analyses utilizing summary statistics and references to existing

literature to perform analysis (Thompson et al., 2014, 2017). Though

the approach ingeniously skirts issues endemic to centralized

approaches, heterogeneity among studies and reliance on summary

statistics tend to negatively impact the effectiveness of meta-analysis

approaches.

The answer to the shortcomings of meta-analysis frameworks are

iterative decentralized methods, where numerical optimization

methods and other analysis techniques are split across multiple sites.

Aggregation of shared iterates between sites allow these

decentralized analysis frameworks to converge to solutions which are

equivalent to the pooled case. The developers of the COINSTAC

decentralized analysis framework (Plis et al., 2016) have successfully

amassed a number of decentralized algorithms vital to neuroimaging

analysis, including but not limited to independent vector analysis

(Wojtalewicz, Silva, Calhoun, Sarwate, & Plis, 2017), deep neural net-

works (Lewis, Plis, & Calhoun, 2017), and voxel-based morphometry

(Gazula et al., 2018). In this work, we further one particular iterative

pipeline, decentralized dynamic functional network connectivity

(ddFNC), which combines a number of distinct and useful algorithms

used primarily in neuroimaging analysis. We build on preliminary work

introduced elsewhere (Gazula et al., 2018), extending the presentation

of ddFNC to include more thorough analysis of the individual algo-

rithms contained within it.

1.1 | Dynamic functional network connectivity

Functional connectivity (FC) (Van Den Heuvel & Pol, 2010) is one

popular method for neuroimaging analysis which evaluates the con-

nectivity between functional networks extracted from functional mag-

netic resonance images (fMRI). In particular, the assessment of FC

from resting-state data has revealed new findings surrounding the

high-level spatio-temporal organization of the brain. In this section,

we present a framework for performing decentralized dynamic func-

tional network connectivity (ddFNC) analysis (where FNC refers to

the evaluation of FC between brain networks or components rather

than isolated seeds). The resulting multistep framework includes

decentralized versions for each step of the standard dynamic func-

tional network connectivity (dFNC) pipeline, including novel algo-

rithms for decentralized principal component analysis (GlobalPCA) and

decentralized group independent component analysis (dgICA), as well

as an application of decentralized K-Means clustering to completely

reproduce the full dFNC pipeline.

The standard, data-driven approach to assess FNC dynamics, uti-

lizes (a) spatial independent component analysis (ICA), (b) sliding win-

dow temporal correlation, and (c) k-means clustering of windowed

correlation matrices in order to evaluate connectivity between distinct

functional networks. The approach, described by Allen et al. (2014)

utilizes group ICA (GICA; Calhoun, Adali, Pearlson, & Pekar, 2001) to

decompose resting-state data from multiple subjects into statistically

independent functional regions. To evaluate temporal dynamics in

FNC, the correlation between component timecourses are then com-

puted using a series of sliding windows (Sako�glu et al., 2010). Finally,

k-means clustering is used to identify FNC patterns that reoccur in

time and across subjects. These resulting clusters are called “FNC

states,” describing short periods during which FNC topography

remains relatively stable in the functional domain. In particular, these

states and their shift over time can be used to evaluate group differ-

ences between patients suffering from various kinds of mental illness

and healthy controls (Damaraju et al., 2014; Rashid, Damaraju,

Pearlson, & Calhoun, 2014).

1.2 | Federated learning for neuroimaging

Although no other methods for decentralized dFNC exist in the litera-

ture, a number of other approaches for federated learning on neuro-

imaging data exist in the literature. First, meta-analysis frameworks

such as ENIGMA (Thompson et al., 2014, 2017), perform analysis on

local data, where meta-statistics of the analyses are then aggregated

in a decentralized fashion to produce global results. For example, Silva

et al. implement the ENIGMA framework to provide structural analy-

sis of subcortical brain data between multisite neuroimaging studies

(Silva et al., 2019).

As mentioned above, meta-analyses can introduce artifacts to

standard machine-learning algorithms due to heterogeneity between

studies. As such, a number of approaches for iterative federated train-

ing of machine-learning algorithms have been proposed in the litera-

ture. In general machine-learning applications much focus has been

given to federated deep learning (Bonawitz et al., 2019; Geyer,

Klein, & Nabi, 2017; Konečn�y et al., 2016; Konečn�y, McMahan, Ram-

age, & Richtárik, 2016; Sattler, Wiedemann, Müller, & Samek, 2019;

Smith, Chiang, Sanjabi, & Talwalkar, 2017), since training of deep

learning models requires large amounts of data which may be

decentralized across a data network.

In neuroimaging applications, a more diverse array of algo-

rithms has recently appeared for federated learning. On the deep

learning side, Lewis et al. propose apply a decentralized approach

for deep learning to aid in the classification of neuroimaging addic-

tion data (Lewis et al., 2017). Similarly, Remedios et al. provide a
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decentralized application of deep learning for neuroimage segmen-

tation (Remedios et al., 2020). Decentralized joint independent

component analysis (Baker, Silva, Calhoun, Sarwate, & Plis, 2015),

independent vector analysis (Wojtalewicz et al., 2017),

decentralized stochastic neighbor embeddings (Saha et al., 2019),

and voxel-based morphometry (Gazula et al., 2018) have also been

applied to the analysis of decentralized neuroimaging data. In gen-

eral, many of these frameworks proceed by iteratively computing

the statistics used for optimization of a particular algorithm in a

decentralized way. Although the statistics used for optimization are

different and present novel challenges, our algorithm for ddFNC

will proceed much in the same way.

2 | MATERIALS AND METHODS

In this section, we present the data and experimental methodology

utilized to evaluate decentralized group ICA, along with decentralized

PCA (parallel and otherwise), decentralized clustering as well as the

complete decentralized dFNC pipeline. First, Section 2.1 presents our

novel method for performing group ICA in a decentralized setting.

Second, Section 2.1.1 presents a novel method for performing

decentralized PCA in parallel, improving the runtime of our previous

decentralized PCA method.

Section 2.4 describes the functional MRI data used for evaluation

of all novel methods. Then, Section 2.5 provides outlines of all the

experiments performed for each method.

2.1 | Decentralized group ICA

The first step in the dFNC pipeline for fMRI is group independent

component analysis (gICA) (Calhoun et al., 2001). Suppose that

sites collect data X ∈ Rd × N, where d is the size of the voxel dimen-

sion, and N is the total number of timepoints across all subjects on

all sites. In linear spatial ICA, we model each individual subject as a

mixture of r statistically independent spatial components,

A ∈ Rd × r, and their timecourses, Si∈Rr ×Ni , where Ni is the length of

the timecourse belonging to site i. Although there are multiple

approaches to aggregating subjects for the group analysis

(Rachakonda, Silva, Liu, & Calhoun, 2016), we can model the global

(i.e., cross-site) data set X as the column-wise concatenation of s sites

in the temporal dimension:

X= AS1� � �ASi � � � ASs½ �∈Rd×N,

where [� � �] represents column-wise concatenation, s is the total num-

ber of sites in the consortium, and each site is modeled as a set of

subjects concatenated in the temporal dimension as

ASi = Xi = [Xi1� � �Xim� � �XiM], that is, the collection of all M subjects

in site i. The advantage of the temporal concatenation approach is

that it only requires the computation of one ICA, yielding unique

timecourses for each subject while assuming common group spatial

maps. Thereafter, subject-specific maps can be easily estimated via

local back-reconstruction. Spatial concatenation for group analysis is

also possible, allowing for direct estimation of unique spatial maps

while assuming common timecourses instead. Although the two

approaches to concatenation amount to different ways of organizing

the data, temporal concatenation appears to perform better for fMRI

data (Schmithorst & Holland, 2004).

In this work, the goal is to learn a cross-site global unmixing

matrix, B ∈ RN × r, such that Â =XB≈A , where Â∈Rd× r is the set of

unmixed maximally spatially independent components. To this end,

we perform a decentralized group independent component analysis

(dgICA), and use least squares to estimate the m-th subject's temporal

components in the i-th site by computing Ŝim =A−Xim, where A− is the

pseudo-inverse of the estimated sources.

Prior to ICA, we perform principal component analysis (PCA),

as is typically done to reduce computational complexity and/or

memory usage. In order to prevent disparate sites from obtaining

full data samples, we resort to decentralized PCA (Baker et al.,

2015). First, however, a (local) subject-wise preprocessing step

recommended prior to spatial GICA (Rachakonda et al., 2016) is

performed, thus constituting a minor variation of the two-stage

decentralized PCA procedure utilized in Baker et al. (2015). Effec-

tively, all sites preprocess each subject by removing local means

in the voxel dimension, followed by reducing and whitening their

temporal dimension to a common (and large) k1 components.

Then, decentralized PCA of the preprocessed data takes place in

the usual two stages. First, each site performs a LocalPCA

dimension-reduction (without whitening) of all preprocessed

concatenated local subject data to a common k2 principal compo-

nents in the temporal dimension. A decentralized second stage

(GlobalPCA) then produces a global set of r spatial eigenvectors,

U ∈ Rd × r. As outlined in Baker et al. (2015), this second stage

asks sites to pass locally-reduced eigenvectors to other sites in a

round-robin scheme where, upon receiving a set of eigenvectors,

a site then stacks them in the column dimension along with its

local preprocessed (but not k2 reduced) data, and performs a fur-

ther reduction of the stacked matrix. The resulting (locally

updated) set of k2 eigenvalues is then passed to the next peer in

the network. This process iterates once through each site until

the global eigenvectors reach some aggregator, or otherwise ter-

minal site in the network. The algorithms for the LocalPCA and

GlobalPCA steps are given in 3 and 1, respectively. Following the

recommendation for choices of k1 and k2, we follow the recom-

mendations in Erhardt et al. (2011) and Rachakonda et al. (2016),

choosing k1 = 120 and k2 = 5 � r.
After performing decentralized PCA either via GlobalPCA or some

other decentralized algorithm, the aggregator site then performs whit-

ening on these resulting global eigenvectors and runs a local ICA algo-

rithm, such as infomax ICA (Bell & Sejnowski, 1995), or fastICA

(Hyvarinen, 1999) to produce the spatial unmixing matrix, W ∈ Rr × r.

The global eigenvectors, U, are then unmixed to produce Â by com-

puting Â =UW, which is shared across the decentralized network (4).

Each site i then uses this unmixing matrix to produce individual
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timecourses for each m-th subject by computing Ŝim =A−Xim . Each

site can then perform back-reconstruction or spatio-temporal regres-

sion (STR) approaches locally (Calhoun et al., 2001; Erhardt et al.,

2011) to produce subject-specific spatial maps, such as Âim =XimS
−
im in

GICA1 back-reconstruction, where S−
im is the pseudo-inverse of Ŝim.

2.1.1 | Parallel global PCA

The global PCA algorithm given above in 1, taken from Baker et al.

(2015)), can be extended from the serial version so that it runs in parallel,

thus taking advantage of the decentralized nature of the computation to

also increase computation speed. The parallel strategy involves breaking

up the consortium into subclusters, where GlobalPCA is computed in

parallel within the subclusters until the final eigenvectors U arrive at the

aggregator. A diagram of the process for a consortium of eight sites is

given in Figure 1, and the general algorithm is given in 6.

2.2 | Decentralized clustering

In order to perform dFNC in a decentralized setting, we first require a

notion of decentralized clustering, used to cluster windowed patient

ALGORITHM 1

Global PCA algorithm (GlobalPCA)

Require: s sites with preprocessed data

Xi∈Rd ×k1 :i=1,2,…,s
� �

, intended final rank r,

local rank k≥r.

1: Choose a random order π for the sites

2: P(1) = LocalPCA(Xπ(1), min{k, rank(Xπ(1))})

⊳ Assume

3: for j = 2, 3, …, s do ⊳ Round-robin scheme

4: i = π(j) ⊳ Set site index

5: Send P(j − 1) from site π(j − 1) to site π(j)

6: k
0
= min{k, rank(Xi)}

7: P
0
= LocalPCA(Xi, k

0
)

8: k
0
= max{k

0
, rank(P(j − 1))}

9: P(j) = LocalPCA([P
0
P(j − 1)], k

0
)

10: end for

11: r
0
= min{r, rank(P(s))}

12: U= NormalizeTopColumns(P(s), r
0
)

⊳ At last site

ALGORITHM 4

Decentralized group ICA algorithm (dgICA)

Require: s sites with data

Xi∈Rd ×Ni :i=1,2,…,s
� �

, intended final rank r,

local site rank k2≥5 �r, local subject rank

k1≤Nim.

1: for all sites i = 1, 2, …, s do

2: for all subjects m = 1, 2, …, M do

3: Xpre
i,m =Xi,m−μ Xi,mð Þ

⊳ Remove column means.

4: Xpre
i,m = NormalizeTopColumns(LocalPCA

(Xi,m,k1), k1)

5: end for

6: end for

7: U= GlobalPCA Xpre
i ∈Rd ×k1 :i=1,2,…,s

� �
,r,k2

� �

8: W = ICA(U) ⊳ At aggregator site i = π(s)

9: Send Â=UW to sites π(1), …, π(s−1)

ALGORITHM 2

NormalizeTopColumns

Require: data P and number of columns to

reduce r
0
.

1: U = P1=kP1k,P2=kP2k, � � �,Pr0=kPr0 k½ �
⊳ first r

0
columns of P

2: return U.

ALGORITHM 3

Local PCA algorithm (LocalPCA)

Require: data X ∈ Rd × N and intended rank k.

1: Compute the SVD X = UΣV.

2: Let Σ(k) ∈ Rk × k contain the largest k singular

values and U(k) ∈ Rd × k the corresponding

singular vectors

3: Save U(k) and Σ(k) locally and

return P = U(k)Σ(k)

ALGORITHM 5

Back-reconstruction

Require: Global unmixing matrix Â=UW, local

data {Xi,1,…,Xi,M} on site i.

1: for all subjects m = 1, 2, …, M do

2: Ŝi,m = Â
−
Xi,m

⊳ Retrieve subject timecourses

3: Âi,m =Xi,mS−
i,m ⊳ Use Spatio-Temporal

regression or other back-reconstruction

(Calhoun et al., 2001; Erhardt et al., 2011)

to retrieve subject-specific spatial maps

4: end for
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timecourses into one of several connectivity states. Although other

kinds of clustering are possible, previous work in dFNC has focused

on the use of K-Means clustering, and thus, we focus first on

decentralized K-Means clustering. A number of decentralized

approaches to K-Means exist: first, Dhillon and Modha (2002) imple-

ment an exact version of Lloyd's algorithm for K-Means over distrib-

uted memory multiprocessors, where each processor broadcasts an

updated set of local centroids, according to locally stored data, and

global centroids are aggregated by taking the average of these local

centroid updates. Jagannathan et al. implement a similar version of

this approach, but add additional privacy guarantees via encrypted

message passing, and random sharing of centroids, rather than sharing

at each iteration (Jagannathan & Wright, 2005). Jagannathan et al.

also provide a general version of privacy-preserving clustering (includ-

ing K-Means), where rather than sharing centroid locations each itera-

tion, local clusters are computed to convergence, and then merged at

some aggregator site (Jagannathan, Pillaipakkamnatt, & Wright, 2006).

Finally, a number of modern methods improve over standard methods

with additional features often attractive in real-network scenarios. For

example, Datta et al. provide an approximative, peer to peer methods

for distributed K-Means (Datta, Giannella, & Kargupta, 2006; Datta,

Giannella, & Kargupta, 2009), and Di et al. provide a fault-tolerant ver-

sion of dK-Means, well-suited to large, asynchronous networks

(Di Fatta, Blasa, Cafiero, & Fortino, 2013).

Our aim in this article is to provide a novel, end-to-end pipeline

for decentralized dFNC, which includes clustering. Thus, which exact

choice of algorithm is made for the decentralized K-Means step is an

implementation choice, rather than an essential part of our pipeline.

For our purposes, we test four different version of simple

decentralized K-Means algorithms, focusing primarily on differences

in centroid computation and updates, rather than details such as asyn-

chronous updates, or peer to peer schema. First, we implement the

algorithm from Dhillon and Modha (2002), and we also implement a

version of the same iterative algorithm using a decentralized gradient

update, rather than exact centroid computation. For this latter strat-

egy, we implement the gradient-descent algorithm described in

Bottou and Bengio (1995), where at each iteration, locally computed

gradients are averaged on the aggregator node in place of locally com-

puted centroids. Finally, we implement version of these algorithms

using the cluster aggregation strategy described in Jagannathan et al.

(2006); however, we omit the additional privatization strategies for

simplicity's sake. The two former strategies we call “multishot,”

because they involve decentralization at each iteration of the algo-

rithm, and the two later strategies we call “single-shot” because they

involve aggregation of the results of locally converged optimization

strategies (Figure 2).

To perform clustering for distributed dFNC, we first have each

site compute sliding-window timecourse correlations for each subject,

where the window length is fixed across the decentralized network.

Additionally, initial clustering is performed on a subset of windows

from each subject, corresponding to windows of maximal variability in

correlation across component pairs. To obtain these exemplars, we

follow the approach from Damaraju et al. (2014), and have each site

compute variance of dynamic connectivity across all pairs of compo-

nents at each window. We then select windows corresponding to

local maxima in this variance timecourse. This results in an average of

eight exemplar windows per subject. We then perform decentralized

K-Means on the exemplars to obtain a set of centroids, which are

shared across the decentralized network, which we feed into a second

stage of K-Means clustering.

For the second stage of decentralized clustering, at each iteration,

each site computes updated centroids according to Dhillon and

ALGORITHM 6

Parallel Global PCA algorithm (pGlobalPCA)

Require: s sites with data

Xi∈Rd ×Ni :i=1,2,…,s
� �

, intended final rank r,

local rank k≥r, cluster size = C, base cluster

size = B.

1: K = bs/Cc ⊳ Number of Clusters

2: if K > B then ⊳ At an “aggregator” site

3: for all c = 1, 2, …, K do

4: a = (c − 1)C + 1

5: b = min(c � C, s)

6: Uc= pGlobalPCA(b – a, {Xa, …, Xb}, k, r)

7: end for

8: U= pGlobalPCA(K, {P1, …, PK}, k, r)

9: else ⊳ at a non-“aggregator” site

10: U= GlobalPCA(s, {X1, …, Xs}, r, k)

11: if At final aggregator then

12: U = NormalizeTopColumns(U)

13: end if

14: end if

15: return U

F IGURE 1 Diagram of the pGlobalPCA algorithm for a

consortium of s = 8 sites, with cluster size C = 2. First, the recursion of
the algorithm breaks the full consortium into clusters of decreasing
size until the number of sites in each cluster is equal to C. Then, each
cluster performs the standard GlobalPCA. As the recursion steps back
from this base-case, the result from GlobalPCA is passed between
subclusters, and GlobalPCA performed again until the recursion ends
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Modha (2002), which corresponds to a local K-Means update. These

local centroids are then sent to the aggregator node, which computes

the weighted average of these updated centroids, and rebroadcasts

the updated global centroids until convergence. A summary of the

complete steps in the dFNC pipeline is given in Figure 3.

2.3 | Computational complexity

Because ddFNC is a pipeline containing multiple distinct algorithmic

components, the overall computational complexity of the pipeline will

depend greatly on implementation details for each pipeline stage. The

choice of ICA algorithm, or whether or not an iterative method is used

to computed SVD, for example, will greatly influence the actual com-

plexity of the entire pipeline. That said, we provide an initial analysis

of the GlobalPCA component of our pipeline as presented here, with

the caveat that further changes can still be made within each of these

depending on implementation preferences and availability of compu-

tational resources. We omit an analysis of complexity for ICA, since in

principle any ICA algorithm could be used, and complexity varies with

the choice of algorithm.

The overall computational complexity of ddFNC is best analyzed

in terms of the complexity on individual sites, since the decentraliza-

tion of the algorithm reduces overall complexity into a sum of individ-

ual computational demands at each site. Suppose at an individual site,

we begin with the matrix of temporally concatenated subjects

Xi∈Rd×Ni .

The complexity of Global PCA can be analyzed in terms of the

complexity for the two singular value decompositions performed first

(a)

(b)

F IGURE 2 Diagram of the multishot and single-shot dK -
Means algorithms. Panel a outlines the multishot schema using
gradient descent or Lloyd's algorithm. First, randomized centroids
are picked by the aggregator, and broadcast out to the sites. Each
site then computes cluster membership, and perform their dK -
Means updates, either by computing a gradient, or by updating the
centroid according to Lloyd's algorithm. These are then broadcast
back to the aggregator, and aggregated into new centroids or
gradients. New centroids are then rebroadcast, and the algorithm
continues until convergence. In panel b, a diagram of the single-
shot schema is given. In this approach, each site performs a
separate, local K-Means optimization, and the final centroids are
broadcast to the aggregator, which then merges clusters either by
merging nearest centroids, or by querying sites to compute a
merging error, as is done in Jagannathan et al. (2006)

ALGORITHM 7

Decentralized dFNC algorithm (ddFNC)

Require: s sites with data

Xi∈Rd ×Ni :i=1,2,…,s
� �

, win-size t, number of

clusters k.

1: dgICA ! W, global unmixing matrix. Compute

Â=UW, and broadcast to sites

2: for all sites = i = 1, 2, …, s do

3: Ŝi,m = Â
−
Xi,m

⊳ Back-reconstruct subject TCs

4: for all windows w = 1, 2, …, Ni − t do

5: Ŝi,m,w = Ŝi,m,w…Ŝi,m, w +tð Þ
� �

⊳ Sliding window of size t over time

6: Vi,m,w =corr Ŝi,m,wð Þ
7: end for

8: Obtain local exemplar correlation matrices

Vi, ex using the process from Damaraju

et al. (2014)

9: end for

10: Run dK-Means(Vex) (Dhillon & Modha, 2002) to

obtain k initial centroids, C0

11: Run dK-Means(V) (Dhillon & Modha, 2002) with

initial clusters C0 to obtain k centroids C,

and clustering assignment for each

instance, L

12: Return C, L
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on the covariance matrix Xi∈RNi ×Ni , and second on the k1× k1 matrix

computed from stacking eigenvectors. Standard algorithms for com-

puting SVD by Jacobi rotations have a complexity of O(n3) when com-

puted on an n× n covariance matrix (Cline & Dhillon, 2006). Thus, if

GlobalPCA uses standard SVD, the overall complexity will be

O N3
i

� 	
+O k31

� 	
, with complexity generally increasing as the number

of subjects on local sites increases, or as the desired number of inde-

pendent components increases.

Prior to decentralized K-Means, each site computes correlation

matrices on the windowed timecourses of length Ni, j − w for each

subject j. If mi subjects are located at a given site, then the local com-

plexity for computing these matrices is O mi Ni−wð Þk31
� 	

, so again local

computational cost increases with the number of subjects, the number

of timepoints at each subject, and the desired number of independent

components k1.

For an analysis of decentralized K-Means, we refer the reader to

the discussion in Dhillon and Modha (2002). Let J is the number of

K-Means iterations required for the centroid stability for K-Means

with C centroids, and let Si = mi(Ni−w) be the number of correlation

matrices computed at each site. The analysis provided in Dhillon et al.

gives the site-wise computational complexity for dK-Means as

O 3Ck21 + SiC + Sik
2
1 +Ck

2
1

� 	
�J

� 	
. For our pipeline, the choice of

decentralized K-Means algorithm is modular, and local site complexity

may be reduced in a number of different ways. For example,

implementing a decentralized version of K-Means++ initialization

(Arthur & Vassilvitskii, 2006; Bachem, Lucic, Hassani, & Krause, 2016;

Bahmani, Moseley, Vattani, Kumar, & Vassilvitskii, 2012) to may lower

the number of iterations required for stability, thus reducing site-wise

complexity as well as overall complexity. Because further analysis

requires digging into the particulars of K-Means and decentralized K-

Means which is outside the scope of this article, we leave further anal-

ysis of complexity for K-Means as future work.

2.4 | Functional MRI data for dFNC

To evaluate ddFNC, we utilize imaging data from Damaraju et al.

(2014) collected from 163 healthy controls (117 males, 46 females;

mean age 36.9) and 151 age—and gender matched patients with

schizophrenia (114 males, 37 females; mean age 37.8), for a total of

314 subjects.

The scans were collected during an eyes closed resting fMRI pro-

tocol at seven different sites across the United States (see Table 1)

and pass data quality control. Informed and written consent was

obtained from each participant prior to scanning in accordance with

the Internal Review Boards of corresponding institutions (Potkin &

F IGURE 3 Flowchart of the ddFNC procedure, for example, with two sites, using multishot Lloyd's algorithm for K-Means clustering. To
perform dgICA, sites first locally compute subject-specific LocalPCA to reduce the temporal dimension, and then use the GlobalPCA procedure
from Baker et al. (2015) to compute global spatial eigenvectors, which are then sent to the aggregator. The aggregator then performs ICA on the
global spatial eigenvectors, using InfoMax ICA (Bell & Sejnowski, 1995), for example, and passes the resulting spatial components back to local
sites. The dK-Means procedure then iteratively computes global centroids using the procedure outlined in Dhillon and Modha (2002), first
computing centroids from subject exemplar dFNC windows, and then using these centroids to initialize clustering over all subject windows
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Ford, 2008). A total of 162 brain-volumes of echo planar imaging

BOLD fMRI data were collected with a temporal resolution of 2 s on

3-Tesla scanners.

Imaging data for six of the seven sites was collected on a 3 T Sie-

mens Tim Trio System and on a 3 T General Electric Discovery

MR750 scanner at one site. Resting-state fMRI scans were acquired

using a standard gradient-echo echo planar imaging paradigm: FOV of

220 × 220 mm (64 × 64 matrix), TR = 2 s, TE = 30 ms, FA = 770,

162 volumes, 32 sequential ascending axial slices of 4 mm thickness

and 1 mm skip. Subjects had their eyes closed during the resting-state

scan. Data preprocessing for dgICA was performed according to the

preprocessing steps in Damaraju et al. (2014).

2.5 | Experiments

In this section, we describe each of the experiments performed to

step the various parts of our ddFNC pipeline. Since the ultimate goal

is to provide ddFNC, we concentrate the bulk of our quality analysis

on that final output; however, at each stage, we perform a number of

small evaluations to make sure each piece works individually using

either simulated data. We also measure the runtime of each stage

separately, and compare runtimes and quality measures for different

implementations of each algorithm.

2.5.1 | Decentralized group ICA

In this section, we present the experimental methodology used to

evaluate decentralized group ICA, which includes decentralized PCA.

Do pGlobalPCA and GlobalPCA produce equivalent components?

Although it is clear mathematically that pGlobalPCA and GlobalPCA

are equivalent, we perform a brief initial experiment to provide empir-

ical evidence of the equivalence. First, to evaluate our novel method

for parallel decentralized PCA, we generate a synthetic data set using

the MATLAB randn function. We generate a single 100 × 100 data

set, and use pooled PCA, GlobalPCA, and pGlobalPCA to reduce the

column dimension to 10 principal components. For GlobalPCA and

pGlobalPCA, we first split the data set onto 10 simulated “sites,”

where each site contains 10 rows of the original matrix. If pGlobalPCA

and PCA are functionally equivalent, we expect the correlation matri-

ces to be nearly completely diagonal. We repeat this experiment

1,000 times for each algorithm, and plot the results in Figure 4.

After completing the synthetic experiments, we perform the same

experiment using the real data described above. We utilize the site

distribution used above, and again compute the correlation of the

estimated PCs, and plot the results in Figure 5. For real data, we

repeat each experiment 100 times, with each repetition shuffling sub-

jects between the sites.

How does pGlobalPCA improve runtime?

The parallelization in pGlobalPCA (6) should provide a performance

improvement over vanilla GlobalPCA (1), especially in consortia with

F IGURE 4 Runtime comparison of GlobalPCA (1) and Parallel Global PCA (pGlobalPCA, 6) for three different scenarios. In panel (a), we
increase the number of subjects in a global consortium with two fixed sites. In panel (b), we increase the number of sites in a global consortium,
keeping the number of subjects fixed at 1,024. In panel (c), we increase the number of sites and subjects simultaneously. The blue curve
represents the mean runtime over 10 repeated runs for the GlobalPCA algorithm, and the green curve represents the mean runtime over
10 repeated runs for the pGlobalPCA algorithm

TABLE 1 Distribution of subjects over original seven sites

Site HC SZ Total

1 28 24 52

2 9 9 18

3 28 26 54

4 28 23 51

5 14 13 27

6 28 29 57

7 28 27 55
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a large number of sites, allowing for many computations to be per-

formed in parallel. In order to test this hypothesis, we perform

two experiments designed to evaluate the runtime of GlobalPCA

and pGlobalPCA, and how pGlobalPCA offers an improvement

over GlobalPCA for certain distributions of subjects over the

network.

First, we perform an experiment with synthetic data, using the

same data-generation process as above. In order to evaluate how the

runtime improvement for pGlobalPCA varies depending on the sub-

ject/site distribution, we vary both the size of the global data set and

the number of sites in the consortium in order to evaluate how the

distribution of data affects the runtime of both algorithms.

Again, we repeat a similar experiment utilizing the real data set,

evaluating how the distribution of subjects over the network affects

the runtime of GlobalPCA and pGlobalPCA. We begin with two sub-

jects, and increase by powers of two until we are dividing the 314 sub-

jects over 64 sites.

How does the choice of ICA method affect performance?

ddFNC is a highly modular algorithm, thus allowing for the aggregator

node in a given consortium to choose from any kind of Group ICA

algorithm made available. Thus, we perform a brief analysis which

compares multiple ICA algorithms in terms of component estimation

quality and runtime. To measure the quality of components, we match

the estimated components from the given ICA algorithm with the

components estimated in Damaraju et al. (2014), selecting the top

components which best match with that ground truth. Then, we com-

pute the Moreau–Amari Inter-Symbol Interference index (Amari,

Cichocki, & Yang, 1996) between the estimated components and the

components from Damaraju et al. (2014), and plot the results for the

given choice of algorithm. We note that in Damaraju et al. (2014), the

authors utilize infomax ICA, and so a decentralized infomax will have

a comparative edge over other methods.

2.5.2 | Decentralized clustering

We perform dK-Means (Dhillon & Modha, 2002) on the computed

correlation matrices from the sliding windows described above. We

first cluster the “exemplar” temporal windows computed for each sub-

ject according to the strategy utilized in Damaraju et al. (2014), and

then utilize these centroids to cluster the entire set of computed win-

dows. This provides a set of a k = 5 resulting centroids as well as clus-

tering assignments for each subject's window.

2.5.3 | Decentralized dFNC

In this section, we present the experimental methodology used to

evaluate the final results of the decentralized dynamic dFNC pipeline.

We verify that ddFNC can generate sensible dFNC clusters by

replicating the centroids produced in Damaraju et al. (2014). We

closely follow the experimental procedure in Damaraju et al. (2014),

with some of the additional postprocessing omitted for simplicity. To

evaluate the success of our pipeline, we run a simple experiment

where we implement the ddFNC pipeline end-to-end on the data,

simulating 314 subjects being evenly shared over two decentralized

sites.

We use a window length of 22 timepoints (44 s), for a total of

140 windows per subject. For dgICA, we first estimate 120 subject-

specific principal components locally, and reduce each subject to

120 points in the temporal dimension. Subjects are then concatenated

temporally on each site, and we use the parallel GlobalPCA algorithm

to estimate 100 spatial components, and perform whitening. We then

use local infomax ICA (Bell & Sejnowski, 1995) on the aggregator to

estimate the unmixing matrix W, and estimate 100 spatially indepen-

dent components, Â. We then broadcast Â back to the local sites, and

each site computes subject-specific timecourses.

After spatial ICA, we have each site perform a set of additional

postprocessing steps prior to decentralized dFNC. First, we select

47 components from the initial 100, by computing components which

are most highly correlated with the components from Damaraju et al.

(2014). We then have each site drop the first two points from each

subject, regress subject head movement parameters with six rigid

body estimates, their derivatives and squares (total of 24 parameters).

Additionally, any spikes identified are interpolated using third order

spline fits to good neighboring data, where spikes are defined as any

points exceeding mean (FD) + 2.5 * std(FD), where FD is framewise

displacement (interpolating 0–9 points (mean, SD: 3, 1.76)).

For clustering in general, elbow-criterion estimation can be used

to determine an optimal number of clusters. For comparison's sake,

however, we use the optimal number of clusters from Damaraju et al.

(2014), setting k = 5. For the exemplar stage of clustering, we evaluate

200 runs where we initialize centroids uniformly randomly from local

data, and then run dK-Means using the cluster averaging strategy in

Dhillon and Modha (2002). For our distance measure, we use scikit-

learn (Pedregosa et al., 2011) to compute the correlation distance
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F IGURE 5 Correlation of components estimated from GlobalPCA
and Parallel GlobalPCA, averaged over 10 separate runs
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between covariance matrices following the methods in Damaraju

et al. (2014). To keep our implementation simple, unlike Damaraju

et al. (2014), we do not utilize graphical LASSO to estimate the

covariance matrix, and thus do not optimize for any regularization

parameters. Additionally, we do not perform additional Fisher-Z trans-

formations or perform additional regularization using a previously

computed static dFNC result. Future implementations may also utilize

a decentralized sFNC algorithm as preprocessing, as is done for the

pooled case in Damaraju et al. (2014). Finally, for the second stage of

dK-Means, we initialize using the centroids from the run with the

highest silhouette score, computed using the scikit-learn python tool-

box (Pedregosa et al., 2011), again running dK-Means to convergence.

After computing the centroids, we use the correlation distance and

the Hungarian matching algorithm (Kuhn, 1991) to match both plotted

spatial components from dgICA and the resulting centroids from dK-

Means.

Finally, to make a more direct comparison between our analysis

and the pooled case, we compare the resulting centroids with cen-

troids estimated using pooled K-Means, measuring the correlation

between the resulting centroids over multiple runs.

We also separate out the centroids for each group, and visualize

them according to the procedures in Damaraju et al. (2014). Following

the procedures in Damaraju et al. (2014), we first calculated the

element-wise subject medians for each state according to the final

clustering assignments from dK-Means. We then use the subject

medians for each state and evaluated the differences between patient

and healthy-control groups using a two sample t-test.

3 | RESULTS AND DISCUSSION

3.1 | GlobalPCA versus pGlobalPCA

In Figure 5, we plot the correlation of the components estimated from

GlobalPCA and pGlobalPCA, averaged over 10 repeated runs, where

each run created a new simulated matrix to be reduced. Clearly, the

results indicate near-equivalence of the two algorithms, with minor

differences likely due to noise from the serial GlobalPCA utilizing a

different, random ordering of sites, or from the stochastic nature of

infomax ICA.

In Figure 4, we plot the average runtime for GlobalPCA and

pGlobalPCA across three different scenarios of changing the subject

and site distributions across a consortium. In panel a, we increase the

number of subjects in a global consortium with two fixed sites. In

panel b, we increase the number of sites in a global consortium, keep-

ing the number of subjects fixed at 1,024. In panel c, we increase the

number of sites and subjects simultaneously.

The runtime comparison for the fixed number of sites in panel a

illustrate the equivalent runtime for each algorithm in a scenario

where the total number of sites is equal to the number of allowed

cluster groups in pGlobalPCA. In such cases, where the parameter b is

set to equal the number of sites in the consortium, pGlobalPCA is

equivalent to GlobalPCA, and the algorithms perform comparatively.

The runtime comparison in figure b, however, illustrates the bene-

fits of parallel, decentralized PCA. In a highly distributed setting,

where the number of sites is much larger than the parameter b,

pGlobalPCA decreases runtime over standard GlobalPCA by executing

certain steps in parallel, leveraging the decentralized design to

improve runtime.

Panel c illustrates both a failure case for pGlobalPCA, where

increased bandwidth between many small sites with small data

invokes a small hit in runtime; however, it also illustrates that

pGlobalPCA does not suffer as significant of a hit as more sites are

added into the consortium, whereas the serial design of GlobalPCA

suffers significantly.

3.2 | dgICA results

Figure 6 plots the Moreau–Amari Index for several different ICA algo-

rithms performed at the aggregator node. In Figure 7 we plot some of

the estimated components from dgICA with infomax ICA, and com-

pare with the matched components from pooled ICA. We also provide

the correlation of estimated components in Figure 7c,d. Indeed, dgICA

with Infomax ICA provides components which are a good estimate of

the pooled case, with the ISI between pooled and decentralized cases

measured below 0.1, and the component-wise correlation of compo-

nents providing a near exact estimate of the pooled components. This

indicates that our decentralization strategy works, and does not incur

a significant penalty to quality of the estimations via decentralization

alone. This assurance of quality in decentralization may change when

privacy measures, such as differential privacy, are taken; however, our

analyses here is sufficient to show that decentralization alone does

not significantly affect the quality of estimation, and we leave the

F IGURE 6 The Moreau–Amari Index (y-axis) computed for our
algorithm, compared over multiple ICA algorithms (x-axis). Choices of
ICA algorithm were evaluated 10 times over the same set of principal
components, and then compared with the ground truth set of
estimated components
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further problem of assuring estimation along with quality for

future work.

3.3 | ddFNC results

In Figure 7, we plot some examples of the components estimated

from decentralized spatial ICA in comparison with the spatial compo-

nents from Damaraju et al. (2014), after performing Hungarian

matching between the estimated spatial maps. We also plot the corre-

lation of the components from our ICA implementation in comparison

to the components from Damaraju et al. (2014). Indeed, the estimated

components are highly correlated with the results from Damaraju

et al. (2014), for all 100 estimated components, as well for the

47 selected neurological components from Damaraju et al. (2014),

indicating that dgICA is able to produce results comparable to the

pooled case. We include additional spatial maps for all 47 estimated

spatial components in the Supporting Information.

First, in Figure 8, we plot the correlation between the centroids

estimated with our method, and those estimated with a pooled gICA

and pooled K-Means. Decentralized centroids estimated with

decentralized Lloyd's algorithm match better to the pooled case, with

each centroid correlating above 98% with the pooled estimation. The

gradient-descent implementation does not converge to the pooled

solution as well, though the results are still greatly similar, correlating

above 85% with the pooled case.

The improved performance of decentralized Lloyd's algorithm can

be explained in part by the lack of thorough hyper-parameter

searching for the gradient-descent-based algorithm, which would

likely improve the results. For the purpose of this work, since Lloyd's

algorithm provides near perfect estimation of the pooled centroids,

we leave the task of decentralized hyper-parameter searching for

future work.

In Figure 9, we plot the centroids from Damaraju et al. (2014)

(panel a), as well as the centroids estimated using decentralized dFNC

(panel b). Additionally, we plot the correlation between the centroids

F IGURE 7 Panels (a) and (b) illustrate examples of matched spatial maps from dgICA and pooled ICA. Panels (c) and (d) show the correlation
of the components between pooled spatial ICA and dgICA after Hungarian matching. Panel (c) shows correlation between all 100 components,
and panel (d) shows correlation between the 47 neurological components selected in Damaraju et al. (2014)
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estimated with our method, and those estimated in the pooled case,

given in Figure 8.

In Figures 10–12, we plot the group centroids for healthy controls

(Figure 10), patients with schizophrenia (Figure 11), and the differ-

ences between each group (Figure 12). Although our results show

slight differences compared to the analysis in Damaraju et al. (2014),

States 2 and 4 from our estimation closely resemble States 2 and 3 in

Damaraju et al. (2014), with the high anticorrealtion within the sen-

sory and motor regions. Our estimation of State 4 best fits with State

3 from Damaraju et al. (2014), showing greater sensory-motor

anticorrelations than our State 2, as well as higher activation in the

default mode. Our States 1 and 5 bear striking similarity to one

another, and best compare with States 4 and 5 from Damaraju et al.

(2014), while our State 3 compared best with State 1 from Damaraju

et al. (2014).

3.4 | Privacy

One of the advantages of decentralized analysis pipelines is that only

intermediary statistics are passed between sites, and full patient

records never are released across the network. These kinds of

decentralized algorithms are “plausibly private” (Sarwate, Plis, Turner,

Arbabshirani, & Calhoun, 2014), due to the lack of directly identifiable

records in the global data network. Our pipeline for ddFNC is clearly

plausibly private, since no full data instances are explicitly passed

between sites during analysis.

The limitation of plausibly private algorithms is that the actual

ensured privacy is not quantifiable, with risk of identification never

clearly assured. Measures such as Cynthia Dwork's differential privacy

(Dwork, 2008) have been proposed to alleviate the concerns of plausi-

ble privacy, with concrete mechanisms available to ensure privacy up

to a given level with some loss of model utility accrued in exchange

for privacy assurances (Dwork & Roth, 2014).

The addition of differential privacy introduces further problems to a

pipeline which often involve new variables in the pipeline such as

optimal privacy mechanism, choice of privacy budget, and how the

privatized algorithm compares in terms of utility with nonprivatized

models. Thus, our pipeline represents an important first step toward fully

differentially private ddFNC, providing a clear direction for future work.

F IGURE 9 The k = 5 median centroids over all groups for pooled dFNC from Damaraju et al. (2014) (panel a), and the hungarian-matched
centroids from ddFNC (panel b)

F IGURE 8 Correlation between pooled centroids and
decentralized centroids estimated using decentralized Lloyd's
algorithm and decentralized gradient descent. The centroids from
Lloyd's algorithm are much closer to the pooled case
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F IGURE 10 Estimated median states for 163 healthy controls, computed using decentralized dFNC with k = 5, using the original site
configuration from the Fbirn data set described in Section 2.4
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F IGURE 11 Estimated median states for 151 patients, computed using decentralized dFNC with k = 5, using the original site configuration
from the Fbirn data set described in Section 2.4
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F IGURE 12 Estimated median group differences for a two-tailed t-test between the 151 patients and 163 healthy controls, computed after
decentralized dFNC with k = 5, using the original site configuration from the Fbirn data set described in Section 2.4
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4 | CONCLUSION

In this article, we presented a simple case study of how functional

network connectivity analysis can be performed on multisite data

without the need for pooling data at a central site. The study shows

that both the decentralized regression as well as the decentralized

dynamic functional network connectivity yield results that are compa-

rable to its pooled counterparts guaranteeing a virtual pooled analysis

effect by a chain of computation and communication process. Other

advantages of such a decentralized platform include data privacy and

support for large data. Further extensions to the decentralized regres-

sion algorithm presented here include: adding a regularization term

(ridge, lasso and elastic-net) to the objective function, standardized

development of gradient-descent schemes to perform optimization in

a more iterative fashion and developing a differential privacy version

for each algorithm. In conclusion, the results presented here strongly

encourage the use of decentralized algorithms in large neuroimaging

studies over systems that are optimized for large-scale centralized

data processing.
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