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Mycobacterial acyl carrier protein (AcpM; Rv2244), a key protein involved in

Mycobacterium tuberculosis (Mtb) mycolic acid production, has been shown to

suppress host cell death during mycobacterial infection. This study reports that

mycobacterial AcpM works as an effector to subvert host defense and promote

bacterial growth by increasing microRNA (miRNA)-155-5p expression. In

murine bone marrow-derived macrophages (BMDMs), AcpM protein

prevented transcription factor EB (TFEB) from translocating to the nucleus in

BMDMs, which likely inhibited transcriptional activation of several autophagy

and lysosomal genes. Although AcpM did not suppress autophagic flux in

BMDMs, AcpM reduced Mtb and LAMP1 co-localization indicating that AcpM

inhibits phagolysosomal fusion during Mtb infection. Mechanistically, AcpM

boosted the Akt-mTOR pathway in BMDMs by upregulating miRNA-155-5p, a

SHIP1-targeting miRNA. When miRNA-155-5p expression was inhibited in

BMDMs, AcpM-induced increased intracellular survival of Mtb was

suppressed. In addition, AcpM overexpression significantly reduced

mycobacterial clearance in C3HeB/FeJ mice infected with recombinant M.

smegmatis strains. Collectively, our findings point to AcpM as a novel

mycobacterial effector to regulate antimicrobial host defense and a potential

new therapeutic target for Mtb infection.
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Introduction

Tuberculosis (TB) is a worldwide infectious disease that has

claimed many lives, and the fight against TB still faces many

challenges. According to theWorld Health Organization’s global

TB report 2020, TB caused an estimated 10 million new cases

and 1.5 million deaths in 2020, making it the second most deadly

infectious disease caused by a single pathogen after COVID-19.

Mycobacterium tuberculosis (Mtb), the bacteria that causes

tuberculosis, has a variety of defense mechanisms to evade the

host’s innate immune system, including autophagy, apoptosis,

and inflammation (1). Mtb can also survive as a latent infection

for a long time in alveolar macrophages, making it resistant to

anti-TB drugs and difficult to eradicate (2). To control Mtb, it’s

crucial to understand the dynamics of the host-pathogen

interaction. To date, several mycobacterial factors, such as

SapM (3), ESAT-6/CFP-10 (4), nuoG (5), Eis (6), LprG (7),

PE_PGRS47 (8), SecA2 (9, 10), LprE (11), PknG (12), and

phthiocerol dimycocerosates (PDIM) (13), are known to

influence how Mtb suppresses host defenses through

modulating various innate immune strategies against Mtb in

host immune cells. Nonetheless, new mycobacterial components

that alter the host’s innate immune response must be discovered

to better understand the molecular mechanisms underlying

mycobacterial pathogenesis and develop new therapeutic targets.

Mtb requires a unique acyl carrier protein (AcpM), the second

most glycosylated protein involved in mycolic acid biosynthesis

(14). Mycolic acids, which protect Mtb from the host environment

while also eluting virulence, are one of the most important

components of the mycobacterial cell wall (15). AcpM interacts

with PptT, which transfers 4′-phosphopantetheine (Ppt) from

coenzyme A (CoA) to AcpM in Mtb for mycolic acid synthesis

(16). According to a recent study, a small compound called “8918”

inhibited PptT action by binding to the Ppt pocket in the active

site, resulting in selective antimicrobial activity comparable to

rifampin (17). These findings raise concerns about the intrinsic

properties of the AcpM and how they affect Mtb virulence.

Although AcpM is essential for Mtb growth by producing lipid-

rich cell walls, little is known about its immunological properties

in host-pathogen interactions.

This study investigated the mechanisms by which the AcpM

protein prevents nuclear translocation of transcription factor EB

(TFEB) and phagosomal maturation in host macrophages.

AcpM appeared to inhibit autophagy in bone marrow-derived

macrophages (BMDMs) by lowering the LC3 I to II ratio;

however, it did not affect autophagic flux in BMDMs. Rather

than this, AcpM markedly reduced nuclear translocation of

TFEB and several autophagy-related genes including

lysosomal-associated membrane protein 1 (Lamp1), which was

regulated by TFEB, in macrophages. Moreover, AcpM activated

the protein kinase B (Akt) pathway, which is associated with Mtb

survival in host cells, by inducing miR-155, which targets SH2-

domain-containing inositol 5-phosphatase 1 (SHIP1) (18).
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AcpM prevented Mtb from fusing with lysosomes in BMDMs,

thus increasing Mtb intracellular survival (ICS). Finally, in the

lung lysates of recombinant M. smegmatis-infected mice, AcpM

overexpression increased Mtb colony-forming unit (CFU) levels

while decreasing several autophagy and lysosomal genes.

Taken together, these findings help us to explore the

relationship between the host immune response and

mycobacterial infection in terms of Mtb AcpM, revealing its

potential as a target for novel tuberculosis therapies.
Materials and methods

Animals and ethics statement

Female C57BL/6 and BALB/c mice were purchased from

Samtako Bio (Gyeonggi-do, Korea) at 6–7 weeks of age, and

C3HeB/FeJ mice were obtained from the Jackson Laboratory

(Bar Harbor, ME, USA). Mice were maintained under specific

pathogen-free conditions. All animal experimental methods and

procedures were performed following the relevant ethical

guidelines and regulations approved by the Institutional

Research and Ethics Committee at Chungnam National

University, School of Medicine (202009A-CNU-155; Daejeon,

Korea) and the guidelines of the Korean Food and

Drug Administration.
Cell culture

Bone marrow cells were isolated from C57BL/6 mice (6-8

weeks old) and cultured in Dulbecco’s modified Eagle’s medium

(DMEM; Lonza, Walkersville, USA) containing 10% fetal bovine

serum (FBS; Gibco, NY, USA) and antibiotics (Lonza).

Differentiating for 4–5 days in the presence of 25 mg/ml of

recombinant mouse macrophage colony-stimulating factor (M-

CSF) (R&D Systems) in a 37°C humidified atmosphere

con t a in ing 5% CO2 produced pr imary BMDMs .

Approximately 4 x 105 cells/well in the 24-well cell culture

plate (SPL Life Science Co., Gyeonggi-do, Korea) or 2 x 105

cells/well in the 48-well cell culture plate (Corning, NY, USA)

were used for the entire in-vitro analysis.
Preparation of recombinant AcpM
protein and anti-AcpM antibody

Recombinant AcpM protein was prepared according to the

previous study (19). Briefly, mycobacterial acpM was amplified

from genomic DNA of Mtb H37Rv ATCC 27294 using the

forward (5’-CATATGCCTGTCACTCAGGAAGAAATC-3’)

and reverse primers (5 ’-AAGCTTCTTGGACTCGG

CCTCAAGCCT-3’), and the PCR product was inserted into
frontiersin.org
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the pET-22b (+) vector (Novagen, Madison, WI, USA). The

recombinant plasmids were transformed into E. coli BL21 cells

by heat-shocking for 1 min at 42 °C. Cell disruption was used to

obtain the overexpressed AcpM protein, which was then purified

using NI-NTA resin. The purified recombinant protein was

dialyzed and incubated with polymyxin B-agarose (Sigma

Chemical Co.) to remove residual endotoxin. The purified

endotoxin-free AcpM was filter sterilized and kept frozen at

-80°C until use. To collect anti-AcpM antibodies, BALB/c mice

were injected three times intraperitoneally with purified AcpM

(25 mg per mouse) emulsified in incomplete Freund’s adjuvant.

One week after the final immunization, serum was collected and

stored frozen until use with proper dilution.
Construction of recombinant
M. smegmatis strains

Mycobacterial acpM was amplified from genomic DNA of

Mtb H37Rv ATCC 27294 using the forward (NdeI site, 5’-

CATATGCCTGTCACTCAGGAAGAAATC-3’) and reverse

primers (HindIII site , 5 ’-AAGCTTCTTGGACTCGG

CCTCAAGCCT-3’) as in the previous study (19). Then,

amplified acpM was inserted into the pVV16 vector to create

pVV16_AcpM. The pVV16 (vector only) and pVV16_AcpM

plasmids were electroporated into suspensions of M. smegmatis

mc2155 competent cells at 2.5 kV, 1,000 W, and 25 mF using a

Gene Pulser (Bio-Rad, San Diego, CA, USA) to construct

Ms_Vec and Ms_AcpM, respectively. Western blot image of

AcpM expression in Ms_Vec and Ms_AcpM using anti-AcpM

antibody was presented in Supplementary Figure S1.
Western blot analysis

BMDMs cultured in 24-well cell culture plates were lysed in

150 ml of radioimmunoprecipitation assay (RIPA) buffer (LPS

solution, CBR002) added with protease and phosphatase

inhibitor cocktail (Roche, Mannheim, Germany). The whole

mouse lung was homogenized in 1 ml of PBS containing 0.05%

Tween 80 (PBST) and then half of the homogenates were

centrifuged and lysed in 500 ml of RIPA buffer containing

protease and phosphatase inhibitor cocktail. The cell lysates

were mixed with Protein 5X Sample Buffer (ELPIS BIOTECH,

EBA-1052) and boiled for 10 min. Prepared protein extracts

were separated by SDS-polyacrylamide gel electrophoresis

(PAGE) and then transferred to polyvinylidene difluoride

(PVDF; Millipore, Burlington, MA, USA) membranes. The

membranes were then blocked using 1X blocking solution

(Biofact) for 1 h at room temperature (RT) and then incubated

overnight with primary antibodies at 4 °C. After washing with

tris-buffered saline supplemented with 0.1% Tween 20 (TBST),

the membranes were incubated with the secondary antibodies
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for 1 h at RT. Immunoblotting was performed using an

enhanced chemiluminescence reagent (Millipore, WBKL

S0500) and a UVitec Alliance mini-chemiluminescence device

(UVitec, Rugby, UK). The densitometric values were calculated

using ImageJ software and data were normalized to loading

controls shown in the figures. Bafilomycin A1 (B1793) was

purchased from Sigma-Aldrich (St. Louis, MO, USA) The

primary and secondary antibodies used were as follows: Anti-

p62 (1:1000 diluted; P0067) and anti-LC3 (1:1000 diluted;

L8918) antibodies were purchased from Sigma-Aldrich. anti-

LAMP1 (1:1000 diluted; sc-20011) was purchased from Santa

Cruz Biotechnology (Dallas, TX, USA), Anti-b-actin (1:2000

diluted; 5125s), anti-phospho-mTOR (1:1000 diluted; 2971s),

anti-mTOR (1:1000 diluted; 2983s), anti-phospho-Akt (1:1000

diluted; 4060s), anti-Akt (1:1000 diluted; 9272s), anti-TFEB

(1:1000 diluted; 4240s), anti-ATG5 (1:1000 diluted; 12994s),

anit-SHIP1 (1:1000 diluted; 2728s), anti-FOXO3a (1:1000

diluted; 12829s), anti-mouse IgG (1:5000 diluted; 7076s), and

anti-rabbit IgG (1:5000 diluted; 7074s) antibodies were

purchased from Cell Signaling Technology (Danvers, MA, USA).
Bacterial strains and culture

Mtb H37Rv was kindly provided by Dr. R. L. Friedman

(University of Arizona, Tucson, AZ, USA). Mtb was grown at

37 °C with shaking in Middlebrook 7H9 broth (Difco, Paris,

France) supplemented with 0.5% glycerol, 0.05% Tween-80

(Sigma-Aldrich), and oleic albumin dextrose catalase (OADC;

BD Biosciences). Mtb-expressing enhanced red fluorescent

protein (Mtb-ERFP) and recombinant M. smegmatis strains

were grown in Middlebrook 7H9 medium supplemented with

OADC and 50 mg/ml kanamycin (Sigma-Aldrich). Bacterial

strains were then harvested by centrifugation at 3000 rates per

min for 30 min and the pellets were resuspended in ice-cold

phosphate-buffered saline (PBS). All mycobacterial suspensions

were aliquoted and stored at −80 °C until just before use. For all

experiments, mid-log-phase bacteria (O.D = 0.6) were used. The

number of CFUs of the inoculum was verified by serially diluting

and plating on Middlebrook 7H10 agar (Difco).
Immunofluorescence analysis

BMDMs were cultured on coverslips in 24-well cell culture

plates. After the appropriate infection or treatment, cells were

washed twice with PBS, fixed with 4% paraformaldehyde for

15 min, and permeabilized with 0.25% Triton X-100 (Sigma-

Aldrich) for 10 min. Cells were incubated with anti-TFEB

antibody (1:400 diluted; Bethyl Laboratories, A303-673A) or

anti-LAMP1 Ab (1:400 diluted; Santa Cruz Biotechnology, SC-

19992) overnight at 4°C. Cells were washed with PBS to remove

excess primary antibodies and then incubated with secondary
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anti-rabbit or anti-rat IgG-Alexa Fluor 488 Ab (1:400 diluted;

Invitrogen, A11008 or A11006) for 1 h at RT. Nuclei were

stained using Fluoromount-G™, with DAPI mounting medium

(Thermo Fisher Scientific, 00-4959-52). Immunofluorescence

images were acquired using a confocal laser-scanning

microscope (Zeiss, LSM-900). Quantification of TFEB-nuclear

translocation was performed by manual calculation and the

degree of colocalization between Mtb-ERFP and LAMP-1 was

analyzed using the JACoP plugin of the ImageJ software.
Total RNA extraction and sequencing

Total RNA from BMDMs was isolated using QIAzol lysis

reagent (Qiagen, Hilden, Germany) and miRNeasy Mini Kits

(Qiagen) according to the manufacturer’s instructions. RNA

quality was assessed by Agilent 2100 bioanalyzer using the RNA

6000 Pico Chip (Agilent Technologies, CA, USA), and

quantification was performed using a NanoDrop 2000

Spectrophotometer system (Thermo Fisher Scientific, MA,

USA). For messenger RNA-sequencing (mRNA-seq), the

library was constructed using QuantSeq 3’ mRNA-Seq Library

Prep Kit (Lexogen, Wien, Austria) according to the

manufacturer’s instructions. In brief, each sample was

prepared with 500 ng of total RNA, an oligo-dT primer with

an Illumina-compatible sequence at its 5’ end was hybridized

with the RNA, and reverse transcription was performed. After

degradation of the RNA template, second-strand synthesis was

initiated by a random primer with an Illumina-compatible linker

sequence at its 5’ end. The double-stranded library was purified

using magnetic beads to remove all reaction components and

amplified to add the complete adapter sequences required for

cluster generation. The finished library was purified from PCR

components, and then high-throughput sequencing was

performed as single-end 75 sequencings using NextSeq 500

(Illumina, CA, USA). For micro RNA-sequencing (miRNA-

seq), the construction of the library was performed using the

NEBNext Multiplex Small RNA Library Prep kit (New England

BioLabs, MA, USA) according to the manufacturer ’s

instructions. Briefly, for library construction, total RNA from

each sample was used 1 µg to ligate the adaptors, and then cDNA

was synthesized using reverse-transcriptase with adaptor-

specific primers. PCR was performed for library amplification,

and libraries were cleaned up using QIAquick PCR Purification

Kit (Qiagen) and AMPure XP beads (Beckman Coulter, CA,

USA). The Agilent 2100 Bioanalyzer instrument assessed

the yield and size distribution of the small RNA libraries for

the High-sensitivity DNA Assay (Agilent Technologies). The

NextSeq500 system produced High-throughput sequences to

single-end 75 sequencings (Illumina).

All raw reads received the quality check using BBduk, a tool

in the BBMap package (https://sourceforge.net/projects/bbmap),
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to remove low-quality bases (< Q20). The remaining reads from

QuantSeq 3’ mRNA-Seq and miRNA-seq were mapped to the

mouse mm10 genome reference and mature miRNA sequences

of the miRBase database (20) using Bowtie2 software (21),

respectively. Read counts of genes were calculated with

Bedtools (22) and the raw counts were transformed into

counts per million (CPM) for exclusion of very lowly

expressed genes using edgeR (version 3.36.0) (23). Genes with

one or more log2-CPM in at least two samples were kept for

further analysis. Next, normalization factors were calculated

with the trimmed mean of M-values (TMM) method using the

calcNormFactors function in edgeR. For Z-score normalization,

the TMM-adjusted log CPM counts were calculated, and

Gaussian normalization was performed. To identify

differentially expressed genes (DEGs), gene expression levels

were statistically tested between groups using the glmFit and

glmLRT functions embedded in the edgeR package. Benjamini

and Hochberg’s false discovery rate (FDR) method was used to

correct for multiple testing. Genes with the fold change over two

and the significance (adjusted p-value) below 0.01 were

considered DEGs. The binding site between miRNA and the 3’

untranslated region (UTR) of target mRNA was predicted by

miRWalk 3.0 at http://mirwalk.umm.uni-heidelberg.de/ (last

accessed February 2022).
Quantitative real-time PCR

For mRNA expression analysis, total RNA from BMDMs

cultured in 48-well cell culture plates or mouse lung tissue

homogenates was extracted using TRIzol reagent (Invitrogen;

15596026) according to the manufacturer’s instructions,

followed by RNA quantitation and assessment using QIAxpert

(Qiagen). Complement DNA from total RNA was synthesized

using the reverse transcription master premix (ELPIS Biotech;

EBT-1515c) as manufacturer ’s instruction. Two-step

quantitative real-time PCR (qRT-PCR) was carried out using

cDNA, primers, and Rotor-Gene SYBR Green PCR Kit (Qiagen,

204074). Reactions were run on a Rotor-Gene Q 2plex system

(Qiagen, 9001620). The samples were amplified for 40 cycles as

follows: 95°C for 5 s and 60°C for 10 s. Data were expressed as

relative fold changes using the 2-DD threshold cycle (Ct) method

with b-actin (BMDMs) or Gapdh (lung tissue homogenates) as

an internal control gene. The primer sequences used are shown

in Supplementary Table 1.

For miRNA expression analysis, total RNA from BMDMs

cultured in 48-well cell culture plates was isolated using QIAzol

lysis reagent (Qiagen, 79306) and miRNeasy Mini Kits (Qiagen,

217004) according to the manufacturer’s instructions. Next,

cDNA from total RNA was synthesized using miScript II RT

Kits (Qiagen, 218161) by the manufacturer’s instructions. Three-

step qRT-PCR was performed using the miScript SYBR Green
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PCR Kit (Qiagen, 218073), and samples were amplified for 50

cycles as follows: 95°C for 15 s, 55°C for 30 s, and 72°C for 30 s.

Small nuclear RNA (RNU6-6P RNA; Qiagen, MS00033740) was

used for the normalization of the expression of miR-155-3p and

miR-155-5p. The primer sequences used are shown in

Supplementary Table 2.
Transient transfection

BMDMs cultured in 48-well cell culture plates were

transiently transfected with a miRNA mimic negative control

(20 nM), miR-155-5p mimic (20 nM), miRNA inhibitor negative

control (100 nM), or miR-155-5p inhibitor (100 nM) using the

Lipofectamine 3000 Transfection Kit (Invitrogen, L3000-008)

according to the manufacturer’s instructions. Genolution (Seoul,

South Korea) provided the miR-155-5p mimic (5′-
UUAAUGCUAAUUGUGAUAGGGGU-3′) and miR-155-5p

inhibitor (5′-ACCCCUAUCACAAUUAGCAUUAA-3′), and
Ambion (Austin, TX, USA) provided the miRNA mimic

negative control (4464058) and inhibitor negative

control (4464076).
Colony-forming unit assay

BMDMs cultured in 48-well cell culture plates were

transiently transfected with miRNA inhibitor negative control

or miR-155-5p inhibitor before infecting with Mtb H37Rv at a

multiplicity of infection (MOI) of 3 for 4 h. The infected cells

were washed with PBS to remove extracellular bacteria and

further incubated in the fresh medium for the indicated

periods. Cells were then lysed in sterile distilled water for

30 min, serially diluted with PBS, and plated on the

Middlebrook 7H10 agar plates containing OADC. Plates were

incubated for 2-3 weeks at 37°C and colonies were enumerated

to assess intracellular bacterial viability.
In-vivo analysis with recombinant
M. smegmatis strains

Frozen bacterial cells were centrifuged after thawing, and the

pellet was resuspended in PBST. After anesthetizing C3HeB/FeJ

mice, 1×106 CFU/mouse of Ms_Vec or Ms_AcpM were

inoculated intranasally. At the indicated times after infection,

mice were euthanized and the lungs were collected to assess the

bacterial burden. Lung tissues were homogenized using a tissue

homogenizer (Omni International Inc., Warrenton, VA, USA)

in PBST. Serial dilutions of the homogenates were planted in

7H10 agar plates, and colonies were counted after 3-4 days of

incubation at 37°C.
Frontiers in Immunology 05
Statistical analysis

All of the experiments were repeated as indicated in figure

legends, with consistent results. An unpaired Student’s t-test

was used to determine the significance of differences between

two groups, and an one-way analysis of variance (ANOVA)

followed by Tukey’s multiple comparison test was used to

determine the significance of differences among three or

more groups using Prism® software version 8 (GraphPad

Software, San Diego, CA, USA). Data are expressed as means

± standard deviation (SD) or standard error of the mean

(SEM); statistical significance was defined as *p < 0.05,

**p < 0.01, and ***p < 0.001.
Results

AcpM inhibits TFEB expression and its
nuclear translocation

To find the key molecule governing the host defense in

AcpM-treated BMDMs, mRNA-seq analysis was performed

(Figure 1A; Supplementary Table 3). Several autophagy-related

genes, including Tfeb, were significantly downregulated in

AcpM-treated BMDMs (AcpM) when compared to untreated

cells (Un) (Figure 1A). Since TFEB is known to play a pivotal

role in the regulation of lysosomal biogenesis and autophagy

(24), qRT-PCR and western blot analysis were conducted to

confirm its relative expression. Over time, AcpM treatment

reduced the gene (Figure 1B) and protein (Figure 1C) levels of

TFEB. Furthermore, AcpM treatment effectively suppressed the

nuclear translocation of TFEB. The degree of TFEB in the

nucleus reduced at early time points after AcpM addition in

BMDMs, as shown by confocal images with TFEB staining in

green (Figure 1D).
AcpM suppresses the expression of
numerous autophagy and lysosomal
genes in the TFEB downstream pathway

TFEB enters the nucleus to function as a transcription

factor inducing lysosomal biogenesis. Since AcpM blocks its

nuclear translocation (Figure 1D), various genes related to

autophagy or lysosomal activity were thought to decrease with

AcpM treatment in BMDMs. In detail, AcpM treatment

significantly reduced the levels of Lamp1 , Lamp2 ,

autophagy-related gene 5 (Atg5), Atg 7, and several Tfeb

downstream genes such as Uvrag and Vps11 over time

(Figure 2A). AcpM also significantly suppressed the

expression of Rap7a, Gabarap, Beclin-1 (Becn1), and

damage-regulated autophagy modulator 2 (Dram2) at most
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A B
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FIGURE 1

AcpM suppresses TFEB expression and its nuclear translocation. (A) A heatmap and a bar graph showing the expression of autophagy-associated
genes in the AcpM-treated (AcpM, 10 mg/ml for 18 h) and untreated (Un) BMDMs. The left panel heatmap shows relative expression levels for each
gene with Z-scores. The bar graph in the right panel depicts the fold change (FC). Gene names with an asterisk indicate statistical significance
(FDR < 0.01). (B, C) BMDMs were treated with recombinant AcpM (10 mg/ml) for indicated times, and the harvested cells were subjected to either
qRT-PCR analysis to measure Tfeb mRNA gene expression (B) or immunoblot analysis to measure TFEB protein expression (C). One representative
image, (C, upper panel) and the densitometric analysis (C, lower panel) of immunoblots were presented. (D) BMDMs treated with recombinant AcpM
(10 mg/ml) for 2 or 6 h were harvested and stained with TFEB (green). Then the cells were subjected to confocal microscopy. Representative
confocal images (Scale bar: 50 mm) from each group were presented. Statistical analysis was determined with an unpaired t-test or one-way
ANOVA and presented as means ± SD from at least three independent experiments performed. *p < 0.05; **p < 0.01; ***p < 0.001. a.u., arbitrary
unit; n.s., not significant; Un, untreated; AcpM, AcpM-treated.
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time points (Figure 2A). Moreover, both LAMP1 and ATG5

protein levels in BMDMs were significantly reduced at 48 h

after AcpM treatment (Figure 2B). Collectively, AcpM

addition blocks nuclear translocation of TFEB, thereby

downregulating the expression of various autophagy and

lysosomal genes in BMDMs.
Frontiers in Immunology 07
AcpM inhibits LC3-II/LC3-I ratio,
but does not affect autophagic
flux in murine macrophages

To determine whether AcpM affected autophagy in murine

BMDMs, p62 and LC3 levels were validated by western blotting.
A

B

FIGURE 2

AcpM suppresses various autophagy and lysosomal genes. (A) BMDMs were treated with recombinant AcpM (10 mg/ml) for the indicated times.
Total RNAs extracted from the cells were then subjected to qRT-PCR analysis to measure the expression of autophagic/lysosomal genes.
(B) BMDMs treated with recombinant AcpM (10 mg/ml) for the indicated times were harvested, lysed, and subjected to immunoblot analysis to
measure the LAMP1 and ATG5 expression. The representative image (upper panel) and the densitometric analysis (lower panel) of protein bands
were presented. Statistical analysis was determined with one-way ANOVA and presented as means ± SD from at least three independent
experiments performed. *p < 0.05; **p < 0.01; ***p < 0.001. a.u., arbitrary unit; n.s., not significant.
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AcpM treatment increased p62 while decreasing the LC3-II band

over time (Figure 3A). To confirm the effect of AcpM in

autophagic flux, the vacuolar type H+-ATPase (V-ATPase)

inhibitor bafilomycin A1 (Baf-A1) was used. Baf-A1 was added

1 h before AcpM treatment to inhibit the lysosomal activity. After

8 h and 24 h, LC3-II bands in the AcpM-treated cells showed a

significant difference in Baf-A1-untreated and -treated conditions,
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indicating that AcpM had no effect on the basal autophagic flux

(Figure 3B). Furthermore, at 24 h after AcpM treatment, p62

levels were higher in Baf-A1-treated cells than in Baf-A1-

untreated cells, implying that p62 accumulation in AcpM-

treated conditions is not due to a block in autophagic flux.

These findings indicate that, while AcpM inhibits LC3-II/LC3-I

ratio over time, it has no effect on autophagic flux in BMDMs.
A

B

FIGURE 3

AcpM has no effect on autophagic flux in macrophages. (A) BMDMs were treated with recombinant AcpM (10 mg/ml) for the indicated times and the
cell lysates were subjected to immunoblot analysis. One representative image (upper panel) and the densitometric analysis of the protein bands
(lower panel) were presented. (B) BMDMs were pretreated with or without Baf-A1 (50 nM) for 1 h and then followed by AcpM (10 mg/ml) treatment.
After 8h or 24 h, cells were harvested and subjected to immunoblot analysis with cell lysates. One representative image (upper panel) and the
densitometric analysis (lower panel) of immunoblots were presented. Statistical analysis was determined with an one-way ANOVA and presented as
means ± SD from at least three independent experiments performed. *p < 0.05; ***p < 0.001. a.u., arbitrary unit; n.s., not significant.
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AcpM suppresses phagosomal
maturation of Mtb during infection

The next question was whether adding AcpM protein to

Mtb-infected macrophages would affect phagosomal

maturation. BMDMs were infected with an Mtb-ERFP strain,

which was followed by AcpM treatment in fresh media. The cells

were then stained with LAMP1 antibody to visualize lysosomes

in confocal microscopy analysis. The colocalizing rate between

Mtb and LAMP1 was significantly lower in the AcpM-treated

conditions than in the untreated group (Figure 4). Therefore,

AcpM helps Mtb circumvent phagosomal maturation by

blocking phagosome and lysosome fusion.
AcpM induces Akt-mTOR signaling
via upregulating SHIP1-targeting
miR-155-5p expression

Previous studies have highlighted the importance of

miRNAs in the regulation of host immune response (25–27).

To see if AcpM was involved in the increase of specific

miRNAs, miRNA-seq analysis was performed. The

expression rates of miRNA-155p-3p and miRNA-155p-5p

were the highest among the miRNAs that showed a

significant change in the miRNA-seq analysis of AcpM-

treated BMDMs when compared to untreated cells
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(Figure 5A, Supplementary Table 4). However, the qRT-PCR

analysis revealed that miR-155-5p increased more than tenfold

with increasing AcpM concentration in BMDMs, while miR-

155-3p showed no significant change (Figure 5B). Previous

studies showed that SHIP1 prevented Akt phosphorylation,

thus blocking the Akt-mTOR pathway (18, 28). Also, as miR-

155 was shown to target SHIP1 from an earlier study

(Figure 5C) (29), the gene expression and protein amount of

SHIP1 was investigated under AcpM treatment in BMDMs. At

3 and 6 h-post AcpM treatment, Ship1 expressions analyzed

with two different primers were significantly suppressed

(Figure 5D). In western blot analysis, total SHIP1 expression

was also significantly reduced from 3 to 18 h after AcpM

administration, which was accompanied by an increase in

phosphorylation of Akt and mTOR (Figure 5E). Along with

increased Akt phosphorylation, there was also a reduction in

FOXO3 levels (Figure 5E). To further demonstrate the ability

of AcpM-induced miR-155-5p to regulate SHIP1 expression,

miR-155-5p mimic and inhibitor (m155 and i155,

respectively), as well as negative controls of miRNA mimic

and inhibitor (mNC and iNC, respectively), were transfected

into BMDMs. It was discovered that either m155 transfection

or AcpM addition suppressed SHIP1 effectively and that i155

transfection could counteract AcpM-induced miR-155-5p

expression and restore SHIP1 levels (Figure 5F). Overall,

these findings suggest that AcpM-induced miR-155-5p plays

a role in Akt-mTOR activation by targeting SHIP1.
FIGURE 4

AcpM inhibits phagosome-lysosome fusion of Mtb. BMDMs were infected with Mtb-ERFP (MOI 5) for 4 h and then incubated with or without
AcpM (10 mg/ml) in the freshly changed media for 4 h. Cells were stained with anti-LAMP1 (green) antibody and DAPI (blue) to visualize
fluorescent images using Zeiss LSM-900 confocal microscopy (Scale bar: 50 mm for field views, 5 mm for single cell images). The colocalization
rates between Mtb-ERFP and LAMP1 were assessed by calculating Pearson correlation coefficient from 12-15 field images (at least 80 cells per
image). Statistical analysis was determined with an unpaired t-test and presented as means ± SD from at least three independent experiments
performed. ***p < 0.001. Un, untreated; AcpM, AcpM-treated.
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A

B

D

E

F

C

FIGURE 5

AcpM suppresses SHIP1 by increasing miR-155 expression. (A) A volcano plot representing differentially expressed miRNAs with the log2-fold
change (FC) plotted against the negative log10 false discovery rate (FDR) for the AcpM-treated group compared to the untreated group. Red
and blue dots indicate upregulated and downregulated genes, respectively. (B) BMDMs were treated with recombinant AcpM (10 or 20 mg/ml)
for 8 h and the cell lysates were subjected to qRT-PCR analysis to measure the miR-155-3p and miR-155-5p expression. (C) The 3′ UTR of ship1
mRNA is shown schematically, along with the relative location of the mouse miR-155-5p binding site. (D, E) BMDMs were treated with
recombinant AcpM (10 mg/ml) for indicated times, and the harvested cells were subjected to either qRT-PCR analysis to determine the gene
expression of Ship1 (D) or immunoblot analysis to measure the expression of SHIP1 and SHIP1-downstream signaling molecules (E). The
representative image (E, upper panel) and the densitometric analysis (E, lower panel) of protein bands were presented. (F) BMDMs were
transfected with mNC, m155, iNC, or i155, then further treated for 8 h with recombinant AcpM (10 mg/ml). Cells were lysed and subjected to
immunoblot analysis to determine the SHIP1 protein level. The representative image (upper panel) and the densitometric analysis (lower panel)
of SHIP1 bands were presented. Statistical analysis was determined with an unpaired t-test or one-way ANOVA and presented as means ± SD
from at least three independent experiments performed. *p < 0.05; **p < 0.01; ***p < 0.001. a.u., arbitrary unit; n.s., not significant; mNC,
negative control of miR-155-5p mimic; m155, miR-155-5p mimic; iNC, negative control of miR-155-5p inhibitor; i155, miR-155-5p inhibitor. Un,
untreated; AcpM, AcpM-treated.
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AcpM promotes Mtb intracellular
survival by inducing the
expression of miR-155-5p

Because AcpM inhibited Mtb fusion with lysosomes

(Figure 4), Mtb ICS was thought to be increased. As expected,

the Mtb CFU level was significantly higher in BMDMs 3 days

after AcpM treatment than in the untreated group (Un)

(Figure 6A). Furthermore, when i155-transfected groups were

compared to iNC-transfected groups, CFU level in the AcpM-

treated groups was significantly reduced (Figure 6B). Relative

miR-155-5p expression in the same experimental settings as in

Figure 6B revealed a positive correlation between the miR-155-

5p and the Mtb CFU levels in BMDMs (Figure 6C). According to

the findings, AcpM is thought to promote Mtb survival in

BMDMs by upregulating miR-155-5p expression.
AcpM overexpression enhances
in-vivo survival of M. smegmatis
in C3HeB/FeJ mice

To evaluate the effect of AcpM secretion in-vivo, recombinant

M. smegmatis strains overexpressing AcpM (Ms_AcpM) and a

vector plasmid carrying control (Ms_Vec) were used. C3HeB/FeJ

mice were challenged with either Ms_Vec or Ms_AcpM via nasal
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route and sacrificed at 1, 4, and 7 days post-infection (dpi). One

day after infection, there was no significant difference in CFU

levels between lung lysates from two recombinant strains-infected

mice, indicating that an equal amount of strains was properly

administered through the nasal airways (Figure 7A). However, the

viability of Ms_AcpM was significantly higher than that of

Ms_Vec at 4 and 7 dpi (Figure 7A), suggesting that AcpM

overexpression improves M. smegmatis in-vivo survival.

Interestingly, qRT-PCR analysis of the samples obtained from

the same mice revealed a decrease in several autophagy and

lysosomal genes including Tfeb (Figure 7B). These data suggest

that AcpM overexpression helps M. smegmatis survival in mouse

lungs, possibly by altering TFEB downstream pathways as shown

in murine macrophages.
Discussion

In this study, AcpM, an essential protein for Mtb survival

and mycolic acid synthesis (30), was newly discovered as a

mycobacterial effector for pathogenesis through blocking TFEB

activation and increasing miR-155-5p expression. A schematic

summary of the AcpM’s suggested mode of action was presented

in Figure 8. Previously, the apoptosis inhibiting feature of AcpM

was also described (19). In murine BMDM settings, AcpM did

not directly affect autophagic flux, but significantly suppressed
A

B C

FIGURE 6

AcpM increases intracellular survival of Mtb by miR-155 upregulation. (A) BMDMs were infected with Mtb H37Rv (MOI 3) for 4 h and treated with
recombinant AcpM (10 mg/ml) in the fresh media. After 3 days, cells were lysed and subjected to a CFU assay to explore the intracellular survival of
Mtb. (B, C) BMDMs were transfected with either iNC or i155, then infected with Mtb H37Rv (MOI 3) for 4 h before treating recombinant AcpM (10 g/
ml) in fresh media. Cells were lysed and subjected to CFU assay at the indicated times (B) or qRT-PCR after 18 h (C). Statistical analysis was
determined with an unpaired t-test and presented as means ± SD from at least three independent experiments performed. *p < 0.05; **p < 0.01;
***p < 0.001. iNC, negative control of miR-155-5p inhibitor; i155, miR-155-5p inhibitor. Un, untreated; AcpM, AcpM-treated.
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multiple autophagy gene expression, which may influence host

defense pathways in an autophagy-independent manner.

Importantly, we found that the mRNA and protein expression

of LAMP1, which is regulated by TFEB (31), was down-

regulated by AcpM, suggesting that AcpM affects lysosomal

biogenesis during Mtb infection. In addition, our data

highlights the AcpM function in the elevation of miR-155-5p,

which was shown to target SHIP1 (29, 32, 33). Previous studies

showed that SHIP1 plays an essential role in the activation of

Akt pathway, thereby enhancing intracellular Mtb survival (18).

In addition, miR-155 can target FOXO3 (34), which is associated

with the gene expression of multiple autophagy-related genes

such as Atg5, Atg12, Becn1, Lc3 and Bnip3 (35, 36). However, the

role of Mtb-induced miR-155 expression in regulating host

defense in the early stages of infection has sparked debate.

Wang et al. reported that miR-155 induced autophagy to

eliminate intracellular mycobacteria by targeting Ras homolog

enriched in brain (Rheb) in RAW264.7 cells (37). Indeed, the

miR-155 level is elevated in both Mtb-infected macrophages (37)

and active TB patients (38). On the other hand, Rothchild et al.

demonstrated that miR-155 promoted Mtb survival in BMDMs

through targeting SHIP1 in the early stages of infection, even
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though it also activated Mtb-specific T cell function in the

adaptive immune response to effectively reduce bacterial

survival in the late stages of infection (28). Kumar et al. also

discovered that overexpression of miR-155 reduced the

expression of BTB and CNC homology 1 (BACH1) and

SHIP1, allowing Mtb to survive in macrophages (18). These

results show a partial correlation with ours that miR-155 favors

mycobacterial survival in macrophages by targeting SHIP1-Akt

axis. Although the role of miR-155 in host defense regulation

varies depending on the host cell type or bacterial strain, it

appears that miR-155 inhibits antimicrobial host defense in

macrophages in the early stages of infection.

TFEB is known as a master regulator of lysosomal biogenesis

(24). Previous research reported that the suppression of the Akt-

mTOR pathway enhances nuclear translocation of TFEB to

induce transcriptional activation of lysosomal and autophagy-

related genes (39, 40). According to our findings, AcpM

increased Akt and mTOR phosphorylation (Figure 5E) while

decreasing TFEB expression and its nuclear translocation

(Figure 1), which likely leads to the downregulation of

autophagy and lysosomal genes (Figure 2). Recent studies

showed that TFEB activation is critically involved in the
A

B

FIGURE 7

AcpM overexpression increases the survival of M. smegmatis in-vivo. (A) C3HeB/FeJ mice (n = 22) were intranasally infected with recombinant
M. smegmatis strains Ms_AcpM (n = 11) or Ms_Vec (n = 11) and euthanized at the indicated times after infection (1, 4, or 7 dpi). The lungs were
resected from mice to assess the bacterial burden by CFU assay. (B) Lung lysates from two randomly selected mice from each group were
analyzed in triplicate using qRT-PCR to evaluate the expression level of autophagic/lysosomal genes at 7 dpi. Statistical significances were
calculated with an unpaired t-test. Data are presented as mean ± SD. *P < 0.05; **P < 0.01; ***P < 0.001; a.u., arbitrary unit; n.s., not significant;
CFU, colony-forming unit; dpi, days post-infection; Ms_V, Ms_Vec-infected; Ms_A, Ms_AcpM-infected.
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regulatory node of antimicrobial responses against Mtb in

macrophages (41–43). Importantly, we found that AcpM did

not affect the induction of autophagy or activation of autophagic

flux when treated with Baf-A1 in basal conditions at both 8 h

and 24 h after AcpM treatment (Figure 3). Thus, the AcpM’s role

in the suppression of antimicrobial responses against Mtb

infection seems to be associated with the inhibition of TFEB,

but not directly related to the suppression of autophagy. In

addition, a recent study revealed that TFEB activation is required

for the induction of mitochondrial itaconate synthesis to control

intracellular bacterial growth (44, 45), suggesting the critical

function of TFEB in terms of antimicrobial defense in

macrophages. Future studies will clarify whether AcpM is

involved in the regulation of immunometabolic remodeling in

macrophages to further affect TFEB-induced antimicrobial

responses during Mtb infection.

We also found that AcpM increased miR-155 production,

which targets SHIP1 to prevent its negative regulation on Akt

phosphorylation, resulting in the increased Mtb survival in host

cells. Because AcpM-induced miR-155-5p upregulates the Akt/

mTOR pathway by targeting SHIP1, it is supposed that miR-

155-5p-mediated Akt/mTOR activation leads to the suppression

of TFEB activation. Since the level of miR-155 is related to the

virulence of infected mycobacterial strains (18, 37), the present

data is important to show the function of AcpM as an inducer of

miR-155 to further regulate the host protective responses during

infection. In this regard, identifying other mycobacterial factors
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that stimulate miR-155 expression and elucidating the exact

mechanism of how mycobacteria activate miR-155 production

would help us better understand mycobacterial pathogenesis.

To further understand the function of AcpM during

mycobacterial infection, an attempt was made to construct an

AcpM-conditional knockout system using the Mtb H37Rv

strain. However, we were unable to achieve it, most likely due

to the AcpM’s essential role in Mtb survival. Thus,M. smegmatis

strains, Ms_AcpM and Ms_Vec, were used to test if AcpM

overexpression could increase the number of surviving bacteria

in lung tissues of infected mice. BecauseM. smegmatis strains are

non-pathogenic, they have little tolerance for the host’s innate

immune system. To slow down the declining survival rate of

recombinant M. smegmatis strains, an in-vivo challenge was

conducted using C3HeB/FeJ mice (46). As a result, CFU levels of

Ms_AcpM were significantly higher than that of Ms_Vec,

implying that AcpM overexpression improves the survival of

M. smegmatis in-vivo (Figure 7A). Thus, AcpM expressed in

mycobacteria is likely to suppress the tfeb and tfeb-downstream

autophagy-related gene expression in the lung tissues in the

same way that recombinant AcpM protein does in macrophages.

Recently, a small molecule called “8918,” which selectively

binds to PptT, was discovered to have anti-tuberculosis efficacy

comparable to rifampin, a first-line anti-tuberculosis drug (17).

In addition, a newly discovered Ppt hydrolase, PptH, which

removes Ppt from AcpM, made Mtb more sensitive to 8918,

even when PptT was only partially inhibited (17). Therefore, it’s
FIGURE 8

The proposed mechanism of action of AcpM in Mtb-infected macrophages. AcpM promotes the expression of miR-155, which targets SHIP1 to
activate the Akt/mTOR pathway. The activated Akt/mTOR signaling pathway inhibits TFEB nuclear translocation and reduces the expression of
autophagy and lysosomal genes, which is likely to induce antimicrobial defense in macrophages. AcpM also improves intracellular mycobacterial
survival by inhibiting phagosome-lysosome fusion.
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possible to believe that Mtb virulence is influenced by the

formation and maintenance of holo-AcpM. Finding small

chemical compounds that can selectively target AcpM could

be helpful in the development of new anti-mycobacterial drugs.

In summary, AcpM’s role in modulating antimicrobial host

defense was revealed in this work. AcpM was discovered to

effectively reduce TFEB nuclear translocation and downregulate

the expression of autophagy and lysosomal genes in

macrophages. In addition, AcpM-mediated miR-155-5p

activated the Akt/mTOR pathway by targeting SHIP1. AcpM

also improved intracellular mycobacterial survival by reducing

phagosome-lysosome fusion. These findings highlight the

importance of understanding host-pathogen interactions in the

context of the Mtb virulence factors and provoke future studies

targeting AcpM to expand the development of novel

Mtb therapeutics.
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