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Abstract

Background: One of the most challenging tasks in the exploration of anti-aging is to discover drugs that can
promote longevity and delay the incidence of age-associated diseases of human. Up to date, a number of drugs,
including some antioxidants, metabolites and synthetic compounds, have been found to effectively delay the aging

of nematodes and insects.

Results: We proposed a label propagation algorithm on drug-protein network to infer drugs that can extend the
lifespan of C. elegans. We collected a set of drugs of which functions on lifespan extension of C. elegans have been
reliably determined, and then built a large-scale drug-protein network by collecting a set of high-confidence
drugprotein interactions. A label propagation algorithm was run on the drug-protein bipartite network to predict new
drugs with lifespan-extending effect on C. elegans. We calibrated the performance of the proposed method by
conducting performance comparison with two classical models, kNN and SVM. We also showed that the screened
drugs significantly mediate in the aging-related pathways, and have higher chemical similarities to the effective drugs
than ineffective drugs in promoting longevity of C. elegans. Moreover, we carried out wet-lab experiments to verify a
screened drugs, 2- Bromo-4-nitroacetophenone, and found that it can effectively extend the lifespan of C. elegans.
These results showed that our method is effective in screening lifespanextending drugs in C. elegans.

Conclusions: In this paper, we proposed a semi-supervised algorithm to predict drugs with lifespan-extending
effects on C. elegans. In silico empirical evaluations and in vivo experiments in C. elegans have demonstrated that our
method can effectively narrow down the scope of candidate drugs needed to be verified by wet lab experiments.
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Background

Aging is a physiological process in accompany with con-
tinuous accumulation of damages to cells and organs,
which gradually lead to loss of normal organ functions
and rise vulnerability to disease [1]. With the increasing
average age of people, the risk of age-related diseases also
concomitantly increases. Therefore, there is a rising inter-
est in exploring drugs to promote healthy longevity, which
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basically aim at preventing or delaying the onset of age-
associated illnesses, such as cardiovascular disease, type 2
diabetes, neurodegenerative disease and cancer [2, 3].

It has been shown that restriction of energy intake can
effectively extend lifespan of diverse species from yeast
and worms to mammals [4, 5]. Dietary restriction can
also protect against age-related risk factors of diabetes,
cardiovascular disease, and cancer in human [6]. Previ-
ous studies have verified that the beneficial effects of
dietary restriction in mammals are primarily obtained
by increasing insulin sensitivity and decreasing blood
glucose in mammals [7, 8]. Also, reduced activity of
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nutrient-sensing pathways, including IIS (insulin/insulin-
like growth factor), AMPK and mTOR signaling path-
ways, can slow down the aging of yeast, worms, flies
and mice [9-12], suggesting that inhibition of these sig-
naling pathways may induce a physiological state simi-
lar to that resulting from food shortage. Moreover, the
lifespan-control mechanisms are remarkably conserved
across diverse species [13].

Up to date, a number of drugs, including some antiox-
idants, metabolites and synthetic compounds, have been
found to effectively delay the aging of nematodes and
insects [14—16]. Some natural products and extract from
plants can also extend the lifespan of invertebrates
[17-20]. In particular, some drugs approved for human
disease can promote the longevity of worm and mice,
including Rapamycin [14], Aspirin [21], Metformin [22]
and Resveratrol [23]. These findings imply there exist
some common physiological mechanism between aging
and the diseases treated by these drugs [24].

Some public data resources have been released for
exploring aging [25-27]. For instance, GenAge, the bench-
mark database of genes related to ageing, has collected
the genes associated with changes in the ageing pheno-
type or longevity in human and four model organisms
[26]. All gene entries in GenAge are compiled from exper-
imentally validated results published in peer-reviewed
scientific literature. A gene is considered for inclusion
if genetic manipulations (including knockout, mutations,
overexpression or RNA interference) result in noticeable
changes in the ageing phenotype and/or lifespan. NetAge
is another aging-related web resource, which provides
access to gene, protein and miRNA interaction networks
that are involved in complex processes of aging and age-
related diseases [27]. Gene Aging Nexus (GAN) have
collected together numbers of ageing-related microarray
gene expression data from human, rat, mouse, fruitfly,
worm and yeast studies [28]. These public databases pro-
vide a valuable resource for us to develop computational
methods for screening lifespan-extending drugs.

It is worth noting that the model organism Caenorhab-
ditis elegans (C. elegans) has advantageous features for
aging exploration, including its short lifespan, stereotypi-
cal development and small size [29]. These features make
it a popular model species to conduct whole-organism
assessment of anti-aging effect and mechanism of action
of drugs [30, 31]. Thanks to the evolutionarily con-
served mechanism of lifespan control from worm to mice
and human, potential anti-aging drugs can be tested on
worms and then transferred to mammals. On the other
hand, drug efficacy is primarily exerted through inhibit-
ing (or activating) the functions of target proteins by
drug molecules, which specifically bind to the protein
functional domains so that the corresponding biologi-
cal functions are desirably blocked (or catalyzed) [32].
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As a result, drug-protein interactions have been inten-
sively studied and exploited in the drug research and
development [33-35].

In this paper, we proposed a semi-supervised learning
algorithm to predict drugs with lifespan-extending effects
on C.elegans. We built a set of drugs and genes of which
(effective or ineffective) influence on lifespan of C. ele-
gans has been experimentally determined. The drug set
included 1,309 drugs, which were collected from a large-
scale bioassay screening for anti-aging drugs [36], and
manually curated anti-aging drugs from literature [31].
The gene set included 681 genes, which were collected
from the aging-related benchmark database GenAge [26].
By extracting a set of high-confidence drug-protein inter-
actions from STITCH [37], we built a drug-protein bipar-
tite network and then run a label propagation algorithm
to predict new effective drugs. To calibrate the perfor-
mance of the proposed method, we conducted 5-fold
cross-validations on the gold-standard set of drugs. The
empirical experiments showed that our method achieves
higher performance than two classical models, kNN and
SVM. Moreover, our screened drugs significantly mediate
in the aging-related pathways, and have higher chem-
ical similarities to the effective drugs than ineffective
drugs in promoting longevity in C. elegans. Finally, we
carried out wet-lab experiments to test the effectiveness
of one screened drugs, 2-Bromo-4’-nitroacetophenone
(PubChem CID000066840), and found that it can signif-
icantly promote the longevity of C.elegans. Both the in
silico and in vivo experimental results demonstrated the
performance of our computational approach for screening
anti-aging drugs.

Results

Performance evaluation by 5-fold cross-validations

We conducted 5-fold cross-validations on the gold-
standard set of drugs (see Data resources for details about
the dataset) to evaluate the performance of our method.
The drugs in the gold standard set were randomly split
into 5 subsets with roughly equal size, and then each
subset was taken in turn as a test set and the remain-
ing four subsets were taken as input to run our method.
The prediction accuracy was evaluated on the test set,
and the averages over the 5-fold test subsets are regarded
as final performance measures. Based on the predicted
scores by our method and two classical classifiers, KNN
and SVM, we computed the precision and recall measures
for a given threshold, i.e. the drugs with scores greater
than the threshold were classified as positive (effective)
ones, and negative (ineffective) ones otherwise. We built
the recall-precision curves for the three methods by grad-
ually increasing the threshold, as shown in Fig. 1. It can
be found that our method significantly outperformed the
two classical classifiers KNN and SVM.
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Fig. 1 The recall-precision curves of our random walk with restart on
drug-target network, as well as the two classical classifiers kNN and
SVM. The recall and precision measures were computed with respect
to the value of threshold 6

Highly scored drugs mediate in aging-related pathways

We carried out pathway analysis based on the target pro-
teins of 100 top-rank drugs predicted by our method
(for whole list of the predicted drugs see Additional
file 1). The target proteins of each drug are obtained
from STITCH database, and the pathway analysis were
conducted by using DAVID V6.7 [38]. We found that
screened drugs primarily mediate in sugar catabolism,
energy metabolism and other processes related to cel-
lular detoxification, as shown in Fig. 2. The results
are consistent with several previous studies that have
shown that these pathways mediate in the aging processes
[39-41]. For example, McElwee et al. analyzed the
differentially expressed genes during the aging processes
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of mice, fly and worm, and identified a group of evolu-
tionarily conserved biological processes related to aging,
including sugar and energy catabolism [40]. Moreover, de
Magalhaes et al. performed a meta-analysis of publicly
available age-related expression microarray datasets on
healthy and non-treated adult specimens, and then iden-
tified consistently under- or over-expressed genes related
to aging processes. The enrichment analysis based on
this set of aging-related genes demonstrated that vari-
ous pathways mediate in aging processes across species,
including inflammation and immune response, energy
metabolism, etc [41]. The pathway enrichment analysis
results of our screened drugs are notably consistent with
the conclusions of previous studies, which indeed support
the top-rank drugs are potential anti-aging agents.

In particular, we found that the drug with the
highest F-ratio score, ZINC218147572 (PubChem
CID100005691), has 309 target proteins deposited in
STITCH. The pathway analysis by DAVID showed that
this drug significantly mediates in TOR signaling pathway
(p-value=1.8e-12), as shown in Fig. 3. It has been con-
firmed that inhibition of TOR pathway can slow down
aging and extend healthy lifespan in diverse organisms,
including yeast, worms, flies and mice [1, 42]. Interest-
ingly, we conducted pathway enrichment analysis by
using the 681 genes in GenAge, as shown in Fig. 4. It
can be seen that there are remarkable overlaps between
the significant pathways in which the two different set
of genes are enriched. (for screenshots of the path-
way analysis results see Additional file 2). We strongly
suggest that ZINC218147572 is a promising drug for
lifespan extension. We would like to conduct wet-lab
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Fig. 2 The frequency distribution signaling and metabolism pathways in which the target proteins of top 100 screened drugs are significantly
enriched. The pathway enrichment analysis was conducted using DAVID V6.7 [38]
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Fig. 3 The signaling and metabolism pathways analysis based on the 309 target proteins of the drug with highest F-ratio score, ZINC218147572
(PubChem CID100005691). The pathway enrichment analysis was conducted using DAVID V6.7 [38]

experiments to test its effectiveness on lifespan extension
of C.elegans, once we get the drug in future (we failed to
buy or produce this drug during the preparation of this

paper).

Screened drugs have higher chemical similarity to effective
drugs than ineffective drugs

We also checked whether the screened drugs have higher
chemical similarity to the known effective drugs than
ineffective drugs in promoting lifespan or not. For this
purpose, we selected 195 drugs of which the F-ratio
are greater than 2. Based on the chemical fingerprints
obtained from PubChem [43], we compute the chemi-
cal similarities between the 195 screened drugs and the
set of known effective/ineffective drugs. The similarity
measure is defined as the cosine angle of the chemical

attribute vectors of two drugs, as describe in Eq. (6). For
convenience of presentation, we computed the mean sim-
ilarity to the effective/ineffective drugs for each screened
drug. As shown in Fig. 5, tt can be found that the
screened drugs have significantly higher mean similar-
ities to the effective drugs than the ineffective drugs.
Furthermore, we conducted a pair-sample ¢-test against
the null hypothesis that the mean similarity to effective
drugs is not greater than that to ineffective drugs (degree
of freedom, df=194). The result of pair-sample ¢-test
indicated that the null hypothesis should be rejected and
accept alternative hypothesis (p-value< 2.33 x 1072%).

Wet-lab validation of effectiveness of one screened drug
To further validate the performance of our method,
we have conducted wet-lab experiments to check
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Fig. 4 The signaling and metabolism pathways analysis based on the 681 aging-related genes in GenAge database. The pathway enrichment

analysis was conducted using DAVID V6.7 [38]
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Fig. 5 The mean chemical similarity of the 195 screened drugs (F-ratio>2) to the effective and ineffective drugs included in the training set. The
chemical similarities were calculated according to Eq. (6), on the basis of chemical attributes retrieved from PubChem [43]

the effectiveness of one screened drug, 2-Bromo-4’-
nitroacetophenone (PubChem CID000066840), on the
lifespan extension of C. elegans. Nematodes were treated
with 2-Bromo-4’-nitroacetophenone at three different
concentrations, 1 ug/ml, 5 ug/ml and 10 ug/ml, during
their lifespan in order to study the effect of 2-Bromo-4’-
nitroacetophenone on lifespan of C.elegans. As shown in
Fig. 6a and b, the drug showed concentration-dependent
effects on the lifespan extension of C. elegans. The
nematodes treated with the drug at the concentration
of lug/ml and 5 ug/ml showed significantly extended
lifespan compared with untreated animals (one-way
AVONA test, p-value<0.01). The results of the wet-lab
experiments provided strong support for the performance
of our method.

Data resources

Drugs

The Library of Pharmacologically Active Compounds
(LOPAC!280) contains 1,280 types of compounds that can

be categorized into 55 pharmacological classes accord-
ing to their mammalian targets. A recent high-throughput
biochemical assay has been conducted to screen com-
pounds in LOPAC!?8° to identify drugs that can increase
C. elegans lifespan [36]. As a result, 60 compounds in
LOPAC!280 have been identified as effective drugs in
promoting longevity of C. elegans, and the remaining
drugs are ineffective drugs. Besides, Lucanic et al. have
manually curated 29 types of synthetic compounds and
natural products that can promote longevity of C. ele-
gans from literature in their review paper [31]. Based
on the known effective or ineffective drugs, we built
a set of drugs including 1,312 compounds and natural
products in total . In particular, 89 effective drugs (60
compounds in LOPAC!?8 plus 29 manually curated syn-
thetic compounds and natural products) were labeled
as positive samples, and the remaining 1,220 drugs in
LOPAC!?80 were labeled as negative samples (detailed
information of the drugs is presented in Additional
file 3).
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Fig. 6 The screened drug, 2-Bromo-4"-nitroacetophenone (PubChem CID000066840), effectively extends the lifespan of C.elegans. a Survival curves
of the animals under control and treated by three different concentration, Tug/ml, 5 ug/ml and 10 ug/ml, respectively. b Bar charts of the mean

lifespans in nematodes. (**P-value<0.01)

—p

Mean lifespan(day)

25 o
* %

20

control 1 5 10

2-Bromo-4'-nitroacetophenone(ug/ml)




The Author(s) BMC Systems Biology 2016, 10(Suppl 4):131

To build the test set of drugs, we extracted 1,991 FDA-
approved small molecule drugs and 207 FDA-approved
biotech (protein/peptide) drugs from DrugBank database
(V5.0). Totally, 2,198 FDA-approved drugs were included
in the test set.

Aging-related genes

Aging-related genes were obtained from GenAge, which is
the benchmark database of aging-related genes published
by Human Ageing Genomic Resources (HAGR) [26].
GenAge covers the aging-related genes in human and four
model organisms, including Mus musculus, Drosophila
melanogaster, worm Caenorhabditis elegans, and yeast
Saccharomyces cerevisiae. Each entry in GenAge is a man-
ually curated by experts to ensure high-quality content.
We obtained 681 gene entries for Caenorhabditis elegans
from GenAge. As a gene may encode multiple different
proteins due to the alternative splicing that is prevalent
in eukaryote, there are 1,481 unique proteins encoded by
these aging-related genes (The aging-related genes and
the corresponding proteins are presented in Additional
file 4).

Drug-protein bipartite network

Drug-protein interactions were downloaded from
STITCH 4.0 [37]. STITCH is a comprehensive database
that collects drug-protein interactions from four different
sources: experiments, databases, text mining and pre-
dicted interactions. Meanwhile, STITCH has calculated
an integrative confidence score for each drug-protein
interaction, which indicates the confidence of the interac-
tion supported by four types of evidence, i.e. experimental
validation, manually curated databases, text mining and
predicted interactions. To guarantee high confidence
of the drug-protein interactions, we selected only the
drug-protein interactions with experimentally supportive
or external database evidences.

Besides, we found that most drugs in LOPAC 1289 have
numbers of target proteins in human, but relatively less
target proteins in C. elegans, through retrieval of STITCH.
Considering that the scarcity of proteins associated to
the effective and ineffective drugs will lead to a small
number of training samples in the drug-protein network,
we search for orthologous proteins in C. elegans of the
known target proteins in human. We exploited OrthoList,
a compendium of orthologous genes/proteins between
C. elegans and human, to map the human proteins to
orthologs in C. elegans. Orthologous genes in OrthoList
are compiled from four orthology prediction methods,
including InParanoid [44], OrthoMCL [45], HomoloGene
and Ensembl Compara [46]. To ensure the quality of the
orthologous proteins, we selected only the orthologous
proteins if the orthologous proteins have been predicted
by at least two methods. As a result, we got 2,518,944
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high-confidence interactions between 397,258 drugs and
9,249 proteins in C. elegans.

The drug-protein bipartite network was constructed by
choosing the high-confidence interactions of which drugs
or proteins were included in the drug set or aging-related
gene set mentioned above. After removal of small dis-
connected subnetworks, we got a drug-protein bipartite
network with 18,317 drug-protein interactions between
813 unique drugs and 3,660 unique proteins (Detailed
information is presented in Additional file 5). In partic-
ular, there are 450 known effective/ineffective drugs (34
effective drugs and 416 ineffective drugs) and 20 known
aging-related genes among the drug-protein bipartite net-
work, which is used as gold-standard set in the following
empirical experiments to evaluate the performance of
our method. The data resources and construction of the
drug-protein network are illustrated in Fig. 7.

Methods
Random walk with restart on drug-protein network
We consider the problem of predict new lifespan-
extending drugs in terms of label propagation on the
drug-protein bipartite network. Our inspiration is that a
small number of experimentally effective and ineffective
drugs are labeled as positive and negative samples, and
their labels might be propagated to other nodes along the
edges of the drug-protein network. Figure 8 illustrates
the label propagation starting from a few initially labeled
nodes. The effective and ineffective drugs are respectively
shown in red color and cyan color, and candidate drugs are
shown in gray. The weight of the edges are proportional to
the confidence scores of the drug-protein interactions.
Based on the drug-protein network, we start two inde-
pendent random walks with restart from the effective
and ineffective drugs, respectively. After convergence, we
obtain a stationary distribution specifying the probability
that a random walk with restart will arrive at each node.
The drugs that can be reached with higher probabil-
ity from effective drugs than from ineffective drugs are
classified as effective ones, or ineffective ones otherwise.
Formally, suppose we have m drugs and » proteins of
interest, and a set of drug-protein interactions with quan-
titative confidence scores. Denote by V; and V; the sets
of drug and protein nodes, and E = {E(i,})} a set of edges
connecting drugs and proteins, in which i belongs to V;
(i = 1..m) and j belongs to V; (j = 1..n). Let V = V; U V;,
we construct an undirected network G =< V,E >. We
define a symmetric affinity matrix A, where A(j, ) is equal
to the confidence score of the corresponding interaction
if E(i,j) € E, or 0 otherwise. Define D as the diagonal
matrix of degrees of the nodes, i.e. D(i, i) = Z;A(i,j), we
constructed the transition matrix 7 as below:

T=D'A (1)
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drug-protein bipartite network from various data resources, prediction of new anti-aging drugs via label propagation, as well as downstream
evaluation and analysis procedures including cross-validation, gene set enrichment analysis and wet-lab experiment validations

To conduct two independent random walks, we introduce
an initial label matrix L with |V| rows and 2 columns,
where the two column vectors are indexed according to
the effectiveness of drugs that have been experimentally
verified. The values of matrix L are given by: 1) L(;,1) = 1
if drug i is ineffective in promoting longevity; 2) L(;,2) = 1
if drug i is effective in promoting longevity; and 3) 0 for
all other elements. Note that our method can simultane-
ously predict lifespan-extending drugs and aging-related
genes, by setting the initial label matrix L to include both
experimentally validated drugs and known aging-related
genes, i.e. the element of second column L(i,2) = 1 if the
i-th node is effective drug or aging-related gene coding
proteins.

Before starting the random walk, each column of the
initial label matrix L was normalized to be a probability
distribution:

I = (DZILT)T, (2)

in which Dy is a diagonal matrix with Dy (i, i) = Zj L(j, 0).
We allow the restart of the walk in every step at a source
node with probability «, the random walk process can be
formulated as:

Pt+1)=(1—a)TP(t) +al/, (3)

where P(t) isa | V| x 2 matrix and P(0) = L.

Let P* be the matrix when the random walks converge,
i.e. the change between P(¢) and P(¢ + 1) (measured
by the L1 norm) is less than very small number €. The
two columns of P* are the two stationary distributions
that specify the probability to reach each node, corre-
sponding to the two separately random walks with restart
from the effective and ineffective drug nodes, respectively.
Once we obtained P*, we computed the odds ratio, called
F-ratio as F(i) = P*(i,2)/P*(i, 1) for each candidate drug
i. If F(i) is greater than a predefined threshold, drug i
is classified as effective one in promoting longevity. To
build recall-precision curve, we ranked all candidate drugs

(a) Before label propagations

, o\
TeTeRTRe

(b) After label propagations

& il G e

Fig. 8 The illustrative diagram of label propagation algorithm run on the drug-protein bipartite network. The red and blue nodes represent the
known effective and ineffective drug nodes, from which the random walker begin the random walk process
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according to their F-ratio values and gradually increase
the value of threshold 6 used for classification decision.
In Algorithm 1, we outline the steps of the label propaga-
tion algorithm on the drug-protein network . Moreover,
an illustrative flowchart for our method is presented in
Fig. 7.

Algorithm 1 Label propagation on drug-protein network
via random walk with restart

Input: adjacent matrix A, diagonal matrix D, initial label
matrix L and threshold 6

Output: Ranked drugs by F-ratio scores with
classification label according to threshold 6

Algorithm: random walk with restart on drug-protein
network

1: Build the transition matrix T = D~ 14;

2 Normalize the initial label matrix L' = (D;'LT)T
where Dy is a diagonal matrix with element Dy (i, i) =

3: Iterate P(t + 1) = (1 — a)TP(¢) + al’ to converge,
where P(t) isa | V| x 2 matrix with P(0) = L, and « is
the restart probability at a source node;

4: Compute F-ratio for each drug i as F(i) =
where P* is the convergence matrix.

5. Classify drug i as effective if F(i) > 6, or ineffective
otherwise;

P*(i,2)
P(i,1)’

Drug similarity

For each drug, we obtained the SMILES from PubChem
database [43] and then generated the chemical features
and fingerprints using PaDEL software (release v2.21)
[47]. PaDEL takes as input the SMILES of each drug to
calculate 1D and 2D physicochemical descriptive features
and fingerprints. For each drug, the attributes consist of
1,445 descriptive features, including such as atom count,
bond count, molecular weight, xlogP, and 880 chemical
fingerprints. Subsequently, we removed the features with
the same attribute values across all drugs, and obtained
1,744 chemical attributes for each compound.

Based on the chemical attributes, we computed the
chemical similarity between each pair of drugs. Formally,
each drug was represented by a 1,744-dimension vector,
in which the element is equal to the value outputted by
PaDEL, or 0 otherwise. Denote by ¢; = {c¢;1,¢, ..., cix}
and Ej = {cj1,¢j2, - . ., ¢} the chemical attribute vectors of
drugs i and drug j, we computed the cosine similarity as
below:

K
> k=1 CikCik

)
K 2 K 2
vV 2ok=1Cik\/ > :k:1 Cik

(4)

Sy @) =
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in which K is the length of the chemical attribute vector
(K=1774).

Also, we computed the drug-drug similarities, referred
to as target sharing similarity based on our built drug-
protein interaction network. Each drug was represented
by a 3,660-dimension binary vector whose element is 1
if the corresponding protein is targeted by the drug and
otherwise 0. We built the target sharing similarity matrix
based on the number of shared targets between two drugs.
This similarity measure is defined as the ratio of number
of common target proteins to the total number of target
proteins of the two drugs. This measure is actually equiv-
alent to Jaccard score that can be mathematically defined
as:

Sy ) = (5)
in which #; and ¢ are the binary vectors representing the
proteins targeted by drug i and drug j, respectively.

Since we obtained two similarity measures derived from
different attributes for each pair of drugs, we thus inte-
grated the two similarity measures into a comprehensive
similarity measure as below:

NOESES J CEER0) (6)

in which S;ll) (i) and Sfiz)(ij) represent the similarity mea-
sures between i and j-th drugs derived from chemical
attributes and target proteins, respectively.

Prediction using classical classifiers

To calibrate the performance of our proposed method,
two classical classifiers, k-Nearest Neighbor(kNN) and
Support Vector Machine (SVM), were used to predict the
lifespan-extending drugs. The k-Nearest Neighbor(kNN)
was run by using Weka 3.7 [48], and SVM was run by
using libsvm 3.17 [49]. To apply the kNN classifier, we
convert the the similarity measure defined in Eq. (6) to
the distance measure by computing 1 — Syij. The param-
eter k was set to 1, 3 and 5, respectively. As similar results
were obtained for different k values, we reported only the
results of k=3. For SVM, We concatenated the chemical
attributes and the target proteins of each drug, and thus
obtain a 5,434-dimension vector that is taken as input by
libsvm. The radial basis function kernel was used, and
other parameters were tuned by 10-fold cross validations.
The experimentally verified drugs are labeled as positive
and negative sample and used to train the SVM classifier,
and the learned model was then used to classify the set of
test drugs.

Reagents and worm strain maintenance
2-Bromo-4’-nitroacetophenone (PubChem CID000066840)
was obtained from Sigma-Aldrich (St. Louis, MO, USA).
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Wild-type C. elegans N2, which is originally obtained
from Caenorhabditis Genetics Center, was maintained
on nematode growth medium (NGM) plates seeded with
Escherichia coli OP50 at 20C as described previously
[50]. Age synchronous populations of nematodes were
obtained as described [51]. The compound was added to
the NGM plates just before plating.

Lifespan assay

The lifespan assay was performed basically as described in
[52]. 2-Bromo-4’-nitroacetophenone treatment was per-
formed throughout the lifespan from the stage of L4-
larvae. The worms were transferred daily for the first
several days of adulthood during the assay. The nematodes
were checked at intervals during the lifespan when they
began to die and worms were considered as dead when
they did not respond to the stimulation of a platinum
wire.

Discussions and conclusions

It is of frequent occurrence that labeled samples, which
mean their functions were experimentally validated, are
extremely rare and unlabeled data is abundant. Therefore,
many semi-supervised algorithms have been developed,
including self-training, S3VMs and graph-based methods,
which can fully utilize fewer labeled data and large unla-
beled data in the learning and predicting processes. The
merit of network-based semi-supervised algorithms lie in
that they can take full advantage of the inherent struc-
ture between labeled and unlabeled data. In this paper, we
employed the random walk with restart on drug-protein
bipartite network to predict drugs with lifespan-extending
effects on C.elegans. In fact, label propagation on bipar-
tite networks has been widely used in various fields, such
as drug repositioning [53], personal recommendation [54]
and political polarity classification [55].

To the best of our knowledge, we are the first to pro-
pose the computational method for predicting lifespan-
extending drugs in term of drug-protein interactions.
To calibrate the performance of the proposed method,
we employed two classical models, kNN and SVM, in
the empirical evaluation of the performance, as we have
not found any other existing computational methods
for screening lifespan-extending drugs in term of drug-
protein interactions. The 5-fold cross-validations on the
gold-standard dataset showed that our method achieve
higher performance than the two classical classifiers.

Our wet-lab experiments verified that one of the
screened drugs, 2-Bromo-4’-nitroacetophenone (Pub-
Chem CID000066840), can significantly promote the
longevity of C.elegans. In our future work, we will carry
out systematic wet-lab experiments to verify what per-
centage of the screened drugs are effective in promot-
ing longevity of C. elegans, and explore the biological
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mechanism of anti-aging effect of the drugs in pathway
and gene levels.

In summary, we proposed a semi-supervised classifi-
cation algorithm, random walk with restart on bipartite
graph, to predict drugs with lifespan-extending effects
on C.elegans. Our method aims at predicting lifespan-
extending drugs in a large scale, and narrowing down the
scope of candidate drugs needed to be verified by wet-
lab experiments. The results of empirical experiments and
wet-lab experiment show that our computational screen-
ing approach achieves state-of-the-art performance.

Additional files
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results based on the 309 target proteins of drug ZINC218147572 and the
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Additional file 3: Detailed information of the drugs collected from
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GenAge database, together with the corresponding transcripts of each
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