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Defining the transition from benign to malignant tissue is fundamental toimproving
early diagnosis of cancer’. Here we use a systematic approach to study spatial genome
integrity in situ and describe previously unidentified clonal relationships. We used
spatially resolved transcriptomics® to infer spatial copy number variations in >120,000
regions across multiple organs, in benign and malignant tissues. We demonstrate that

genome-wide copy number variation reveals distinct clonal patterns within tumours
and in nearby benign tissue using an organ-wide approach focused on the prostate.
Our results suggest amodel for how genomicinstability arises in histologically benign
tissue that may represent early events in cancer evolution. We highlight the power of
capturing the molecular and spatial continuumsin a tissue context and challenge the
rationale for treatment paradigms, including focal therapy.

Mutations can be either inherited or acquired (somatic). Inherited
genomic polymorphisms are readily identifiable as these are present
inall cells, whereas post-developmental somatic mutations are usually
present in only a small fraction of cells®. To obtain spatial information
aboutthese rarer non-heritable genetic events, studies have commonly
used laser-capture microdissection toretrieve histologically defined (or
biomarker-defined) tissue regions or even single cells'**. These studies
have aninherent bias as only alimited number of spatial regions or single
cells per tissue section can be collected and examined. The possibility to
performspatial genome analysis without being confined by histological
boundaries would therefore provide animportant contribution to delin-
eatingthe clonal architecture in tumours and co-existing benigntissue.

Inferred copy number variation predicts clonal
hierarchies

Spatially resolved transcriptomics hasemerged asatool for genome-wide
analysis of gene expressiontoexploretissuesinanunsupervised manner®.
In this study, we infer genome-wide copy number variations (CNVs)
from spatially resolved mRNA profiles in situ (Fig. 1a). Gene expression
has previously been used to infer CNVsin single cells, successfully iden-
tifying regions of chromosomal gain and loss’. Here we expand into a
spatial modality, generating CNV callsineach spatial region represented

by barcoded spots. First, using unsupervised clustering methods, we
sought corroboration thatinferred CNV data (obtained using inferCNV?)
could mirror DNA-based phylogenies, constructed using simultane-
ously extracted RNA and DNA fromssingle cells® (Extended DataFig. 1a).
Next, we attempted to recapitulate published DNA-based phylogenies
inprostate cancer using RNA from the same samples® ™ (Extended Data
Fig.1b,c) andidentified similarity between automated clone callingand
published phylogenies. To ensure that inferCNV’ could robustly capture
sufficient and accurate CNV information for individual spots from a
multifocal tumour model and enable us to deduce clonal relationships
between cells, we designed anin silico systemto synthesize a tissue con-
taining multiple clones determined by stochastic copy number muta-
tionsinasingle artificial chromosome. Using a probabilistic method to
generate gene expression from such mutations, we then interrogated
the expression data using spatial inferred CNVs (siCNVs), while blind
to the underlying ‘ground-truth’ copy number status, and successfully
recapitulated both the copy number status and the clonal groupings
(Extended DataFig.2a-c).

Organ-wide clonal landscape in the prostate

Next, we used a cross-section of an entire prostate organ to explore
the siCNV landscape of a commonly multifocal malignancy™. The
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Fig.1|Organ-wide spatial determination of transcript and CNV status.

a, Fororgan-wide assessment, axial segments of the prostate were divided into
5x5mm?blocks for spatial transcriptomic analysis with spatially barcoded
probes. The resulting spatial gene expression profile was accompanied by an
inferred copy number profile supported by spot-by-spot consensus pathology
calls. Copy number features were used to detect clonal groups and instruct
phylogenetictree construction. Tissue-specific analyses of multiple phenotypes
were performed. b, Histology status for each organ-wide section. Black dashed
linesrepresent the area covered by the spatial transcriptomics array surface.
GG, International Society of Urological Pathology (ISUP) Gleason ‘grade group’;

specimenwas obtained by open radical prostatectomy from a patient
with prostate cancer, and an axial section was taken from the mid-gland.
Theaxialsectionwassubdividedintocubes(Fig.1a,b),and corresponding
tissue sections were histologically graded using the Gleason grading
system®, identifying extensive intratumoral heterogeneity (ITH) in
the context of surrounding benign tissue (Fig. 1b,e). We obtained
organ-wide transcriptionalinformation from 21 cubes (tissue sections)
and>21,000 barcoded regions (100-pm-diameter spots) with amean of
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PIN, prostaticintra-epithelial neoplasia. ¢, Spatial distribution of gene expression
(seef).d, Spatial distribution of summed copy number events (see g).

e, Representative spot-level consensus pathology for section H2_5. Red circles
indicate spots with >50% cancer cells, white circlesindicate spots with >50%
benignepitheliumandblackcirclesindicate spots with <50% of asingle cell
type. The diameter of the circles represents 55 um. f, UMAP principal-
component analysis of GEFs with arepresentative close-up for section H2_S.

g, Total copy number events for each section with arepresentative close-up for
sectionH2_5.

3,500 expressed genes detected per barcoded spot?. We then analysed
the transcriptional data using factorized negative binomial regres-
sion (Extended Data Fig. 3a). This provided an unsupervised view of
gene expression factors (GEFs)™ over the cross-section of the prostate
(Fig. 1c). Twenty-five factors showed overlap between histology and
GEFsrepresenting tumour, hyperplasiaand benign epitheliaannotated
by the factor marker genes, as previously reported™ (Fig. 1f). Next,
we undertook an siCNV analysis to provide an overall landscape of
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genome integrity (Fig. 1d), identifying certain regions with increased
CNVactivity (V1.1,H2_1,H1_1,H1_5and H2_5; Fig. 1g) while the majority
of the tissue area appeared to be copy number neutral. These initial
results suggested that siCNVs could identify tissue regions, at organ
scale, withinferred genomic variability, distinct from morphology or
expression analysis.

Toincrease the fidelity of our analysis of variable siCNV regions, we
took advantage of smaller 55-um-diameter barcoded spots (Visium, 10x
Genomics), reducing the number of cells to approximately 5-10 per
spot, to perform a more detailed interrogation of seven key sections
of siCNV activity. Two pathologists independently annotated each
spot to provide consensus pathology and histology scoring (Fig. 1e).
We first validated the increased precision of this higher-resolution
platform using the synthetic tissue method (Extended Data Fig. 2d,e).
We next obtained datafrom approximately 30,000 spots using factor-
ized negative binomial regression, resulting in 24 spatially distinct GEFs
(Extended Data Fig. 3b). We then examined clonal evolution patterns
across the investigated tissue using siCNVs. Having established an
association between GEFs and certainregions of interest (Fig. 1c,f), we
wanted to determine the degree of clonal copy number heterogeneity
inthese regions. After designating all histologically benign spotsasa
reference set (Extended Data Fig. 3c), it wasimmediately apparent that,
while certain GEFs displayed a fairly homogenous inferred genotype
(for example, GEFs 7,14 and 22; Extended Data Fig. 3d), others were
notably heterogeneous (for example, GEF 10; Extended Data Fig. 3e).

Prompted by therealization that certain regions annotated as histo-
logically benign displayed copy number heterogeneity (Fig.1d)™> '8, we
refined the reference set to spots that were both histologically benign
(outside theregions of interest) and lacked any siCNV (Extended Data
Fig.4). This constituted a‘pure benign’ reference set for all subsequent
siCNV analyses, unique to each patient. In cancer-wide inferred gen-
otypes (Fig. 2a-e), there was evidence of clonally distributed copy
number heterogeneity within areas of spatially homogeneous Gleason
patterns (Fig. 2a,d,e). We constructed a phylogenetic tree to describe
sequential clonal events versus independently arising cancer clones
(Fig.2b). Two cancer clones (clones A and B) lacked key truncal events,
includingloss of regions on chromosomes16q and 8p, that were other-
wise ubiquitous across all cancer clones (Fig.2a,b). These clones were
spatially restricted to section H1_2 containing a region of low-grade
Gleasongradegroup1(discussed later). The majority of clonally related
spots were located around the largest focus of Gleason grade group
4 disease with anotable pattern of truncal and branching events (clones
H, 1,J and K). We therefore focused on this dominant region of cancer
(spanningsections H1_4, H1_5and H2_5), to establish a first view of the
interplay between spatial architecture and clonal dynamics (remaining
sections in Extended DataFig. 5a,b).

To construct clone trees, we assumed that (1) groups of cells con-
taining identical copy number profiles were more likely to be related
than to have arisen by chance and (2) somatic copy number events
were acquired sequentially over time (the more numerous the events,
the more distinct the clone). We cannot conclusively rule out the pos-
sibility that smaller clones may represent clone cell mixtures due to
the inherent size of the Visium spots. However, using this approach,
we observed acommon ancestral clone (clone H; Fig. 2b) containing
truncal events including copy number loss on chromosomes 6q and
16q and copy number gain on chromosomes12qand 16q. These events
were clearly located in two tissue regions: an area of Gleason grade
group 2 on the medial side of the main tumour focus (section H1_4)
and aregion described as ‘transition state’ by consensus pathology at
the upper mid-edge (section H2_5). These conserved siCNV features
in distinct spatial locations are noteworthy. A possible explanation is
thatclone Hrepresents alinear sequence of branching morphologyin
the prostatic glandular system® and that further somatic events took
place, givingrise to clonesl,J and K and forming a high-grade tumour
focus (Fig. 2b), which pushed apart the branching histology owing to
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an aggressive expansile phenotype. We thus have a spatial imprint of
these eventsin prostate tissue. We also propose that some CNVs may be
of particular pathological significance (Extended Data Fig. 4d) based on
spatial molecular phylogeny. Our analysis therefore provides insight
into processes of tumour clonal evolution, identifying discriminating
events by spot-level CNV calling in a spatial context.

Somatic clones cross histological boundaries

Giventhis discovery of adiscordance between cellular phenotype and
inferred genotype, we then undertook a detailed interrogation of sec-
tion H2_1in the left peripheral zone of the prostate (Figs. 1c and 2¢)
containing roughly equal proportions of cancer and benign tissue.
We profiled the copy number status of every spot in this section and
ordered these spots by hierarchical clustering into ‘clones’ Ato G on
the basis of defined levels of cluster separation (Fig. 3a,b). Spatially,
we observed that these data-driven clone clusters were located in
groups, broadly correlating with histological subtype, but with some
important distinctions (Fig. 3c,d). We observed that many CNVs had
already occurredinbenigntissue (clone C; Fig. 3a-d), most notably on
chromosomes 8 and 10, which has been well described in aggressive
prostate cancer, including the oncogene MYCand tumour-suppressor
gene PTENY 2, but also several other copy number gains and losses.
Spatially, this clone constituted a region of exclusively benign acinar
cells branching off a duct lined by largely copy number-neutral cells
in nearby clones A and B (Fig. 3d). The unobserved ancestor to clone
Cgaverisetoafurtherunobserved clone followed by cancer-containing
clonesE, Fand G. Whereas clone G was made up exclusively of Gleason
grade group 2 cancer cells, clones E and F were mixed, with up to 25%
benign cells (Fig. 3d). The presence of somatic events in histologically
benign cells highlights that these clone groups traverse histological
boundaries.

Tovalidate that thisinferred copy number status was truly represent-
ative of underlying genotype, we used fluorescence insitu hybridization
(FISH) probes to target two specific genes of discriminatory interest,
MYCand PTEN, encompassed in the notable chromosomal changesin
benigntissue clone C as well as high-grade tumour clones, but absent
inlow-grade disease. This confirmed that, whereas the status of both
geneswas diploid in normal benign tissue (clone A), MYC amplification
and PTENloss were evident in altered benign (clone C) as well as tumour
(cloneF) clones (Fig. 3e and Extended Data Fig. 6). Going forward, we
propose that other homogenous inferCNV calls are accurate, on the
basis of the evidence provided by these two selected loci. This evidence
suggests that somatic events, creating a mosaic of branching clones
during ductal morphogenesis, are present evenin histologically benign
disease. It therefore follows that an understanding of this somatic
mosaicism could distinguish which regions of benign glandular tissue
may give rise to lethal cancer and which will not.

Werecognize that alimitation of using siCNVs is that this approach
does not capture mutations such as single-nucleotide variants (SNVs)
or other copy number-neutral events, which could add value in dis-
criminating clonal groupings. We therefore undertook an analysis of
transcribed (exonic) single-nucleotide polymorphisms (SNPs) using
cb_sniffer?. Analyses of the ratios of clonal variant allele fractions
for both specific events with high-coverage SNPs (exemplified by
chr8:143580183 and chr8:99892049; Extended Data Fig. 7) supported
copy number events on the same allele, in line with shared ancestry
(Fig.3b).

Having established the clonal subgroups in this heterogeneous
section of prostate tissue, we used differential expression analysis
to investigate potential functional alterations unique to these cellu-
lar groups. Focusing on clone C of altered benign cells, we observed
upregulation of MYC activity (Extended Data Fig. 8c) as well as path-
ways responsible for phenotypic versatility” (Extended Data Fig. 8b)
when compared with diploid benign cells (clone A). Furthermore,
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analysis. a, Genome-wide derived analysis (siCNVs) for all Visium spots
harbouring tumour from prostate patient 1. Clonal groupings of spots

(with approximately 10-15 cells each) were determined by hierarchical
clustering. Chr.,chromosome. b, Phylogenetic clone tree of the tumour clones
froma, withgrey clonesrepresenting unobserved, inferred common ancestors.
Clonecircleareais proportional to the number of spots and branch length was
determined by weighted quantity of CNVs (both on alogarithmicscale).siCNV

there was downregulation of conventional androgen receptor (AR)
target genes (for example, KLK2, KLK3, FKBP5 and NKX3-1), raising the
hypothesis of a reduced (or altered) dependence on AR regulation
in these cells?*. We also investigated the distinction between clone
Cand clones containing histologically transformed cells (clones E-G).
We observed reduced MSMB and increased GDFI5 expression in both
groups (Extended Data Fig. 8a,d), which are normally thought to be
pathognomonic of malignantly transformed cells**. When analysing
differentially expressed genes found in only altered benign cells, we
observed an enrichment for genes associated with oxidative phos-
phorylation and mitochondrial energy metabolism as well as protein

e
®O000
changes for each clone are available in Supplementary Table 1. c, Representation
ofalltissue sections from prostate patient 1. Thicker black lines denote original
boundaries annotated by initial clinical pathology. d, Consensus epithelial
histological annotations for sections H1_4,H1_5and H2_5, corresponding to
theright tumour focus. e, Spatial visualization of tumour clones (froma).
Thedashedlines mark areas where no spatial transcriptomics data were
obtained owing to these regions being outside of barcoded array surfaces.

®006

stabilization (Supplementary Table 5), inline with cells trying to cope
with extrinsic and intrinsic stress.

We considered the place of branching morphogenesisin the sequen-
tial acquisition of transformative events in a predominantly benign
section of the prostate (section H2_1as well as section H2_2; Extended
Data Fig. 9). Here we noted that such events seemed to occur during
the development of prostatic ducts and acinar branches, with changes
occurring atkey branching points, and the altered genotype was passed
onto daughter cellslining the ducts and glands of associated branches.
Interestingly, not all cells in such branches displayed the same cellu-
lar structure, raising important questions as to why epithelial glands
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a, Genome-wide derived CNV analysis (siCNVs) for each barcoded high-
resolution spatial transcriptomic spot from section H2_1, which contained a
mixture of tumour and benign epithelia (red, gain; blue, loss). Clonal groupings
of spots (approximately 10-15 cells each) were determined by hierarchical
clustering. On the basis of SNV analysis (Extended DataFig.7), clone A probably
represents a polyclonal population of diploid cells. b, Phylogenetic clone tree
ofallclones froma. The proportion of benign epithelial cellsin each clone was
asindicated. Specific CNVlocations unique to clone C arelisted (summarized
by the number of the chromosome where the event was located, p/q armand
gain/loss; the remainder of siCNV changes are given in Supplementary Table 2).
¢, Spatial visualization of the histopathological status of each spot. Each spot

with seemingly identical inferred genotypes might display divergent
histological phenotypes.

In view of the above findings, we considered that analysis of the
inferred genotype of low-grade cancer might reveal important differ-
ences from that of high-grade cancer. Section H1_2 contained aregion
of Gleason grade group 1 prostate cancer (Extended Data Fig. 5d).
Asnoted previously, there were two clones (Fig. 2a, clones A and B) that
lacked key changes on both chromosomes 8 and 16, with littlein com-
monwith other cancer-bearing clones (Fig.2c). A spot-wise re-analysis
of section H1_2 (including benign spots) showed that these two clones,
now labelled F and G, were spatially grouped as two approximately
equal halves of this region of Gleason grade group 1 cancer (Extended

364 | Nature | Vol 608 | 11 August 2022

was assessed by two pathologists for consensus annotation, with only spots
with>50% cellularity included. d, Spatial visualization of the clone status of
each spot. Clonal groupings cross histological boundaries. The branching
pointofthe prostatic duct (arrowhead) represents a possible site of somatic
eventsarisinginclone C (seealso Extended Data Fig. 6). The dashed lines mark
areas where no spatial transcriptomics data were obtained owing totheregion
being outside of barcoded array surfaces. e, FISH validation of two siCNVs:
MYC, from chromosome 8q, and PTEN, from chromosome 10p (arrowheads
ina). Control probes (Ctrl) targeted centromeres for chromosomes 8 and 10,
respectively. AllFISH panels depict single cells with one exception, where
dashed grey lines highlight the nucleus borders and the presence of two cells.
White arrowsindicate thelocation of centromere controls.

DataFig.5c,d). Thisis evidence that low-grade prostate cancer isindeed
fundamentally distinct from high-grade disease? and raises the hypoth-
esis that such cancer cannot become higher grade because it lacks
essential somatic events.

Clonal heterogeneity in multiple tissues

To corroborate our findings, we first performed validation through an
additional 37,000 spots fromacross-section of a further prostatectomy
that confirmed the spatial continuum of benign clonesin proximity to
cancer with shared truncal events. We also confirmed the high degree of
ITH of siCNV clones within prostate tumour loci (Extended Data Fig.10)
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ductal breast cancer and glioblastoma are available in Extended Data Fig.11.

gene expression clusters for different histological entities (such as
germinal centres), and siCNV analysis provided, as expected, a copy
number-neutral profile for the entire tissue section (Fig. 4a,b). This
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provided further validation that siCNV clones are distinct from gene
expression. We next analysed skin tissue containing both benign
squamous epithelia and squamous cell carcinoma (SCC). For this, we
obtained a patient-matched benign reference set of RNA-sequenced
single skin cells with confirmation from adjacent sections of benign
histology®. siCNV analysis identified four clones within the tissue,
one of which corresponded to SCC, containing several copy number
events. Notably, two key events (partial chromosome 1 and 12 gain)
were shared withanother nearby clone composed entirely of histologi-
cally benign tissue (Fig. 4c,d). Additional validation of siCNV signals
was obtained by DNA FISH with three probes, for chromosome 1q gain
(CKS1B), chromosome 8q loss (MYC) and chromosome 19qloss (EHD2),
of consecutive sections of the SCC sample. We found that siCNV analysis
correctly predicted CNV statusin 91% (n = 11/12) of spatial clonal regions
(Fig.4d, Extended DataFig.12 and additional data hosted on Mendeley
(https://doi.org/10.17632/svw96g68dv.1)). This substantiates our find-
ing of siCNV clones traversing histological boundaries for an additional
tumour type. To contrast these observations, we performed analysis of
aSonichedgehog (SHH)-driven paediatric medulloblastoma (Fig. 4e,f)
with sex- and age-matched samples. The results showed a uniformly
homogeneous spatial inferCNV clone type throughout the tumour
with key expected genetic alterations such as 3q gain (encompassing
PIK3CA) and a9qdeletion (encompassing PTCHI) as well as ashort gain
on 9p. These homogenous findings were validated by whole-genome
sequencing (WGS) of the tumour, in which distinct CNV calls were found
for the three altered chromosomal regions identified by our siCNV
analysis (Extended Data Fig. 13). We further analysed two additional
tumour types without reference sets: ductal breast cancer and an adult
glioblastoma (Extended DataFig.11). Here we confirmed a multifaceted
spatial siCNV tumour landscape with multiple co-existing clone types
in tumour tissue of histologically similar appearance. For example,
in ductal breast cancer (Extended Data Fig. 11k,l), we observed two
distinct clone types (C and F), separated by stroma, with little or no
CNV overlap. In the glioblastoma tissue, we similarly identified five
clonetypesthat had sharp spatial demarcations separating the siCNV
clones, despite being histologically similar (Extended Data Fig.11m,n).
Overall, the clonal appearances of ITH were clear as was the overlap
with tumour morphology.

The tissue clone diversity over the five investigated tissue types
was notably variable, with genomes ranging from homogenous to
highly heterogeneousinboth tumours and benign tissue (Fig.4g). We
therefore believe that combining siCNV information with spatial gene
expression patterns, which provide some functional understanding,
and cell type mapping (using single-cell RNA-seq (scRNA-seq)) could
enable targeted treatment options for individual clones, ‘benign’ or
tumour, that would not be easily attainable by any other means. Such
targeted approaches could include amoreintelligent rationale for focal
therapy or, for systemic therapy, could facilitate the identification of
such clones by ‘liquid biopsy".

Discussion

We show that spatial transcriptomic data across multiple cancer types
canrobustly be used toinfer CNV, as validated by FISH and WGS. Specifi-
cally, we performed anin-depth spatial analysis of the prostate organ
thatgenerated an unprecedented atlas of up to 50,000 tissue domains
inasingle patientand 120,000 tissue domains across ten patients. For
these domains, we inferred genome-wide information in each spot,
which facilitated data-driven clone generation in a tissue-wide fash-
ion at high resolution. Notably, the spatial information allowed us to
identify small clonal units not evident from morphology, which would
therefore be overlooked by histologically guided laser microdissection
or evenrandom sampling of single cells. We go on to show that, insome
tumour types, particularly in prostate, gliomaand breast cancers, CNV
analysis identifies distinct clonal patterns within tumours, inline with
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arecentspatial genome methodology that has also shown granularity
in the study of multiclonality of tumours®.

Focusing on prostate cancer, the patterns, as defined by the conser-
vation of CNVs across morphological entities, indicate hitherto unap-
preciated molecular relationships between histologically benign and
cancerous regions. It is known that CNVs occur early in tumorigenesis®.
We propose that CNVs can precede tumorigenesis and are a feature
of glandular morphogenesis, with propagation of particular variants
traversing disease pathology. It seems that clonal status alone and the
copy number alterations described here retained in heritable clonal
lineages at cell division are insufficient to deliverimmediate phenotypic
transformation. We believe that our work generates interesting hypoth-
eses regarding epigenetic determinism? and the environmental effect
with, forexample, the stromal niche or cross-talk between neighbour-
ing clones. Furthermore, questions remain about the timing of events
and how long is needed for morphological transformation to occur.
Expression analysis of altered benign clonesidentified changes consist-
ent with enhanced phenotypic versatility, suggesting that these cells
may represent an intermediate state between benign and malignant
cells—metabolically active as they try to survive the mutational burden
they have acquired, before phenotypic transformation. In summary,
this study shows that CNVs in regions of the genome that encode cer-
tain cancer drivers (for example, MYCand PTEN) are truly early events,
occurringin tissue regions currently unknownto and thereforeignored
by pathologists (Extended DataFig.4d). Thisisimportant given that the
risk stratification delivered by pathologists dictates to alarge degree
treatment decisions and subsequent clinical outcome.

Our study therefore provides an unbiased avenue to interrogate
genomicintegrity, adding to the armamentarium of cancer molecular
pathology. Our findings provide abasis forimproved early detection of
clinicallyimportant cancers, targeted focal and systemic therapy, and
improved patient outcomes for ubiquitous malignancies such as pros-
tate cancer. Overall, our study raises important biological questions
about cancer evolution, somatic mosaicism and tissue development.
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Methods

Ethics declaration

The study was performed accordingto the Declaration of Helsinki, Basel
Declarationand Good Clinical Practice. The study was approved by the
Regional Ethical Review Board (REPN) Uppsala, Sweden, before study
initiation (Dnr 2011/066/2, Landstinget Vastmanland, S. Stenius) and
by the Regional Ethical Review Board (EPN), Stockholm, Sweden (DNR
2018/3-31, M. Nistér). All patients were provided with fulland adequate
verbal and written information about the study before their participa-
tion. Written informed consent was obtained from all participating
individuals before enrolment in the study.

Tissue specimens

Whole prostates were obtained by open radical prostatectomy at
Visteras Hospital. Prostate patient 1 was 82 years old, and prostate
patient 2 was 63 years old. Both had reported Gleason scores of 4+3
(ISUP grade group 3) atinitial biopsy, and the prostatectomy pathology
was ISUPgrade group 4 for patient1and ISUP grade group 3 for patient 2.
Each prostate was divided into half by a horizontal cut, and the upper
part (closestto the patient’s head) was used and cut onastepped 5-mm
mould to obtain a 5-mm-high cylinder. Next, stripes were cut from
thecylinder, and each stripe was cut into smaller cubes (total of 21 for
patient1and 28 for patient 2). All tissue cubes were fresh-frozen in liquid
nitrogen and stored at —80 °C until embedding for cryosectioning.
The childhood brain tumours were collected and provided by the
Swedish Childhood Tumour Biobank and stored at -80 °C until embed-
ding for cryosectioning.

Datasets

Human SCC and case-matched dissociated normal skin cells (refer-
ence set) were obtained from a published dataset”. The human lymph
node, human adult glioblastoma multiforme (tumour grade IV)
and humanbreast cancer (ductal carcinomainsitu, lobular carcinoma
in situ, invasive carcinoma) datasets were provided by 10x Genom-
ics (https://support.10xgenomics.com/spatial-gene-expression/
datasets).

Spatial transcriptomics (1k arrays)

For prostate (patient 1), all 21 tissue cubes were cryosectioned into
10-pum sections from the bottom (two sections per cube) for spatial
transcriptomics analysis. The sections were mounted onto spatially
barcoded microarray slides. The protocol described in refs.?*° was used
to prepare all mounted sections with afew modifications. Fixation was
performed for 10 minatroom temperature, and samples were permea-
bilized using exonuclease I buffer for 30 min at 37 °C and 0.1x pepsin
(pH1) for10 min at 37 °C. The material was processed into libraries as
described inref.* and sequenced on an Illumina NovaSeq instrument
using paired-end 300-bp reads.

Spatial transcriptomics (10x Genomics Visium)

The Visium Spatial Tissue Optimization Slide & Reagent kit (10x
Genomics) was used to optimize permeabilization conditions
for the tissue sections. One 10-pm section from each patient was
processed according to the manufacturer’s instructions. Spatially
barcoded cDNA from every tissue section was generated using the
Visium Spatial Gene Expression Slide & Reagent kit (10x Genomics).
Tissue sections from prostate patient 1 were fixed according to the
manufacturer’s instructions, and permeabilization was performed
for 8 min. Sections from prostate patient 2 were fixed for 10 min using
acetone at —20 °C and permeabilized for 15 min. Childhood brain
tumour sections of 12 pm were permeabilized for 30 min. Libraries
for all tissue sections were generated following the 10x Genomics
Visium library preparation protocol and sequenced on Illumina
sequencing instruments.

Spatial transcriptomics data processing
For1karrays, FASTQ files were processed using ST Pipeline v.1.5.1 soft-
ware®?, Transcripts were mapped with STAR* to the GRCh38.79 human
reference genome. Mapped reads were counted using the HTseq count
tool**. Spatial barcodes were demultiplexed using an implementation
of TagGD UM filtering® carried out to remove duplicated reads. Amean
of 3,582 unique genes and 10,734 unique transcripts was obtained per
spot after removing spots with fewer than 100 genes or transcripts.
For 10x Visium arrays, specifics regarding data processing
before data analysis after demultiplexing of FASTQ files have been
described elsewhere for the human SCC specimen? and datasets
provided by 10x Genomics (https://support.10xgenomics.com/
spatial-gene-expression/datasets). For the childhood brain tumour,
read 2 was trimmed to remove both the TSO adaptor sequence and
poly(A) homopolymers using Cutadapt®. Trimmed fastq files were
then run through Space Ranger (version 1.0.0, 10x Genomics) where
reads were mapped to the humanreference genome (GRCh38, release
93). The raw sequencing reads for the prostate samples were directly
processed using Space Ranger (version1.0.0 for prostate1and version
1.2.1for prostate 2;10x Genomics) and mapped using the same human
reference genome as above. Amean of 2,334 of the 2,104 unique genes
and 10,221 of the 5,711 unique transcripts was obtained per spot after
removing spots with fewer than 100 genes or transcripts for patient
lor patient 2.

Factorized negative binomial regression of prostate samples
GEF analysis was performed as previously described™. In all analyses,
we factorized the data into 7= 25, 24 and 20 GEFs (1k, Visium patient
1and Visium patient 2) and ran the optimization for 5,000 iterations.
Convergence was assessed by tracking the loss (negative unnormal-
ized log posterior), which had plateaued by 5,000 iterations for all
analyses. Spots were annotated on the basis of their section to control
for sample-wise batch effects.

Processing and visualization of non-prostate samples

Data processing and visualization were carried out using the Seurat
(version 3.2.2)* and STUctility (version 0.1.0)** R packages. UMI counts
were filtered using the InputFromTable function, and genes were
removed if they were present in fewer than five spots or had a total
UMI count below100. All spots containing fewer than 500 UMI counts
were also removed. Counts were normalized using SCTransform, and
dimensionality reduction was performed using principal-component
analysis. The top 20 principal components were used for all samples
except the childhood brain tumour, where 10 components were
used. Expression-based clustering was performed by constructing a
shared nearest neighbour (SNN) graph through FindNeighbors using
previously established components and clusters identified through
FindClusters. The resolution parameter was set to 0.8 for all samples
except the childhood brain tumour, for which 0.2 was used. Finally, a
two-dimensional UMAP embedding was constructed from the previ-
ously established top principal components for each tissue type. For
the human lymph node specimen, differentially expressed genes for
each cluster were determined using the FindAlIMarkers function, only
testing genes detected in at least 25% of the spots in either of the two
populations, that is, cluster or background.

Paediatric tumour DNA sequencing and data analysis

Libraries for WGS were prepared using Illumina TruSeq PCR-free
reagents. WGS samples were sequenced using 2 x 150-bp paired-end
reads,onaHiSeqX v2.5 (patient1) or NovaSeq 6000 (patients 2 and 3)
instrument (Illumina). DNA sequence data were processed with Sarek,
following the GATK best-practice recommendations’, on UPPMAX
Clusters at Uppsala University (https://www.uppmax.uu.se/resources/
systems/the-bianca-cluster/). Inbrief, the steps run were quality control
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of the FASTQ files using FastQC (https://www.bioinformatics.babra-
ham.ac.uk/projects/fastqc/), alignment of short reads to the human
reference genome sequence (GRCh38/hg38) usingbwa-memwiththe
ALT-aware option turned on*’, sorting of reads and marking of PCR
duplicates with GATK MarkDuplicates and base quality score recali-
brationandjoint realignment of reads around indels using GATK tools
(https://github.com/broadinstitute/gatk). Tumour CNV profiles were
generated using Control-FREEC*.. The matched normal sample was
used to call somatic CNVs.

DNA FISH

Anoptimal cutting temperature (OCT)-embedded block of fresh-frozen
prostate sample was sectioned at 5-pmthickness, and several consecu-
tive sections were mounted on positively charged microscope slides
(VWR) and placed at -80 °C until processing. Sections were fixed with
methanol and acetic acid (3:1 ratio) for 15 min at room temperature,
washed in 1x PBS and briefly air dried, followed by haematoxylin and
eosinstainingandimaging. DNAFISH probes targeting MYC/8cent (Cyto-
cell, MPD28000), PTEN/10cent (Cytocell, MPD15000), CKS1B/1cent
(Cytocell, LPH039) or EHD2/19cent (Cytocell, LPS047) were added (10-
15 pl) ontop of the tissue sections, and sections were sandwiched with
18 x 18 coverslips and sealed with rubber glue (BioNordika, PCN009).
Slides were placed on a hot plate for exactly 6 min at 76 °C to denature
DNA molecules andimmediately placed inside anincubator with 100%
humidity for overnight incubation at 37 °C. Coverslips were gently
removed, and slides were washed ina ceramicjar containing prewarmed
0.4x SSC for 3 min at 72 °C, transferred to 2x SSC with 0.05 Tween-20
for 2 min at room temperature and then quickly washed in 2x SSC and
nuclease-free water. To reduce the autofluorescence background, we
applied quenching probes (Thermo Fisher Scientific, R37630) to the
top of sections, incubated sections for 5 min at room temperature
and washed in 1x PBS. Nuclei were then counterstained with DAPI and
slides were mounted using mounting medium (Thermo Fisher Scien-
tific, $36936). Microscopy images were acquired using a x100/1.45-NA
objective mounted on an Eclipse upright microscope system (Nikon)
controlled by NIS Elements. We collected multiple image stacks per
sample, each consisting of 30-40 focal planes spaced 0.3 pm apart.

Pathologist workflow: spot-level annotation for prostate
patient1

All Visium spots were annotated on a spot-by-spot basis using Loupe
Browser version 5.0 (10x Genomics) for the Visium sections by two uro-
pathologists (R.C.and T.M.). Using a cell-type specific coverage thresh-
old of >50%, the pathologists annotated spots by histological class or
as ‘exclude’ (for example, for mixed coverage, when array regions did
not cover tissue such as lumens or if a scanning/sectioning artefact
rendereditimpossible to determine a histological class). The annota-
tions were cleaned, unified and visualized in Loupe Browser for review.
Next, a consensus workflow was applied wherein the pathologists were
asked todetermine afinal annotation class ifthere were discrepancies
between benign or cancerous luminal epithelial cells. If there were
discrepancies between luminal classes and stroma, A.E. performed a
review and reclassification, such that if over 50% of cells of one class
could be identified the spot was marked as the corresponding class.
Ifthere was uncertainty, the spot was marked as ‘mixed’ and excluded
from downstream analysis. The final consensus annotation dataset
consisted of a total n of 23,282 spots. We defined low-grade prostate
cancers as spots with Gleason grade group 1and high-grade cancer as
spots containing Gleason pattern 4. Final confirmation of benign anno-
tations in regions of tissue harbouring inferred CNVs (Fig. 3, clone C)
was performed by assessing digital images of p63/AMACR staining
from consecutive tissue sections, with detection of the presence or
absence of basal cells by p63 positivity (thus indicating whether the
region of interest was benign or tumour). High-resolution images of
staining results can be found in the Mendeley repository.

Pathologist workflow: annotation for prostate patient 2
Prostatic luminal epithelial cells were annotated for 15 Visium sec-
tions from prostate 2 for the presence of tumour histology. Luminal
epithelial spots frombenign tissue sections were analysed for selection
ofabenign reference set. Tumour histology was confirmed in sections
H3_1,H2_1,H2 2 and H3_6 using Loupe Brower.

Data preprocessing for inferring spatial CNVs

To systematically interrogate the data, we developed an R package
called SpatiallnferCNV (https://github.com/aerickso/SpatiallnferCNV).
Additional analyses were performed using a series of R packages
(tidyverse, Seurat, infercnv and hdf5r) and Python and BASH scripts
asfollows. Histological annotations were imported from the final con-
sensus annotation files for all sections, and barcodes were appended
with their section identifier. Next, the annotations were filtered for a
given feature of interest. Files output from the Cell Ranger pipeline
(filtered_feature_bc_matrix.h5) were imported, and barcodes were
appended with their corresponding section name. The count files
were then filtered for only those within the analysis of interest. The
count files further underwent a quality-control filter® wherein spots
containing 500 or fewer counts were removed. The annotations file
and counts file were joined for each section, and the resulting files
were then all combined into afinal matrix that was output (.tsv file) for
downstream analysis with inferCNV”. The barcodes for only spots that
passed the annotation and quality-control filters were merged again
with the annotations, and these were separately exported (.tsv file)
for furtherinferCNV’ analysis. Lastly, agenomic positions file was cre-
ated following the instructions at https://github.com/broadinstitute/
inferCNV/wiki/instructions-create-genome-position-file.

Selection of benign references

Inputs to inferCNV’ can include a reference set of UMI-barcoded
objects, toimprove precise inference of genomic copy number events
inthe observed population. We first performed an unsupervised analy-
sis of only the benign luminal epithelial reference cells (parameter
for inferCNV object: ref group_names = NULL; parameters for run:
cutoff = 0.1, cluster_by_groups = FALSE, denoise = TRUE). Using the
denoised outputs, we identified by visual inspection a subgroup of
all benign spots that harboured few to no inferred CNVs (Extended
Data Fig. 4). The associated dendrogram file (with the cluster struc-
ture and each barcode therein) was then further analysed for node
selection.

InferCNV parameters

For unsupervised siCNV analysis, we included the following param-
eter for the function CreatelnfercnvObject(): chr_exclude = c(“chrM”).
For the run() function, we used the following parameter values: cut-
off=0.1, num_threads =10, cluster_by groups = FALSE, denoise = TRUE,
HMM = FALSE. A reference set was used for all analyses, with the excep-
tions of defining the reference set orif asuitable reference set was not
available (Fig. 4 and Extended Data Fig. 11).

Insupervised siCNV analysis (to callinferCNV” hidden Markov model
(HMM) functions), inferCNV” was run as follows. The node identity
file was used in place of the annotation file. The following inferCNV
run parameters were used: cutoff = 0.1, num_threads = 10, cluster_by_
groups = TRUE, denoise = TRUE, HMM = TRUE.

For the global visualization of siCNV events in Fig. 1, we analysed
spatial transcriptomics (1k arrays) datawith inferCNV’ for all 21 sections
inaglobal analysis without areference set. We performed the analysis
suchthateachindividual spatial transcriptomics spot was run with the
following inferCNV run() parameters: cutoff = 0.1, num_threads =10,
cluster_by_groups = FALSE, denoise=TRUE, HMM=TRUE, analysis_
mode="cells,” HMM_report_by="cell”. To spatially visualize global siCNV
profiles across an entire prostate, we then determined the number of
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individual genes detected to harbour an inferred copy number gain
orloss. Toreduce background noise in the visualization, the resultant
HMM calls were thresholded for the number of gene-level siCNV events
present in at least 35% of all spots across the entire dataset and in at
least 45% of the spots of agiven section. These thresholds were selected
after detailed interrogation of thresholds ranging from 10-90% in 5%
increments with positive-control, neutral and negative-control sections
for visual consistency.

Clone selection

The dendrogram tree with numerical node identities was visualized,
nodes were extracted and the specific barcodes (Visium spots) were
digitally selected and assigned a clone identity. Allmembers of agiven
analysis were merged, and a.csv file containing the clone identity and
barcode was output for each Visium section.

Clone visualization

Loupe Browser version 5.0 (10x Genomics) was used to spatially visual-
izeresultant clones from clone selection. For the manuscript, ifa clone
was present in <10 spatial spots (from 1k arrays or Visium) in a given
section, it was not visualized.

Manual algorithmic tree building from preprocessed inferCNV
data

Clone tree consensus siCNV event calling. Both HMM siCNVs (from
filesinfercnv.17_ HMM_predHMMi6.hmm_mode-samples.pngand17_
HMM_predHMMi6.hmm_mode-samples.pred_cnv_regions.dat) and
manual interpretation of denoised outputs (from file infercnv.21_de-
noised.png) were used toidentify putative subclonal CNVs. These were
then merged in a final consensus set, in which events were listed for
each clone for building clone trees (Supplementary Tables 1 and 2).
Inbrief, trees were constructed by identifying where CNVs were shared
across the clusters identified above as, under the assumption that a
CNV cannot be reversed once it occurs, this indicates that the cells in
these clusters share acommon ancestry. We therefore used this logic
toidentify ancestral relationships among clusters and build the clone
tree. As our clone trees identify clones as related groups of cells (as
opposedto clonesbeing simply related mutations, anapproach com-
monly taken inbulk-sequenced studies), where clones were presentin
subtrees that were not spatially proximate, we marked this uncertainty
with dotted lines between common ancestors.

Clone trees: branch lengths. To semiquantitatively depict the ‘evo-
lutionary distance’ between subclones, we determined the branch
lengths by taking the logarithm (base 2) of the number of additional
CNVsinthedescendant clone and adding an arbitrary value to ensure
that branches were always visible even with few CNV differences. The
formulais given as b, =100108,(| Zyescendent! = [Zparent!) + 300, where by is
the length of branch kin pixels.

Clone trees: clone diameters. We scaled the size of each circle denot-
ingacloneby the proportion of spotsinthe sample that was assigned to
acloneusing the formulad,=10log,(s)), where d,denotes the circle di-
ameter in pixels ands;is the number of spots that correspond toaclone.

Maximum-parsimony clone trees

To validate our manual clone trees, we additionally computed
maximum-parsimony clone trees following the instructions provided at
https://cran.r-project.org/web/packages/phangorn/vignettes/Ances-
tral.html#parsimony-reconstructions (Extended Data Fig. 14). We used
gene-level HMM copy number inferences (from file 17 HMM_predH-
MMi6.hmm_mode-samples.pred_cnv_genes.dat) as a ‘user-defined
input’ matrix to the R package phangorn. Allgenes were included; ifa
clone did not have an inferred CNV event predicted, the matrix infor-
mation for the gene in that clone was set to diploid.

siCNV parameters (Fig. 4)

Patient-matched scRNA-seq data from dissociated normal skin cells
were analysed for selection (previously described) of a benign refer-
ence set. This reference set was then used as a reference control for
all spatial transcriptomics spots in section T28. Node selection was
performed (previously described). One pathologist (R.C.) annotated
the resultant clones with the percentage of spots for each clone that
harboured stroma, tumour epithelia or non-invasive epithelia (Sup-
plementary Table 6). For siCNV analysis of the childhood brain tumour,
patients 2 and 3 were selected as reference samples for patient 1. The
selected reference samples appeared to have few to no inferred CNV
gains and losses, as shown in Extended Data Fig. 13.

RNA versus DNA phylogeny analysis of previously published
single-cell data

DNA and RNA data, co-extracted from single tumour cells, were
obtained from publicly available data repositories®. Genomic and
transcriptomic libraries were aligned to GRCh38.79. DNA-based CNV
profiles were analysed and clustered with GINKGO (https://github.com/
robertaboukhalil/ginkgo)*2. RNA profiles were analysed with inferCNV’,
without a reference set, using default parameters. Tanglegrams of
hierarchical clustering of both DNA-based copy number profiles and
RNA-based inferred copy number profiles were then analysed with the
R package Dendextend®.

RNA versus DNA phylogenies from published prostate data

RNA data were obtained for patient A21 (refs. ***), patient 499 (ref. ')
and cases 6,7 and 8 (ref. ™). For patients A21and 499, only asubset of all
specimens had transcript dataavailable. For cases 6, 7and 8, only RNA
microarray data were available, precluding their analysis by inferCNV”.
Thetranscriptomes were aligned to GRCh38.79, and RNA counts were
obtained. These were then processed into inferCNV’ objects and run
withstandardinferCNV settings, without areference set. Dendrograms
from the inferCNV’ outputs were visualized using R.

Synthetic data: generative process

To evaluate our application of the computational method inferCNV’
tospatial transcriptomics data, we designed a generative process that
resulted in anin silico spatial transcriptomics experiment of a tissue
withaknown—and spatially structured—clonotype population. Inshort,
we constructed aspatial domain (representing atissue region) inwhich
we placed a set of virtual cells with a common genome structure and
then let these cells populate the tissue region by simulating growth.
Inthe process, at every time point cells can move, generate offspring,
die or stay stagnant. The generative process above isimplemented in
Python code and available as a CLI application that can be accessed
at GitHub (https://github.com/almaan/growmeatissue). The GitHub
repository also contains more extensive documentation and exam-
ples of how to use the code; the exact parameters (defined ina TOML
design file) used to produce the data presented here are included in
Supplementary Datal.

Synthetic data: evaluation

The process described above was used to generate a set of synthetic
dataincorporating a single chromosome, from which the obtained
spatial gene expression data together withassociated annotations were
entered as input to siCNV (these data can be found in the Mendeley
repository). The synthetic data were analysed according to the same
procedure as previously outlined for the real data, providing as out-
putinformation regarding the clonal population as determined from
the inferred genomic state. To compare the results with the ground
truth, we focused exclusively on the set of cells not being used as a
reference (non-benign). InferCNV’ assigns a state (either 3 or 6 depend-
ing on which HMM approach is used) to every gene in each clone; we
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converted these states into a categorization that was more suitable
for comparison according to the following scheme, given as ‘spatial
inferCNV state”: new category: 1, deletion; 2, deletion; 3, neutral; 4,
amplification; 5, amplification; 6, amplification. For the ground-truth
data, we computed the average copy number of all cells assigned to
eachspotandrounded this value to the nearest integer. We considered
agene (withinaclone) as deleted if the rounded average copy number
within the given clone was less than 1, amplified if it was higher than 1
and neutral if it was equal to 1. Having cast the two datasets (real and
synthetic) into comparable formats, we then computed the accuracy
(withineach clone) as the number of equal gene annotations (deletion,
neutral, amplification) between the ground truth and the inferred
results (from siCNV analysis).

SNV analysis of Visium spatial transcriptomics data

To call SNVs from the data, we ran the cb_sniffer pipeline (https://
github.com/sridnona/cb_sniffer) as published in ref. 2. We identified
all variants from 1000 Genomes* within any gene with an inferCNV’
HMM-predicted alteration (5.4 million variants from 3,324 genes)
in clones from patient 1, section H2_1 (Fig. 3). This output a total of
13,447,918 reads mapping to SNV loci, which corresponded to 573,781
unique candidate SNV loci detected in any spot. Of these, 51,945 SNVs
had at least one read in one clone spot for each clone. We calculated
clonal variant allele fractions for each variant within each clone by
assessing the ratio of reference to alternative allele reads detected
within spots assigned to a specific clone. Spot percentage was deter-
mined by calculating the total number of spots within a given clone
that had a detected read that covered a candidate SNV locus divided
by the total number of spots assigned to the given clone.

Differential gene expression analysis

Toanalyse differentially expressed genes, we used the Seurat R package
(version 4.0.5) and imported Space Ranger output files, after which
the data were normalized and scaled using the default Seurat Nor-
malizeData() and ScaleData() functions. Differential gene expression
analyses were performed comparing groups using the FindMarkers()
function with the following parameter: test.use = wilcox. For gene set
enrichment analysis (GSEA), the msigdbr R package (version 7.4.1) was
used to download the hallmark gene set from the Molecular Signa-
tures Database. Genes that remained following filtering according to
quality-control threshold criteria* (log,(fold change) > 0.25, group per-
centthreshold > 0.1and adjusted Pvalue < 0.01) were passed through
for GSEA. The plotEnrichment() function from the fgsea R package
(version1.16.0) was used to create GSEA enrichment plots.

Statistics and reproducibility

All differential expression analysis was performed using gene mark-
ers found by two-sided Wilcoxon rank-sum test used by default in the
Seurat FindAlIMarkers function.

All spatial transcriptomics experiments, including histology, of
prostate samples were performed in technical replicates of two and
abiological replicate in the form of an additional whole prostate. All
samples and analyses confirmed the original findings. In addition,
technical repeats of data analysis (siCNV) were also re-run to confirm
analysis results. Single-molecule FISH and spatial transcriptomics
experiments on other tissues were not repeated.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Sequence data for the prostate samples have been deposited at the
European Genome-phenome Archive (EGA; www.ebi.ac.uk/ega/),

whichis hosted by the European Bioinformatics Institute (EBI), under
accession number EGAS00001006124. The data are available under
Data Use Conditions (DUO) and are limited to not-for-profit use as
well as health/medical/biomedical purposes. Access is granted if
the above criteria are fulfilled and local institutional review board/
ethical review board approvals are provided. Raw FASTQ files for the
childhood brain tumour samples are available through a materials
transfer agreement with M. Nistér (monica.nister@ki.se), in line with
GDPR regulations. Count matrices, high-resolution histological images
and additional material are available on Mendeley Data (https://doi.
0rg/10.17632/svw96g68dv.1). Public data used for comparison of
phylograms were obtained from the European Nucleotide Archive
(http://www.ebi.ac.uk/ena), under accession numbers ERP022266
(RNA-seq) and ERP022267 (WGS), as well as from the EGA, under
accession numbers EGASO0001001659 and EGASO0001000942.
Public patient-specific benign cutaneous scRNA-seq data were
obtained from the Gene Expression Omnibus (GSE144236). Pub-
lic spatial transcriptomics data used in the study were all obtained
from10x Genomics. Human lymph node (https:/www.10xgenomics.
com/resources/datasets/human-lymph-node-1-standard-1-1-0),
breast cancer (https://www.10xgenomics.com/resources/datasets/
human-breast-cancer-block-a-section-1-1-standard-1-1-0) and glio-
blastoma (https://www.10xgenomics.com/resources/datasets/
human-glioblastoma-whole-transcriptome-analysis-1-standard-1-2-0)
data are all available as dataset resources.

Code availability

Details of the spatial transcriptomics analysis pipeline can be found
at https://github.com/jfnavarro/st_pipeline. The factor analysis soft-
ware (STD) is available under GNU General Public License v3 at https://
github.com/SpatialTranscriptomicsResearch/std-nb. The Spatialln-
ferCNV package along with documentation is available at https://
github.com/aerickso/SpatiallnferCNV. An archived permanent reposi-
tory of SpatiallnferCNV is available using https://doi.org/10.6084/
mo.figshare.19666317.v1. The code as well as documentation for
generating synthetic datais available at https://github.com/almaan/
growmeatissue.
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Extended DataFig. 2| Generating and running inferCNV on synthetic data.
a, Schematic overview of the generative process used to produce artificial
spatial data.1) Firstaset of seeding cells (red and blue circles) are placedina
defined tissue domain (square), every seeding cell hosts one unique copy
number event.2) The cells are allowed to “grow” within the tissue domain until
the number of cells in the domain exceeds a predetermined number. 3)
Mutationsin the genome occur stochastically during growthand as aresult,
subpopulations (indicated by colour) of cells with similar genomic profiles
arise.4) Unoccupied spacein the tissue domainis filled with benign cells (no
copy number variations), spatial capture locations are placed inagrid over the
growntissue and transcriptsare “captured” from the cells overlying each spot.
5) Synthetic spatial expression datais produced together with associated
ground truth genomic data (both onspot and cell level). b, Results from
applying siCNV (bottom) to aset of synthetic data together with ground truth
information (top), only cells residing at spots being annotated as non-benign
areshown. Blueindicates a deletion event while red indicates an amplification

event. The ground truth shows the genomic profiles for all cells contributing to
the spots assigned toagiven clone. Comparing the inferred state with the
ground truthonaclone19level, the average accuracy across genes was 0.90
(standard deviation 0.10) ¢, Spatial organization of the synthetic data analysed
in (b), with thumbnail of the complete cell populationin the artificial tissue,
each pixel correspondingtoacell. The cells’ intensity levels are proportional to
their total number of associated copy number events. Circles represent the
spots used to “capture” transcripts. Spots are coloured by their inferred clone
identity. Note how Clone 2, predicted to have zero copy number events, is
found along the borders of both foci, where there’s amixture of benign and
non-benign cells.d, siCNV outputs from simulated synthetic data of spots
simulating ST 1k array (low-resolution) with100 pm spot diameter and centre-
to-centredistance of 200 pm. e, Visium (high-resolution). High resolution
spots were 0.55x size of low resolution and had 5x more spots per area.

The synthetic ground truth datawere identical for both.
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d  Gene EEF1D, chr8:143580183

Clone Ref_count Alt_count Total_CB ClonalVAF  SpotPercentage siCNV
A 463 501 964 0.52 90.2 Diploid
B 201 115 316 0.36 94.6 AMP
C 1668 931 2599 0.36 99.1 AMP
D 210 97 307 0.32 94.0 AMP
E 7 722 1939 0.37 99.6 AMP
F 1149 426 1575 0.27 100.0 AMP
6 1066 462 1528 0.3 97.4 AMP

b
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B-G |'| |'| 0.27-0.36
LI et LI Ref
C  Gene COX6C, chr8:99892049

Clone Ref_count Alt_count  Total CB ClonalVAF SpotPercentage siCNV
A 234 270 b4 0.54 79.56 Diploid
B 75 126 201 0.63 90.91 AMP
C 1009 1885 2894 0.65 100 AMP
D 73 125 198 0.63 76.12 AMP
E 612 1489 2101 0. 96.46 AMP
F 313 988 1301 0.76 100 AMP
6 436 1138 1574 0.72 95.22 AMP
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Extended DataFig.7|Single nucleotide variant analysis of spatial

transcriptomic datafrom prostate patient1, sectionH2_1.a, Summary
table of altand reference read data from clones A-G (Fig. 3) of EEFID. b, Cartoon
diagram demonstrates how clone B-G, harbor copy number gain of the same

Ref

allele asevidenced by the decreased variantallele fraction (VAF).c, Summary
table of altand reference read data from clones A-G (Fig. 3) of COX6C.
d, Cartoondiagram demonstrates how clone B-G, harbor copy number gain of

thesameallele asevidenced by theincrease VAF.
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Extended DataFig. 8 | Differential gene expression analyses benign,
altered benign and tumour clones. a, Differentially expressed genes from
benignclone Aand altered clone C. Using atwo-sided Wilcoxon Rank-Sum test.
b, Top 10 pathways identified by geneset enrichment analyses (GSEA) from
cloneAvscloneC.c, Topranked enrichment pathway from GSEA. d, Differentially
expressed genes from benign clone Aand tumour clonesE, Fand G.Usinga

Clone A
VS
Clones EFG

two-sided Wilcoxon Rank-Sum test. e, Top 10 pathways identified by GSEA from
clone AvsclonesE, FandG.f, Top ranked enrichment pathway from GSEA.

g, Venn-Diagram of genes from differential gene expression analyses identified
onlyinbenignclone Avsaltered benign clone Canalysis (left), benign clone
Avstumour clonesE, Fand G (right).
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Extended DataFig. 9 |Branching morphogenesis and somatic mosaicismin
prostate epithelium. a, Close up histology of Section H2_1 demonstrating
clear ductal (e.g. arrow heads) and acinar (e.g. stars) branching patterns.

b, Overlayed spot-level histology. ¢, Overlayed clone groupings (from Fig. 3).
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d-f, Possible arrangement of clonal expansion during branching morphogenesis
with key mutational events (marked with X, siCNV events from Fig. 3) passed on
todownstreambranches. Dotted line represents presumed branch/duct not
visible intwo-dimensional plane.
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Extended DataFig.10|Organscale prostate patient 2. a, Spatial inferCNV
(siCNV) profiles of histologically benign prostatic epithelial cells from
11sections from prostate patient 2. b, Reference overview of 15 sections
available for analysis: sections H2_1,H2_2,H3_1,and H3_6 harbour tumour
(marked with red dotted lines). Black dotted lines represent the area covered by
spatial transcriptomics array surface. ¢, Analysis of tumour fociin sections
H3_1,H2_1and H2_2. Analysisincludes section H3_2, anon-tumour bearing
sectionwhichincluded spatially co-localized benign spots harbouring inferred

CNValterations from panel a.d, Spatial histology and clone distributionin
section H3_2 (no-tumour). Benign ductal histology (Clone F) harbours distinct
inferred CNVs (chr5 amplification, chré deletion), not harboured in
neighbouring benign acinar glands (Clone G). e, Section histology (transparent
redindicates tumour, and transparent yellow denotes benign) and clones from

tumour-bearing sectionsH3_1,H2_1,and H2_2. CNV = Copy-Number Variant,
chr=chromosome.
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Extended DataFig.11|Spatial transcriptomics and siCNV analysis of
multiplesampletypes.a,c,e, g, i, Transcript UMAPs of all spots labelled by
cluster from human lymph node (a), human squamous cell carcinoma

(c), malignant childhood brain tumour diagnosed as medulloblastoma (e) human
invasive ductal breast carcinoma (g), malignant childhood brain tumour
diagnosed as medulloblastoma SHH gradelV (i).b, d, f, h,j, H&E stain and
unbiased cluster spots visualized spatially on tissue from humanlymph node
(b), humansquamous cell carcinoma (d), childhood medulloblastoma

Glioblastoma

Glioblastoma

(f), humaninvasive ductal breast carcinoma (h), human glioblastoma
multiforme (j). k-n, somatic copy number alterations in breast tissue
containing ductal breast cancer and DCIS (k, 1) and brain tissue containing
glioblastoma (m, n). While some of the samples did not have an annotated
benignreference set, interestingly, unsupervised siCNV could still segment
different histological clones. However, the lack of areference set did reduce the
ability toidentify specificinferred CNVs.
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Extended DataFig.12| DNAFISH targeting EHD2locus. Representative Red dashedrectangles mark the clonal group A positions1,2,and 3.
images from fresh frozen squamous cell carcinoma tissue sections labelled Blue dashed rectangles mark the clonal group D positions1,and 2. Green
with Cytocell19q13/19p13probe. Consecutive sections were used for H&E, DAPI  rectangle marks the clonal group C position1. Predicted deletions of EHD2
staining and FISH. Control probe labelled the 19p13.2 region of chromosome geneareshowninclonesA, B, C,and D. Note that the clonal groups C,and D
19ingreen,and EHD2isshowninred. Nuclei counterstained with DAPI show deletions of EHD2 gene as well as diploid cells.

(darkblue). Yellow dashed rectangles mark the clonal group B positionland 2.
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Extended DataFig.13|Whole-genome sequencing-based copy number
profiles for paediatric brain tumour patients. a, Somatic WGS CNV profile of
patient1diagnosed with medulloblastoma (grade 1V, desmoplastic/nodular,
SHH-activated) with b, match normalblood. ¢, Somatic WGS CNV profile of
Chr2,3and9 of patient 2diagnosed with medulloblastoma (grade 1V, classic
morphology, SHH-activated) withd, match normalblood. Notably inferCNV
analysis on Visium data did not show any genomic variability in chr 2but since
Visium and WGS data were generated from different locations of each tumour,

position, chr 2

position, chr 3

position, chr 9

we speculate that the observed WGS CNV patternsin patient2 couldbe dueto
theinherentspatial heterogeneity of DNA copy number alterations observed
by others when sampling multiple sites of medulloblastoma tumours.

e, Somatic WGS CNV profile of Chr2,3 and 9 of patient 3 diagnosed with CNS
embryonal tumour (grade IV, multi-layered rosettes, NOS) withd, match
normalblood. No CNV was detected by WGS in the chromosomes not
displayed. WGS =Whole-genome sequencing. Chr =Chromosome. SHH =Sonic
hedgehog. CNS=Central nervous system.NOS =Not otherwise specified.
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Data collection  Histology images were captured using the Metafer Slide Scanning Platform (Metasystems). Raw images were stitched together with the VSlide
Software (Metasystems).

Sequencing of spatial transcriptomics libraries were performed on illumina instruments using their proprietary platform and demultiplexed
using DRAGEN.
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Data analysis The manuscript used publicly available, open source R and Python libraries/packages as described in the methods text. Two new libraries were
developed for this manuscript, and are made available via Github (https://github.com/aerickso/SpatialinferCNV and https://github.com/
almaan/growmeatissue).

Software and package version used during analysis:
Python (3.6.0)

R (4.1.3) with packages:
- Seurat (3.2.2)

- STUtility (0.1.0)

- SCTransform (0.3.3)

- tidyverse (1.3.1)
-infercnv (1.10.0)

- hdfSr (1.3.5)

- phangorn (2.8.1)

- Dendextend (1.15.2)

- msigdbr (7.4.1)

- fgsea (1.16.0)
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Count matrices, high-resolution histological images and additional material, are available on Mendeley Data (https://doi.org/10.17632/svw96g68dv.1).

Raw fastq for the prostate samples are available on request and is deposited to European Genome-Phenome Archive (EGA, www.ebi.ac.uk/ega/), which is hosted by
the European Bioinformatics Institute (EBI) under the study: ID EGASO0001006124. The data are available under Data Use Conditions (DUO) and are limited to non-
for-profit use as well as health/medical/biomedical purposes. Access is granted if the above is fulfilled and local institutional review board/ethical review board
approvals are provided.

Raw fastq files for the childhood brain tumour samples are available through a Materials Transfer Agreement with Monica Nister (monica.nister@ki.se), in line with
GDPR regulations.

Public data used for comparison of phylograms were obtained from European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena), accession numbers ERP022266
(RNA-seq) and ERP022267 (WGS) as well as from European Genome-phenome Archive (EGA; https://www.ebi.ac.uk/ega/), accession number EGAS00001001659
and EGAS00001000942. Public patient-specific benign cutaneous scRNAseq data were obtained from GEO (GSE144236). Public spatial transcriptomics data used in
the study were all obtained from 10x genomics. Human lymph node (https://www.10xgenomics.com/resources/datasets/human-lymph-node-1-standard-1-1-0),
breast cancer (https://www.10xgenomics.com/resources/datasets/human-breast-cancer-block-a-section-1-1-standard-1-1-0) and glioblastoma (https://
www.10xgenomics.com/resources/datasets/human-glioblastoma-whole-transcriptome-analysis-1-standard-1-2-0) are all available as dataset resources.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size This was a biological study and not a clinical trial and therefore we did not undertake a power calculation for the number of patients. For
prostate, sample size of two was used as this is what was provided by the urologist. As a exploratory study of prostate cancer heterogeneity
and showcase of spatial inferCNV this sample size was deemed sufficient.

Data exclusions  All patients analysed were included in the data presented. There were no excluded subjects.

Replication All spatial transcriptomics experiments, including histology, of prostate samples were performed in technical replicates of two and a biological
replicate in the form of an additional whole prostate. All samples and analyses confirmed the original findings. In addition, technical repeats of
data analyses (spatial inferred CNV) was also re-run to confirm analysis results. smFISH and spatial transcriptomics experiments on other
tissues were not repeated.
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Randomization  This was a biological study and not a clinical trial and therefore we did randomize.

Blinding This was a biological study and not a clinical trial therefore we did not blind. All samples processed contained prior known cancer tumors.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Dual use research of concern

Human research participants

Policy information about studies involving human research participants

Population characteristics Prostate patient 1 and 2 were both male at the age of 82 and 63 years old respectively. Both were diagnosed with prostate
cancer and had radical prostatectomy performed. No genotyping was performed on the patients.

Recruitment Candidate subjects diagnosed with primary prostate cancer whom were to undergo radical prostatectomy were identified
and randomly selected by one of the study pathologists (AT). The two human subjects were provided with full and adequate
verbal and written information about the study before their participation. Written informed consent was obtained from all
participating subjects before enrolment in the study.

Ethics oversight The study was performed according to the Declaration of Helsinki, Basel Declaration and Good Clinical Practice. The study
was approved by the Regional Ethical Review Board (REPN) Uppsala, Sweden before study initiation (Dnr 2011/066/2,
Landstinget Vastmanland, Sari Stenius), Regional Ethical Review Board (EPN), Stockholm, Sweden (DNR 2018/3-31, Monica
Nister).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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