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ABSTRACT Human adenoviruses (HAdV), species D in particular (HAdV-D), are fre-
quently associated with epidemic keratoconjunctivitis (EKC). Although the infection
originates at the ocular surface epithelium, the mechanisms by which HAdV-Ds by-
pass the membrane-associated mucin (MAM)-rich glycocalyx of the ocular surface
epithelium to trigger infection and inflammation remain unknown. Here, we report
that an EKC-causing adenovirus (HAdV-D37), but not a non-EKC-causing one (HAdV-
D19p), induces ectodomain release of MUC16 —a MAM with barrier functions at the
ocular surface—from cultured human corneal and conjunctival epithelial cells. HAdV-
D37, but not HAdV-D19p, is also found to decrease the glycocalyx barrier function of
corneal epithelial cells, as determined by rose bengal dye penetrance assays. Fur-
thermore, results from quantitative PCR (qPCR) amplification of viral genomic DNA
using primers specific to a conserved region of the E1B gene show that, in compari-
son to infection by HAdV-D19p, infection by HAdV-D37 is significantly increased in
corneal epithelial cells. Collectively, these results point to a MUC16 ectodomain
release-dependent mechanism utilized by the EKC-causing HAdV-D37 to initiate in-
fection at the ocular surface. These findings are important in terms of understanding
the pathogenesis of adenoviral keratoconjunctivitis. Similar MAM ectodomain release
mechanisms may be prevalent across other mucosal epithelia in the body (e.g., the
airway epithelium) that are prone to adenoviral infection.

IMPORTANCE Human adenoviruses (HAdVs) are double-stranded DNA viruses that
cause infections across all mucosal tissues in the body. At the ocular surface, HAdVs
cause keratoconjunctivitis (E. Ford, K. E. Nelson, and D. Warren, Epidemiol Rev
9:244 –261, 1987, and C. M. Robinson, D. Seto, M. S. Jones, D. W. Dyer, and J. Cho-
dosh, Infect Genet Evol 11:1208 –1217, 2011, doi:10.1016/j.meegid.2011.04.031)—a
highly contagious infection that accounts for nearly 60% of conjunctivitis cases in
the United States (R. P. Sambursky, N. Fram, and E. J. Cohen, Optometry 78:236 –239,
2007, doi:10.1016/j.optm.2006.11.012, and A. M. Pihos, J Optom 6:69 –74, 2013, doi:
10.1016/j.optom.2012.08.003). The infection begins with HAdV entry within ocular
surface epithelial cells; however, the mechanisms used by HAdVs to transit the oth-
erwise protective mucosal barrier of ocular surface epithelial cells prior to entry re-
main unknown. Here, we report that the highly virulent keratoconjunctivitis-causing
HAdV-D37 induces release of the extracellular domain (ectodomain) of MUC16, a
major component of the mucosal barrier of ocular surface epithelial cells, prior to in-
fecting underlying cells. Currently, there is no specific treatment for controlling this
infection. Understanding the early steps involved in the pathogenesis of keratocon-
junctivitis and using this information to intercept adenoviral entry within cells may
guide the development of novel strategies for controlling the infection.
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Adenoviruses (HAdVs) are nonenveloped, icosahedral particles with a proteinaceous
capsid that encapsulates a double-stranded DNA genome. To date, more than 70

human-specific types have been recognized. These HAdVs, which can be divided into
seven species (HAdV-A to -G), are capable of causing infections of the ocular surface
and respiratory, gastrointestinal, and genitourinary tracts (1). However, only those
belonging to species D (HAdV-D) are commonly associated with epidemic keratocon-
junctivitis (EKC) (2, 3). The clinical manifestation of this infection is the development of
severe membranous conjunctivitis and epithelial keratitis, followed by multifocal sub-
epithelial infiltrates in the stroma that cause photophobia and reduced vision (4). The
stromal infiltrates usually develop within 7 to 10 days after onset of the clinical signs of
infection and may persist for months to years (5, 6).

Interestingly, not all HAdV-Ds are associated with keratoconjunctivitis. For instance,
HAdV-D37 causes EKC, whereas HAdV-D19p does not. A single amino acid, Lys240, in the
fiber knob domain of HAdV-D37 was found to be crucial in determining its binding to
conjunctival epithelial cells (7). The ocular tropism exhibited by HAdV-Ds is also
thought to be related to the expression of specific receptors at the ocular surface.
HAdV-Ds are thought to use the GD1a glycan (8), sialic acid (9, 10), and possibly CD46
(1) as cellular receptors, rather than the prototypical coxsackievirus and adenovirus
receptor (CAR).

In recent years, advancements have been made in identifying HAdV-specific recep-
tors on epithelial surfaces and mechanisms that promote apical entry of human
adenoviruses into epithelial cells (11–13). In lung epithelial cells, chemotactic cytokines,
such as interleukin 8 (IL-8), have been shown to trigger a signaling cascade that causes
relocation of CAR and the �v�3 integrin coreceptor to the apical surface, which
promotes adenovirus binding and uptake (13). However, the mechanism(s) by which
HAdVs traverse through the membrane-associated mucin (MAM)-rich glycocalyx that
covers the apical surface of all mucosal epithelia in the body to gain access to receptors
and initiate infection still remains unknown. The only data pertaining to MAM-HAdV
interactions on mucosal epithelia come from studies performed in the airway epithe-
lium. These studies have suggested that the MAM-rich glycocalyx is a barrier to
adenoviral vectors and adenovirus-mediated gene transfer (14–16). A more recent
study demonstrated that the MAM glycocalyx of human tracheobronchial epithelial
cells restricts adenoviruses while permitting penetrance of the much smaller adeno-
associated virus (17). Although this observation suggests that particle exclusion by the
glycocalyx is, in part, size dependent, it also raises this question: how do infection-
causing adenoviruses overcome the MAM glycocalyx on epithelial surfaces prior to
triggering infection? We have begun to address this question using the ocular surface
epithelium as a model system along with a highly virulent EKC-causing adenovirus,
HAdV-D37.

At the ocular surface, invading pathogens first encounter the tear film. In addition
to antimicrobial proteins, the tear film also consists of both secreted mucins and shed
MAMs in the aqueous layer that move around and serve to trap and wash away
pathogens and debris from the epithelial surface. Contrary to tear mucins, MAMs
remain physically tethered to the apical surface of epithelial cells and, as such, consti-
tute the cellular interface between invading pathogens and underlying epithelial cells.
Thus, the ability of a pathogen to manipulate the MAM glycocalyx and gain access to
underlying ocular surface epithelial cells determines the outcome of infection. The
MAM repertoire of the ocular surface epithelium, which is shared by the airway
epithelium, primarily includes MUC1, MUC4, and MUC16 (18). MUC1 and MUC16 are
expressed by the corneal and conjunctival epithelia, while MUC4 is expressed by the
latter (18, 19). Several lines of investigation have indicated that MUC16 is the major
contributor of barrier function at the ocular surface (20, 21). MUC16 not only prevents
the bacterium Staphylococcus aureus from adhering to and invading human corneal
epithelial cells (20, 21) but also contributes to the maintenance of immune homeostasis
(22). Furthermore, O-glycans within the N-terminal portion of the molecule’s ectodo-
main are also known to contribute to barrier function (23, 24). Given these protective
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roles of this MAM, we hypothesized that EKC-causing HAdV-Ds utilize a MUC16 barrier-
disrupting mechanism to infect underlying ocular surface epithelial cells. Previously, we
reported that a conjunctivitis-causing, unencapsulated strain of Streptococcus pneu-
moniae secretes an extracellular zinc metalloproteinase (ZmpC) to cleave the ectodo-
main of MUC16 and infect ocular surface epithelial cells (25). However, such a mech-
anism cannot be envisioned for EKC-causing HAdV-Ds because, unlike bacteria,
adenoviruses are inert entities and can begin synthesizing proteases only upon entry
and replication within host cells.

To test our hypothesis, human corneal-limbal epithelial (HCLE) and conjunctival
epithelial (HCjE) cells, cultured for optimal mucin expression, were incubated with the
EKC-causing HAdV-D37 and non-EKC-causing HAdV-D19p at a multiplicity of infection
(MOI) of 3 for 2 h. Following incubation, equal volumes of culture supernatants were
collected, concentrated, and analyzed for released MUC16 ectodomain by Western
blotting. Surprisingly, HAdV-D37, but not HAdV-D19p, was found to induce the release
of MUC16 ectodomain from differentiated HCLE and HCjE cells (Fig. 1A to D). Neither
HAdV-D37 nor HAdV-D19p induced MUC1 ectodomain release (data not shown).
Additionally, MUC16 ectodomain release from HCLE cells was observed as early as 30
min after exposure to HAdV-D37 (Fig. 1E and F), which suggests that the ectodomain
release process likely occurs prior to HAdV-D37 entry within epithelial cells.

To determine whether the glycocalyx barrier function of corneal epithelial cells is
affected upon exposure to HAdV-D37, rose bengal dye penetrance assays were per-
formed. This assay is a well-established method for determining the health of ocular
surface epithelial cells (20, 25, 26) and relies on the extent to which the dye penetrates
epithelial cells. Typically, healthy, fully differentiated corneal epithelial cells exclude the
dye; however, under conditions of reduced MUC16 expression (e.g., in confluent or
undifferentiated cells), increased dye penetrance is observed (20, 21, 25). In this study,
incubation of differentiated HCLE cells with HAdV-D37 at an MOI of 3 for 2 h resulted
in a significant increase in rose bengal dye penetrance compared to the levels of
penetrance under the HAdV-D19p incubation and control conditions (Fig. 2A and B). No
difference in dye penetrance was observed between the HAdV-D19p incubation and
control conditions (Fig. 2A and B). Furthermore, to determine whether the increased
dye penetrance observed under the HAdV-D37 incubation condition could be a result

FIG 1 EKC-causing HAdV-D37 induces MUC16 ectodomain release from human corneal and conjunctival epithelial cells. (A and C) HCLE and HCjE cells
were exposed to HAdV-D19p and HAdV-D37 at identical MOIs, following which equal volumes of culture supernatants were collected and analyzed for
released MUC16 ectodomain. Control cells were not exposed to HAdV-Ds. The results shown are from experiments performed in biological triplicates.
Identical patterns of MUC16 ectodomain release were observed in separate experiments. The faint bands observed in the “Control” condition in panel
C are attributed to constitutive MUC16 ectodomain shedding (25). The precise mechanism of constitutive ectodomain shedding of MAMs remains
unknown (20, 25, 45). (B and D) Bar graphs represent band intensities (raw densitometric values) corresponding to the MUC16 ectodomain in the blots
shown in panels A and C above. (E) HCLE cells were exposed to HAdV-D19p and HAdV-D37 at identical MOIs for 30 min and 1 h, following which MUC16
ectodomain release was analyzed. The results shown represent experiments performed in biological duplicates. (F) Graph representing band intensities
(raw densitometric values) corresponding to the MUC16 ectodomain in the blot shown in panel E. *, P < 0.05, Bonferroni test; NS, not significant.
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of cell death and loss of apical MUC16-expressing epithelial cells, cytotoxicity assays
were performed by measuring the levels of lactate dehydrogenase (LDH) released into
the culture supernatants (27). The results from this assay revealed no significant
increase in LDH levels in the culture supernatants under HAdV-D37 and HAdV-D19p
incubation and control conditions (Fig. 2C). These data suggest that HAdV-D37 expo-
sure most likely compromises the glycocalyx barrier of corneal epithelial cells as a
consequence of MUC16 ectodomain release and not due to cytotoxic effects.

Loss of the ectodomain of MUC16 from corneal epithelial cells has been previously
shown to facilitate invasion by bacterial pathogens (20, 25). To determine whether
HAdV-D37-induced MUC16 ectodomain release promotes HAdV-D37 infection of ocular
surface epithelial cells, differentiated HCLE cells were incubated independently with
HAdV-D37 and HAdV-D19p at an MOI of 3 for 2 days, following which adenoviral loads
were measured by quantitative PCR (qPCR) amplification of a highly conserved region
of the E1B gene (28) and values extrapolated from a standard curve (Fig. 2D). The qPCR
data revealed increases of 2.5- to 3-fold in E1B copies in HAdV-D37-incubated cells
compared to the levels under control and HAdV-D19p incubation conditions (Fig. 2E).
Furthermore, HCLE cells pretreated with rZmpC—a recombinant pneumococcal zinc
metalloproteinase known to cleave the ectodomain of MUC16 (25, 29)—showed a
significant increase in infection by HAdV-D37 but not by HAdV-D19p (Fig. 2E). That
rZmpC pretreatment of HCLE cells did not enhance infection by HAdV-D19p in com-
parison to its level of infection under the untreated condition may be explained, in part,
by the inability of HAdV-D19p to bind to specific receptors on corneal epithelial cells.

FIG 2 EKC-causing HAdV-D37 decreases glycocalyx barrier function and exhibits increased infectivity of corneal epithelial cells. (A)
Representative micrographs of HCLE cells exposed to HAdV-D19p and HAdV-D37 for 2 h and later incubated with rose bengal dye are
shown. Control cells were not exposed to HAdV-Ds. Scale bar � 50 �m. (B) Quantitative analyses (n � 30 for each condition) of areas
of cells exhibiting rose bengal dye penetrance. *, P < 0.05, Bonferroni test; NS, not significant. (C) Values for optical density at 490 nm
(OD490), corresponding to the levels of LDH released into the culture supernatants under the conditions described in the legend to panel
A. NS, not significant at a P value of <0.05 by Kruskal-Wallis test. (D) Standard curve generated by plotting the cycle threshold (Ct)
required to amplify the E1B gene from known amounts of adenoviral DNA (0.1 ng, 0.01 ng, and 0.001 ng) by qPCR. (E) Quantification
of adenoviral DNA recovered from untreated and rZmpC-pretreated HCLE cells that were exposed to HAdV-D19p and HAdV-D37 at
identical MOIs for 2 days. The equation resulting from the standard curve shown in panel D was used to quantify adenoviral DNA in HCLE
cells. *, P < 0.05, Bonferroni test; NS, not significant.
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In fact, a recent study demonstrated that HAdV-D19p is unable to replicate within
cultured corneal epithelial cells despite a 1-week exposure (28).

Taken together, these data demonstrate for the first time that a virulent adenovirus
is capable of manipulating the MAM glycocalyx barrier of a mucosal epithelium to
infect underlying cells. While the mechanism of HAdV-D37-induced MUC16 ectodomain
release remains to be elucidated, one interesting hypothesis is that binding of HAdV-
D37 to MUC16 induces self-cleavage of the MAM. Indeed, such a mechanism has been
demonstrated for the MAM MUC1 (30). The exposure of gastric epithelial cells to
bacterium-sized beads coated with antibodies to the ectodomain of MUC1 was found
to induce release of the MAM’s ectodomain (30). This finding is important and suggests
that binding of ligands to MAMs can induce release of their ectodomains. It will be
interesting to determine whether HAdV-D37 interacts with MUC16, especially since
HAdV-D37 is known to use sialic acid as a receptor for binding to corneal epithelial cells
(9) and the ectodomain of MUC16 contains a terminal O-acetyl sialic acid moiety, also
known as the H185 epitope (31). With regard to the site of cleavage within MUC16, the
ectodomain of MUC16 has 56 SEA modules interspersed within the tandem repeat
region of the protein (18, 32, 33), and the 55th and 56th SEA modules contain predicted
proteolytic cleavage sites (34–36). Although the SEA module within MUC1 is known to
be a self-cleaving domain (37), the significance of such a module in self-cleavage of
MUC16 needs to be investigated.

The data from the rose bengal dye penetrance assay indicate that HAdV-D37
exposure compromises the glycocalyx barrier function of corneal epithelial cells.
Since MUC16, with a molecular mass of �2.5 mDa, is the largest known MAM and
has the potential to extend up to 250 to 300 nm from the apical cell surface (38),
release of the ectodomain of MUC16 may facilitate the access of HAdV-D37 to its
receptor(s) for subsequent internalization within epithelial cells. Another possibility
is that release of the ectodomain of MUC16 somehow alters the function of tight
junctions of corneal epithelial cells to expose HAdV-D37-specific receptors. Re-
cently, it was demonstrated that MUC16 knockdown HCLE cells exhibit decreased
tight junction function and disruption of the actin cytoskeleton (20). However, while
MUC16 knockdown cells lack the cytoplasmic tail of the MAM, which contains an
ezrin, radixin, and moeisin (ERM)-binding domain necessary for linking the ERM to
actin (21), HAdV-D37-exposed cells most likely retain the cytoplasmic tail. Moreover,
enzymatic cleavage of MUC16 by rZmpC does not result in loss of tight junctions or
decreased transepithelial resistance (20, 25). Therefore, it does not appear that
HAdV-D37-induced MUC16 ectodomain release interferes with tight junction func-
tion, at least during the first 2 h of incubation with the adenovirus. Rather, loss of
the MUC16 barrier may serve as a mechanism to promote interaction of HAdV-D37
with its receptor(s) on the apical cell surface.

Clearly, follow-up experiments are needed to understand the mechanistic basis of
interactions between HAdV-D37 and MUC16 at the ocular surface and to determine
whether a similar MAM ectodomain release strategy is used by adenoviruses to trigger
infections at other mucosal surfaces. It would also be ideal to corroborate the data
using a mouse model. However, establishing a mouse model is not feasible because, (i)
unlike humans, mice do not express MUC16 in the corneal epithelium (2, 39) and (ii)
mice are considered to be poor models for HAdV replication (40, 41). Nevertheless, we
believe that our in vitro data reflect some of the earliest molecular events that precede
the establishment of adenoviral keratoconjunctivitis. From a translational standpoint,
blockade of HAdV-D37-induced MUC16 ectodomain release may represent a novel
approach for controlling the spread of adenoviral keratoconjunctivitis.

Cell lines and culture methods. Telomerase-transformed HCLE and HCjE cell lines
for which mucin gene expression has been well characterized were used (42). These cell
lines mimic several aspects of native ocular surface epithelial cells, especially MAM
expression (42). HCLE and HCjE cells were cultured and grown to confluence in kera-
tinocyte serum-free medium (K-SFM) (Invitrogen) containing 25 �g/ml bovine pitu-
itary extract and 0.2 ng/ml epidermal growth factor (EGF). The cells were later switched
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to Dulbecco’s modified Eagle’s medium–nutrient mixture F-12 (DMEM–F-12) (Cell-
gro) supplemented with 10% calf serum and 10 ng/ml EGF for 7 days to promote
differentiation and optimal MAM expression (42). Stratified HCLE and HCjE cells were
washed three times with antibiotic- and EGF-free K-SFM prior to incubation with the
HAdV-Ds diluted in the same medium.

Adenoviruses. Both HAdV-D19p and HAdV-D37 were obtained from the ATCC,
propagated in A549 cells, and purified by cesium-chloride gradient centrifugation. Pu-
rified adenoviruses were dialyzed against dialysis buffer (10 mM Tris, 80 mM NaCl,
2 mM MgCl2, 10% glycerol), and their titers were determined in triplicate using A549
cells (28, 43).

Western blot analysis to quantify MUC16 ectodomain release. Western blotting to
quantify MUC16 ectodomain release using culture supernatants derived from HAdV-
D19p- and HAdV-D37-exposed HCLE and HCjE cells was performed as described pre-
viously (25, 29). Briefly, 500-�l-amounts of cell culture supernatants were collected
from cultures incubated under each condition, concentrated using a 10-kDa-cutoff con-
centrator (Millipore), and separated by SDS-agarose electrophoresis. Western blotting
to detect the ectodomain of MUC16 was done using the ectodomain-specific M11 anti-
body (44) (NeoMarkers) as the primary antibody and horseradish peroxidase-
conjugated goat anti-mouse IgG1 (Santa Cruz Biotechnology) as the secondary anti-
body. The blots were developed using the SuperSignal West femto maximum sensitivity
substrate (Thermo Scientific). The band intensities were analyzed using the ImageJ
software from NIH.

Rose bengal dye penetrance assay. HCLE cells were exposed to HAdV-D19p and
HAdV-D37 at an MOI of 3 for 2 h. Culture supernatants were then collected and saved
for performing cytotoxicity assays, while the cells were rinsed with phosphate-buffered
saline (PBS) and incubated with a 0.1% solution of rose bengal dye prepared in PBS.
After a 5-min incubation, the dye was aspirated and 5 images per well (a total of six wells
was used for each condition) were immediately photographed using a 10� objective on
a Nikon inverted Eclipse TS100 microscope with a Spot Insight camera (Diagnostic
Instruments, Inc.). The areas of dye penetration were quantified using the ImageJ soft-
ware from NIH, as previously described (20, 21, 25).

Cytotoxicity assay. This assay was performed using the CytoTox 96 nonradioac-
tive kit (Promega) following the manufacturer’s instructions. Fifty-microliter
amounts of the culture supernatants that were collected prior to performing rose
bengal dye penetrance assays were used in each reaction mixture. The amount of
color developed in each well was read spectrophotometrically at an absorbance of
490 nm. A standard curve for this assay is included in Fig. S1 in the supplemental
material.

Adenoviral E1B gene quantification by qPCR. Differentiated HCLE cells were ex-
posed to HAdV-D19p and HAdV-D37 at an MOI of 3 for 2 days, following which cells
were harvested and DNA extracted using the QIAamp DNA blood minikit (Qiagen).
Under conditions involving pretreatment with rZmpC, HCLE cells were incubated with
200 pmol of the enzyme for 4 h prior to incubation with HAdV-Ds. qPCR amplification
of viral genomic DNA was performed using primers specific to a highly conserved region
of the E1B gene (forward primer, 5= TGCTCTGGCCTGCTAGATTC 3=, and reverse
primer, 5=CTGGCTCCATTTGTCAACCAG 3=) as described previously (28), using RT2

SYBR green mastermix (Qiagen). qPCR was performed on an Eppendorf Mastercycler
ep gradient S platform. Quantification of the E1B copies in HAdV-D19p- and HAdV-
D37-exposed HCLE cells was extrapolated from a standard curve.

Statistical analyses. Statistical analyses were performed using one-way analysis of
variance (ANOVA) to determine overall significance. Analyses were performed using the
GraphPad InStat 3 program for Macintosh, version 3.1a. A P value of �0.05 was con-
sidered significant.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://dx.doi.org/10.1128/
mSphere.00112-15.

Figure S1, DOC file, 0.4 MB.
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