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Abstract
Speech intelligibility is adversely affected by reverberation, particularly when listening to a foreign language. However, little is
known about how phonetic learning is affected by room acoustics. This study investigated how room reverberation impacts the
acquisition of novel phonetic categories during implicit training in virtual environments. Listeners were trained to distinguish a
difficult nonnative dental-retroflex contrast in phonemes presented either in a fixed room (anechoic or reverberant) or in multiple
anechoic and reverberant spaces typical of everyday listening. Training employed a videogame in which phonetic stimuli were
paired with rewards delivered upon successful task performance, in accordance with the task-irrelevant perceptual learning
paradigm. Before and after training, participants were tested using familiar and unfamiliar speech tokens, speakers, and rooms.
Implicit training performed in multiple rooms induced learning, while training in a single environment did not. The multiple-
room training improvement generalized to untrained rooms and tokens, but not to untrained voices. These results show that,
following implicit training, nonnative listeners can overcome the detrimental effects of reverberation and that exposure to sounds
in multiple reverberant environments during training enhances implicit phonetic learning rather than disrupting it.
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The role of reverberation in auditory perceptual learning has
received little attention, even though reverberation is a ubiqui-
tous component of stimuli that we hear in natural environ-
ments. Evidence suggests that reverberation can have a nega-
tive effect, impairing speech perception (Devore & Shinn-
Cunningham, 2003; Nábĕlek & Donahue, 1984; Takata &
Nábĕlek, 1990; Ueno et al., 2005) or sound localization in the
horizontal plane (Hartmann, 1983). On the other hand, rever-
beration can be beneficial—for example, serving as a cue for
distance perception (Zahorik, Brungart, & Bronkhorst, 2005)
and stream segregation (David, Lavandier, & Grimault, 2014).

While the auditory system has mechanisms to adapt to rever-
berant environments and to mitigate some of the negative im-
pacts of reverberation (for speech, see Beeston et al., 2014;
Brandewie & Zahorik, 2010; Srinivasan & Zahorik, 2013;
Watkins, 2005; for distance, Shinn-Cunningham, 2000), it is
clear that reverberation has a substantial impact on auditory
perception and a likely impact on our ability to learn to dis-
criminate different sound types and to generalize this informa-
tion to novel acoustic environments.

Although there is a limited understanding of how listeners
are affected by reverberation in the process of learning novel
phonetic categories, important findings can be drawn from
research on nonnative speech perception in complex listening
settings. These studies show that adults face persistent diffi-
culties when processing nonnative speech in adverse condi-
tions, such as background noise, competing talkers, time-
compressed speech, and cognitive load, even after years of
experience with the nonnative language (Banai & Lavner,
2016; Cooke, Garcia Lecumberri, & Barker, 2008;
Lecumberri, Cooke, & Cutler, 2010; Rogers, Lister, Febo,
Besing, & Abrams, 2006). For example, nonnative listeners
are more adversely affected by noise when the task involves
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the perception of words and sentences (see Lecumberri et al.,
2010, for a review). Rapid adaptation to time-compressed
speech is weaker in a nonnative language, and, even after
intensive training, nonnative listeners still perform more poor-
ly compared with naïve native listeners when tested with nov-
el sentences (Banai & Lavner, 2016), whereas interference
from competing speech maskers is stronger (Cooke et al.,
2008). Collectively, these results suggest that various sources
of speech degradation are likely to interfere with nonnative
perceptual learning. Here, we focus on the less investigated
aspect of room variation on the perceptual learning of a non-
native phonetic distinction.

A child learning its first language or an adult learning a
new language must learn new phonetic categories in con-
ditions in which the phonetic stimuli are distorted by re-
verberation. Reverberation is likely to affect phonetic
learning in particular in adulthood, as adults’ learning of
sounds of a new language can be very challenging even
under optimal listening conditions. This is because foreign
speech is filtered through the native phonological system,
imposing severe constraints on how we perceive certain
nonnative phoneme distinctions (Flege, 2003; Iverson
et al., 2003). Under adverse conditions, reverberation can
act as Bnoise,^ further impeding the perception of acoustic
differences to which listeners are already mistuned due to
extensive experience with their native language. Compared
with native listeners, nonnative listeners are more adverse-
ly affected by reverberation when listening to speech
(Nábĕlek & Donahue, 1984; Takata & Nábĕlek, 1990; see
also Lecumberri et al., 2010, for a review), and this differ-
ence becomes more pronounced for rooms with longer re-
verberation times (Nábĕlek & Donahue, 1984; Peng &
Wang, 2016). However, little is known about how in-
creased difficulty in speech processing affects phonetic
learning in rooms.

The main question examined here is whether exposure
to multiple acoustic environments during training is bene-
ficial or detrimental to phonetic learning. On the one hand,
introducing varying levels of distortions to the stimuli
might make the phonetic learning task harder. On the other
hand, this variability might facilitate listeners’ perception
of the new sounds across different listening environments.
For example, research on word learning in adverse condi-
tions suggests that listeners’ representations of the newly
learned material retain aspects of the acoustic environment
that may not be optimal in different listening settings
(Creel, Aslin, & Tanenhaus, 2012). Exposure to different
acoustic environments during training might help over-
come such specificities, allowing listeners to identify the
phonetic cues that are more resistant to distortions caused
by room acoustics and learn to adapt to different critical
cues in different listening environments. Here, we examine
whether exposure to a single or to multiple acoustic

environments enhances or impedes perceptual learning of
nonnative phonetic contrasts.

Previous studies showed significant adult phonetic
learning for various nonnative sounds, though performance
typically does not reach native levels and there is substan-
tial individual variability in learning (Flege, 2003; Holt &
Lotto, 2010; Strange & Dittmann, 1984; Takagi, 2002). A
consistent finding in the phonetic learning literature is that
ample variability during training along various acoustic-
phonetic dimensions, such as different phonetic contexts
and, importantly, multiple voices, is necessary to form ro-
bust phonetic categories and to overcome overspecified,
talker-specific representations (e.g., Lively, Logan, &
Pisoni, 1993; Logan, Lively, & Pisoni, 1991; Pruitt,
Jenkins, & Strange, 2006). Furthermore, feedback during
training is an influential factor in learning, guiding lis-
teners’ attention to phonetic properties that reliably differ-
entiate target phonemes (Logan et al., 1991). Participants
are typically provided with feedback on the correctness of
their responses on a trial-by-trial basis (Golestani &
Zatorre, 2004; Iverson, Hazan, & Bannister, 2005; Lively
et al., 1993; Logan et al., 1991; Pruitt et al., 2006).
However, although explicit performance feedback is bene-
ficial, it is rare in naturalistic environments. Accordingly,
alternative designs have investigated unsupervised and im-
plicit learning via internally generated reward signals in
lieu of feedback (Lim & Holt, 2011; Vlahou, Protopapas,
& Seitz, 2012).

In particular, the task-irrelevant perceptual learning
(TIPL) framework posits that, when participants are en-
gaged in a task, important stimuli and events that are suc-
c e s s f u l l y p r o c e s s e d e l i c i t d i f f u s e r e l e a s e o f
neuromodulatory signals that gate plasticity (Seitz &
Watanabe, 2003, 2005, 2009). Thus, at the time of impor-
tant task events (such as when a task target is discovered),
learning may take place for other stimuli, whether or not
they are relevant or attended, as long as they are systemat-
ically paired with those task events. This model has been
applied to learning of speech components and nonnative
speech sounds and, in some cases, has produced equal or
greater performance benefits than is found through explicit
training (Seitz et al., 2010; Vlahou et al., 2012). The cur-
rent study focuses on implicit learning. Specifically, we
employ a variant of TIPL in which phonetic stimuli coin-
cide with rewards, but do not improve performance in a
central task, to test the hypothesis that concurrence of stim-
ulus processing and task-related reward signals is sufficient
for learning, even when the stimulus has no predictive val-
ue for the task.

We present the results of a behavioral experiment that ex-
amined implicit phonetic training in varying acoustic environ-
ments. We trained adult listeners on nonnative speech sounds
in simulated anechoic and reverberant rooms. We used the
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well-knownHindi dental/retroflex contrast, a phonetic distinc-
tion that is used in approximately 11% of the world’s lan-
guages (Golestani & Zatorre). Several studies show that adults
find it difficult to differentiate the phonemes in standard dis-
crimination and categorization tests, but are able to improve
after laboratory training (Golestani & Zatorre, 2004; Vlahou
et al., 2012; Werker & Tees, 1984). Five different rooms were
simulated to capture a range of everyday environments in
which a listener is typically exposed to speech: an office, a
classroom, a cafeteria, a bathroom, and an anechoic room,
approximating an outdoor environment with no acoustic re-
flections. Different groups of participants were trained in a
single acoustic environment (anechoic or reverberant) and in
multiple rooms (anechoic and two reverberant rooms) with
speech sounds produced by a single Hindi voice. Before and
after training, they were tested in trained and untrained rooms,
with trained and untrained speech tokens produced by the
Hindi voice used during training, and with speech tokens pro-
duced by an unfamiliar Hindi voice. We focused on implicit
learning for two reasons. First, the effect of explicit training on
phonetic learning is well established and robust. Second, it can
be expected that the effect of room variation is particularly
important for implicit learning, as the room-to-room variation
can be critical for automatic bottom-up identification of the
room-invariant features that can be used to distinguish the
phonemes in various reverberant environments. For training,
we used a TIPL videogame in which phonetic stimuli from
one category were consistently paired with rewards in the
game, without contributing to performance improvement.

Our main research questions were as follows: First, to test
whether the implicit training paradigm would induce percep-
tual learning on the nonnative phonetic categorization task
across rooms with varying levels of reverberation. We expect-
ed that trained participants would outperform untrained lis-
teners from a control condition. Second, to investigate differ-
ences in the magnitude of learning between the two training
conditions (one fixed room vs. three varying rooms), although
we were agnostic as to whether room variation during training
would be beneficial or detrimental to phonetic learning.
Finally, to examine transfer of learning at posttesting to un-
trained material (tokens, rooms, voices). We expected im-
proved performance across untrained speech tokens from the
trained speaker, and limited or no learning for the untrained
speaker. This prediction was based on our earlier work
(Vlahou et al., 2012) and on research on the effects of vari-
ability in nonnative phonetic learning (e.g., Lively et al., 1993;
Pruitt et al., 2006), which suggests that generalization of learn-
ing occurs only for dimensions in which there is ample vari-
ability during training. Based on the same logic, the strongest
candidate to show generalization of learning across untrained
rooms was the three-varying-rooms condition, in which par-
ticipants were exposed to varying room environments during
training.

Method

Participants and conditions

Forty-two adults (26 females, 16 males, 18−37 years old)
participated in the experiment. Each participant was assigned
to one experimental group. The groups differed by the type of
training that participants underwent, referred to as the exper-
imental condition. Table 1 summarizes the experimental con-
ditions and the number of participants per condition. Thirteen
individuals participated in a no-training control condition
consisting of pretest and posttest without any training.
Twenty-nine participants received implicit training. Fifteen
of them received training using sounds from three rooms (an-
echoic and two reverberant rooms, bathroom and classroom,
described below; 3R condition). Fourteen participants re-
ceived training in a single room (1R condition), either anecho-
ic (eight participants) or reverberant (six participants—four
trained in the classroom and two in the bathroom). One par-
ticipant from the 1R condition was dropped from the study
due tomissing data, and thus only 13 participants were includ-
ed for this condition in the analyses reported below. Most
participants were native speakers of English. Two of them
were bilingual, with Spanish (1R) or Tagalog (3R) as a second
language. Two participants were native speakers of Spanish
(one in 1R and one in 3R), one of Slovak (3R) and one of
Vietnamese (3R). No participant reported any hearing impair-
ments or any experience with the Hindi language. Participants
gave written informed consent approved by the University of
California at Riverside Human Research Review Board and
were compensated $10 for each experimental session that they
completed.

Stimuli and setup

The stimuli were natural recordings of Hindi syllables from
two male native Hindi speakers. We used the Hindi dental-
retroflex voiceless stop followed by the long [i:] (for further
details on the recordings and processing of the sounds, see
Vlahou et al., 2012). There were in total 20 different tokens
from each Hindi speaker, 10 beginning with a dental sound
and 10 with a retroflex sound.

Table 1 Experimental conditions and number of participants per
condition

Condition Rooms used during training Number of participants

Control None 13

3R 3 rooms (anechoic,
bathroom and classroom)

15

1R 1 room (anechoic or
bathroom or classroom)

13 (7 in anechoic, 2 in
bathroom, 4 in classroom)
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Five different rooms were simulated—an office, a class-
room, a cafeteria, a bathroom, and an anechoic room. Each
original speech syllable was convolved with the left-ear and
right-ear binaural room impulse responses (BRIRs) recorded
in each of the rooms at a location directly in front of the
listener. This resulted in five different versions of each original
syllable, one per simulated room. A detailed description of the
rooms and BRIR recording procedures for the classroom and
bathroom BRIRs is provided in Shinn-Cunningham, Kopčo,
and Martin (2005) and Devore and Shinn-Cunningham
(2003), respectively. A description of the office and cafeteria
BRIRs is provided in Kayser et al. (2009). The anechoic im-
pulse response was derived from the classroom BRIR by re-
moving the reverberant portion by applying a 1-ms linear
ramp just prior to the onset of the first reflection. Basic acous-
tic parameters, T60 and C50, of the rooms are summarized in
Table 2. These values were computed by only considering the
first 300 ms of each BRIR (to prevent noise floor from
influencing the values), using the impulse response acoustic
information calculator (Version 1.5.4; https://www.
mathworks.com/matlabcentral/fileexchange/42566-impulse-
response-acoustic-information-calculator) in MATLAB (The
MathWorks Inc., Natick, MA). All stimuli were high-pass-
filtered at 70 Hz and presented at the sampling rate of 44.
1 kHz from an Apple G5 computer Burr Brown PCM3052
sound card via Senheiser 650 headphones, at a comfortable
level individually adjusted for each participant.

Procedure

The experiment consisted of three phases: pretraining testing
(pretest), training, and posttraining testing (posttest), all conduct-
ed in a sound-proof laboratory at the University of California,
Riverside. For testing, stimulus presentation was controlled by
DMDX scripts (Forster & Forster, 2003). For the implicit train-
ing, we used a videogame written in Python (http://www.
python.org/) using Pygame (http://www.pygame.org/).

Testing Two identical testing sessions were performed: a pre-
test on a day before the first training session and a posttest a
day after the last training session (if the testing day fell on a

weekend day, it was shifted to the nearest business day). Prior
to testing, participants were informed of the Hindi phonetic
categories (termed BT1^ and BT2^; for a half of the partici-
pants, BT1^ was associated with retroflexes and for the other
half with dentals). During testing on stimuli from one speaker,
that speaker’s speech tokens convolved with the BRIRs pre-
sented in five blocks of 40 trials, one block for each room.
Each 40-trial block consisted of two presentations of the
speaker’s 20 tokens (10 per phoneme) in a random order.

For each room and speaker, prior to the first trial of each
pretest block, there was a brief familiarization phase where
listeners were first informed about which room was about to
be tested, and then listened to two identical practice se-
quences, each consisting of five different pairs of tokens (each
pair containing one dental and one retroflex token) while see-
ing the label T1 or T2 on the screen. Participants were given
feedback during familiarization, but not during subsequent
tests.

The two Hindi speakers were tested in separate blocks,
with the speaker used during training (see the Training
subsection) always tested first. The testing procedure was a
standard one-interval, two-alternative forced-choice phonetic
categorization task (see Fig. 1a). Throughout testing, the la-
bels BT1^ and BT2^ were shown on the screen. In each trial,
one syllable was presented half of the time with the dental and
half with the retroflex one. Then a message BWas the sound
from T1 or T2?^ appeared. Participants had to identify the
category to which the sound belonged by pressing the key
assigned to each label. If a participant did not respond within
3 s after the sound presentation, the response was considered
incorrect. Each testing session consisted of 400 trials (all com-
binations of 10 tokens, two repetitions, two phonemes, two
speakers, and five rooms) and lasted approximately 45
minutes.

Training The training stimulus set consisted of five tokens of
each phoneme (fixed across participants) spoken by one of the
Hindi speakers. The speaker was randomly selected and
counterbalanced across participants. Training was usually
conducted over a period of 5 days, and no more than 10 days.
Each daily session consisted of 600 trials. In the 1R training
condition, all 600 trials came from a single room (classroom,
bathroom, or anechoic). In the 3R training condition, 200
trials per room were performed in the classroom, bathroom,
and anechoic room. Each session consisted of 40-trial blocks
in which the room was fixed. Five such blocks were per-
formed per room, with the room randomly changing from
one block to the next. Phonetic tokens within each block were
randomly ordered.

Training (see Fig. 1b) was in the form of a videogame. On
each trial, a moving character appeared at a random location
on the screen (initial motion speed of approximately 2°/s). The
participant’s task was to aim and shoot the character as fast as

Table 2 Acoustic parameters T60 and C50 of the left channel binaural
room impulse responses for each simulated room

Room Broadband T60 (ms) Broadband C50 (dB)

Bathroom (BA) 658 18.5

Cafeteria (CA) 605 57.7

Classroom (CL) 528 34.1

Office (OF) 348 22.4

Anechoic (AN) ~0 ∞
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possible. Three consecutive hits resulted in a small increase in
the character’s motion speed on the following trial by approx-
imately 1°/s, whereas each miss resulted in an equal decrease
in speed, with a minimum speed of 2°/s. If a participant failed
to produce a response within 2 s after the character was pre-
sented, the trial ended and was treated as a miss. Once the
participant’s performance reached a predefined threshold, the
game moved to a higher level (up to the highest, fifth level),
with the only difference being a different graphic environment
and increased initial speed. Throughout the procedure, perfor-
mance statistics (number of targets eliminated, level) appeared
on the screen, as a motivational feature. Upon character ap-
pearance, a randomly selected token sound from one phonetic
category was presented twice in a succession without any
pause. This sound represented the Bbackground^
(counterbalanced, so that for one half of the participants the
background sound was dental and for the other half retroflex).
If the participant succeeded in shooting the moving character,
the score increased by 1 point, an explosion appeared on the
screen for approximately 150 ms, and a randomly selected
token from the Btarget^ category (explained below) was pre-
sented twice in a succession (no sound was presented in case
of a miss).

The important experimental manipulation consisted of
pairing sounds from one category (Btarget^) with proper rein-
forcement schedules in the game. Specifically, TIPL postu-
lates that successful task performance (here, hitting the visual
character) triggers release of reinforcement learning signals
that drive plasticity. These signals can be triggered via internal

processes (i.e., participants monitoring their own success) and
external rewards (i.e., game features such as the explosion and
the increase in score). Importantly, these learning signals are
nonspecific to the events that caused their elicitation and can
result in learning of unrelated stimuli that temporally coincide
(Seitz &Watanabe, 2005, 2009). Thus, by systematically pre-
senting sounds from the Btarget^ category that temporally co-
incide with times of reinforcement, the critical acoustic fea-
tures of the speech tokens stand out and can be strengthened
and refined.

Data analysis

Test performance for all conditions was assessed by comput-
ing percentage correct identification of the sound phonetic
category, using the T1 and T2 labels, which were randomly
assigned to dental and retroflex stimuli on a per-participant
basis. The proportion correct data were logit-transformed
and entered into repeated-measures ANOVA analyses, using
the Greenhouse–Geisser correction where appropriate. Unless
specified differently, data figures show across-participant
means and error bars are standard errors of the means,
corrected for within-participants designs (Cousineau, 2005;
Morey, 2008). Improvement in performance during training
was assessed by evaluating the change in average speed (°/s)
across training sessions. This measure is an indirect indicator
of performance because as participants becamemore skilled at
hitting the moving targets, the targets’ motion speed
increased.

Fig. 1 Task schematics. a Testing. Schematic of the one interval, two-
alternative forced-choice phonetic categorization task; after the trial ini-
tialization, participants were presented with one sound token from one of
the categories and were required to report whether it belonged to T1 or
T2. No feedback was provided during testing. b Implicit training.
Schematic of the videogame; a moving target appeared at a random

screen location (left-hand panel), producing two sounds from the
Bbackground^ category (T2). Participants were required to aim and shoot
the alien character (center panel). If the player succeeded, an explosion
appeared and two sound tokens from the Btarget^ category (T1) were
presented (right-hand panel)
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Results

Effect of training

Our first research goal was to test the effectiveness of the
current implicit training paradigm in improving listeners’ per-
formance in the phonetic categorization task. We hypothe-
sized that trained listeners would outperform untrained partic-
ipants at posttesting. Figure 2 presents pretest and posttest
performance for the different conditions (left-hand vs. central
vs. right-hand column) as a function of testing room, separate-
ly for the trained and untrained speech tokens from the trained
speaker (top and middle row) and the speech tokens from
untrained speaker (bottom row).

The results in this figure partially support our prediction.
Specifically, focusing on performance for trained and un-
trained speech stimuli from the trained speaker, the results
show that learning differed across conditions. Consistent with
our hypothesis, participants in the three-room condition (3R)
improved their performance at posttesting for both trained and
untrained speech tokens, whereas no evidence of learning was
observed for the control condition. On the other hand, contrary
to our predictions, negligible improvements were observed for
participants trained in the one-room (1R) condition, suggest-
ing that the current implicit training paradigm in a fixed envi-
ronment was ineffective. Finally, for the untrained speaker
(bottom row), there was no evidence of learning in any of
the conditions, consistent with our previous work and the

literature (e.g., Lively et al., 1993; Pruitt et al., 2006; Vlahou
et al., 2012).

These results were subjected to statistical testing. We first
focused on performance on trained and untrained speech stim-
uli from the trained speaker, where the strongest learning ef-
fects were expected (see Vlahou et al., 2012). A mixed
ANOVA with condition (1R, 3R, control) as a between-
participants factor and with time (pretest, posttest), room
(bathroom, cafeteria, office, classroom, anechoic), and token
type (trained tokens, untrained tokens) as within-participants
factors found significant main effects of token type, F(1, 38) =
5.45, p = .025, ηp

2 = 0.13; room, F(4, 152) = 3.87, p = .008,
ηp

2 = 0.09; and time, F(1, 38) = 5.40, p = .0255, ηp
2 = 0.12;

and Token Type × Time × Room, F(4, 152) = 2.76, p = .035,
ηp

2 = 0.07. Importantly, there was a significant Time ×
Condition interaction, F(2, 38) = 3.93, p = .028, ηp

2 = 0.17,
suggesting that there was learning for some conditions, but not
for others. Furthermore, this learning was not limited to the
particular speech tokens presented during training, as no in-
teraction involving time, condition, and token type was sig-
nificant (with the exception of the Token Type × Time ×
Room interaction, all interactions involving token type and
time were nonsignificant; Token Type × Time: F(1, 38) < 1,
ns; Condition × Token Type × Time: F(2, 38) < 1, ns;
Condition × Token Type × Room × Time: F(8, 152) < 1, ns.
Although the Token Type × Time × Room interaction might
be of interest in other contexts, it was not further analyzed
here, as the main focus of this study is on the type of training

Fig. 2 Testing performance. Consonant identification accuracy at pretest
(lighter bars) and posttest (darker bars) as a function of testing room for
trained tokens (top row), untrained tokens (middle row) and the untrained
speaker (bottom row). Rooms used during training for each condition are

underscored (note that for the 1R condition, each participant was trained in
only one room). Symbols in the 1R panels show performance separately
for the groups trained in the anechoic room (AN) and reverberant rooms
(RE). Horizontal dashed line indicates chance performance
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(condition). Instead, in the following analysis, the trained and
untrained speech tokens from the trained speaker were pooled
together.

To further investigate the significant Time × Condition in-
teraction, separate ANOVAswere performed focusing on how
the amount of learning varied across the different types of
training (condition). We first examined performance in the
control condition. Repeated measures (RM) ANOVA with
factors of time, room, and speaker found no significant main
effects or interactions, F(4, 48) = 1.82, p = .139 for room; F(1,
12) = 1.64, p = .224 for speaker (all other Fs < 1). The lack of
main effects or interactions involving time confirmed that re-
peated testing without training did not yield improvements in
performance.

Our second main research question was to investigate the
differences between the two implicit training conditions.
Figure 3 presents pretest and posttest performance for the
one-room and three-room implicit conditions. A mixed
ANOVA, with condi t ion (1R, 3R) as a between-
participants factor and time, room, and speaker as within-
participants factors, showed that performance varied across
rooms (main effect of room),F(4, 104) = 8.02, p = .0002, ηp

2

= 0.24. More pertinent to our research questions, there was a
significant improvement from pretest to posttest (main ef-
fect of time), F(1, 26) = 6.28, p = .019, ηp

2 = 0.19,
interacting with condition and speaker, F(1, 26) = 4.43, p
= .045, ηp

2 = 0.15, but not with room. The significant Time ×
Condition × Speaker interaction shows that the improve-
ment was approximately evenly distributed across rooms,
but differed depending on the number of rooms used in
training and on whether the tested speaker differed from
the trained speaker.

To further investigate this, Fig. 3 plots the data collapsed
across rooms and separately for the two speakers and the dif-
ferent training conditions. This figure shows that there was no
improvement due to 1R training either for the trained or the
untrained speaker, but that there was an improvement in per-
formance of approximately 7% due to 3R training for the
trained speaker. However, this improvement did not general-
ize to the untrained speaker.

To confirm these observations, partial ANOVAs were per-
formed separately for each type of training. For the 3R data
(see Fig. 3, right-hand panel), a RM ANOVA, with speaker
and time as factors, showed a significant main effect of time,
F(1, 14) = 8.12, p = .013, ηp

2 = 0.37, and a significant Time ×
Speaker interaction, F(1, 14) = 7.48, p = .016, ηp

2 = 0.35.
Paired t tests showed significant learning for the trained speak-
er, t(14) = −4.33, p = .0007, and no improvement for the
untrained speaker, t(14) = −0.82, p = .43. This result shows
that when implicit training is performed in three varying re-
verberant and anechoic rooms, participants can learn to dis-
criminate the new nonnative phonetic contrast, while no such
learning occurs when only one room is used during training.

Because many of the participants in the 1R group were
trained only in the anechoic room, it is not clear whether the
critical feature of the 3R training versus the 1R training was
that reverberation was present during a majority of 3R training
trials (whereas none was present for the 1R anechoic partici-
pants) or that the amount of reverberation varied a lot across
the 3R training trials (whereas it was fixed for the 1R anechoic
as well as reverberant participants). To distinguish these two
options, a partial ANOVA was performed on the 1R training
data in which participants were further split into two different
groups, the anechoic 1R group (seven participants; circles in
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Fig. 3 Performance at pretest and posttest plotted as a function of trained
(tested first) and untrained speaker (tested second) for data collapsed
across testing rooms. Symbols in the 1R panels show performance

separately for the groups trained in the anechoic room (AN) and rever-
berant rooms (RE). Dashed line indicates chance performance

Atten Percept Psychophys (2019) 81:935–947 941



Fig. 3) and the reverberant 1R group (four participants in
classroom, two in bathroom; diamonds in Fig. 3). A mixed
ANOVA, with group (1R-anechoic, 1R-reverberant) as a
between-participants factor and time and speaker as within-
participants factors, found no difference between the two
training groups, no improvement from pretest to posttest,
and no interactions, condition, F(1, 12) = 1.98, p = .184 (all
other Fs < 1, ns). The result that there was no learning for
either the 1R-AN or 1R-RE group suggests that the critical
factor for the implicit learning paradigm for the 3R group was
the room variation, as opposed to just presence of reverbera-
tion. However, due to the small number of participants in the
1R subgroups, the results of this analysis should be examined
with caution.

Generalization of learning

To summarize the generalization of learning observed in this
study, the 3R data were reanalyzed with the trained speaker’s
trained and untrained tokens treated separately and with the
rooms grouped by whether they were used in the training or
not. Figure 4 shows pretesting and posttesting performance for
the trained and untrained speakers and speech tokens as a
function of the room group. The trained rooms group repre-
sents the average of the anechoic, bathroom, and classroom
data, and the untrained rooms group represents the average of
office and cafeteria data. Confirming the previous results, for
the trained speaker (left-most and middle column in Fig. 4),
participants improved approximately equally across trained
and untrained speech tokens and rooms. For the untrained
speaker (right-most panel), there was no evidence of learning

in either room type. Thus, the implicit training in this study
generalizes to untrained tokens of the trained speaker and to
the untrained rooms, but not to untrained speakers. These
results were confirmed by a repeated-measures ANOVA, with
time, room group (trained, untrained), and token type (trained
tokens, untrained tokens, untrained speaker) as factors, which
found significant main effects of time, F(1, 14) = 11.38, p =
.005, ηp

2 = 0.45, and room group, F(1, 14) = 10.21, p = .007,
ηp

2 = 0.42, as well as significant interactions of Time × Token
Type, F(2, 28) = 4.42, p = .028, ηp

2 = 0.24, while there were
no interactions involving time and room group: Room Group
× Time, F < 1; Room Group × Token Type × Time, F(2, 28) =
1.59, p = .22.

Training

We analyzed performance during training to test whether it
could explain the differences in phonetic learning between
the single room and multiple room conditions. The training
game speed was evaluated here as an indirect measure of
performance. Bars in Fig. 5 shows average speed over the
first–fifth sessions, for the 1R and 3R conditions, whereas
circles show individual participant data. Participants in the
three-room training group were consistently faster in the
game, but both groups showed similar improvement in per-
formance (increase in the game speed) across each session. A
mixed ANOVA, with condition (1R, 3R) as a between-
participants factor and session (1–5) as a within-participants
factor, found a main effect of condition, F(1, 25) = 13.30, p =
.002, ηp

2 = 0.35, confirming that participants in the 3R con-
dition were faster than those in 1R. It also found a main effect

Trained tokens
Trained Speaker

Untrained tokens
Trained Speaker Untrained Speaker

trained untrained trained untrained trained untrained
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80
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Fig. 4 Performance for the three-room condition at pretest and posttest,
averaged across the trained rooms (anechoic, bathroom, and classroom)
and the untrained rooms (cafeteria and office) and plotted separately for

the trained and untrained speakers and tokens. Dashed line indicates
chance performance (50%)
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of session, F(4, 100) = 56.01, p < .001, ηp
2 = 0.69, suggesting

that, overall, participants became faster in the game during
training. However, importantly, there was no interaction (F <
1), suggesting that both groups improved equally during im-
plicit training.

The observed faster performance in the three-room condi-
tion could be a potential confound. For example, it could mean
that the 3R players were, on average, more experienced
videogame players, which might have enhanced their abilities
on a wide variety of perceptual tasks (e.g., Bejjanki et al.
2014; Green, Li, & Bavelier, 2010) and allowed them to ben-
efit more from implicit training. To examine this further, we
analyzed pretesting and posttesting performance after remov-
ing the six best performers from the 1R and the six worst
performers from the 3R conditions, respectively, based on
overall speed in the game, collapsed across sessions (outliers
indicated by open circles in Fig. 5). The asterisks in Fig. 5
show average game speed after removing the best and worst
performers from the 3R and 1R groups, respectively. The as-
terisks corresponding to the 1R and 3R groups are well
aligned in each session, showing that performance in the game
is similar across the groups. Importantly, the basic effect of 1R
versus 3R training is unaffected by removing these partici-
pants (data not shown), producing results very similar to those
shown in Fig. 5. Thus, it can be concluded that the better
training performance (faster average on-screen character mo-
tion) in the 3R group is most likely due to a random imbalance
between the participant groups, but that it does not confound
the greater learning observed in the 3R group compared with
the 1R group.

Baseline data

To ensure that training effects are not explained by differences
in baseline performance we examined baseline performance

of participants to the phonetic stimuli across the different
rooms with varying reverberation and the two speakers.
Figure 6 shows pretest performance as a function of testing
room, averaged across all 41 participants (i.e., averaged across
conditions) and plotted separately for the two Hindi speakers
(during training, only one of the two speakers was used for
each participant, counterbalanced across participants).
Accuracy was slightly higher for the second Hindi speaker,
but performance was overall comparable across the two
voices. Performance varied across rooms, such that for both
speakers it was consistently worse for bathroom and similar
for the other rooms. A two-way repeated-measures ANOVA
with factors of Hindi speaker (Speaker 1, Speaker 2) and room
(bathroom, cafeteria, classroom, anechoic, and office) con-
firmed this, showing a main effect of room, F(4, 160) =
3.14, p = .023, ηp

2 = 0.07, a trend for an effect of speaker,
F(1, 40) = 3.23, p = .079, ηp

2 = 0.07, and no interaction
between speaker and room (F < 1, ns).

These results suggest that nonnative listeners were initially
able to better overcome distortions caused by reverberation in
rooms with modest levels of reverberation (office, classroom,
and cafeteria) than in the very reverberant bathroom.
Specifically, averaged across the two Hindi speakers, perfor-
mance in office, classroom, cafeteria, and anechoic room was
almost constant at approximately 60.6%. This matched well
the initial performance of 61.2% obtained without any room
simulation in a previous study that used the same phonetic
distinction from the same Hindi speakers (Vlahou et al.,
2012). For the more challenging bathroom environment, per-
formance dropped to 56.9%, consistent with acoustic analyses
showing that bathroom had the largest T60 and lowest C50 out
of the rooms examined here (see Table 2). This shows that,
although the bathroom reverberation might not be overly dis-
ruptive for understanding conversational speech, in the con-
text of a difficult phonetic identification task performed by
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nonnative listeners, it caused a significant decline in perfor-
mance. Importantly, however, even the bathroom performance
is still above chance, t(40) = 5.44, p < .0001), suggesting that
participants were able to distinguish the phonetic contrast to
some extent prior to training.

Discussion

This study examined implicit learning of new phonetic cate-
gories by nonnative listeners when training was performed in
fixed versus varying acoustic environments. Our main finding
is that exposure to varying rooms during training can induce
this type of learning, while exposure to a single, anechoic or
reverberant, room showed no evidence of learning. The study
also found that the learning induced by the three-room training
using one specific speaker generalized to untrained tokens of
the same speaker and to untrained rooms, while not general-
izing to the untrained speaker. These findings have potential
implications for our understanding of adult phonetic plasticity
in complex listening environments, typical of everyday
communication.

Several mechanisms might underlie the implicit learning
that requires varying acoustic environments observed here.
One possibility is that exposure to various rooms can promote
the implicit extraction of acoustic features in speech stimuli
that are robust against reverberation, resulting in identification
of invariant features and formation of new phonetic catego-
ries. Previous work has shown that by increasing the variabil-
ity along a previously preferred acoustic dimension, listeners
might shift their perceptual weighting toward more reliable
acoustic cues (Lim & Holt, 2011). In the current study, de-
pending on the listening environment and the acoustic
properties of the sound, some phonetic cues might become
severely disrupted and unreliable, whereas others become
more salient and stand out. Several previous studies showed
that, depending on context, listeners can change which cues
they use for a specific phonetic categorization. For example,
Parikh and Loizou (2005) showed that native listeners per-
form well for stop consonants even when the stop’s burst cues
became unreliable due to noise, suggesting that in adverse
conditions the listeners rely on other cues, such as spectral
change and formant transitions. Similarly, Mattys, Davis,
Bradlow, and Scott (2012) showed that when listeners were
asked to segment a short string of syllables, they relied more
on coarticulatory cues in clear listening conditions, but more
on stress in noisy conditions. In our study the listeners might
be requiring the exposure to multiple rooms to identify the
relevant phonetic cues and start implicitly learning and com-
bining them.

A related issue is that in our study participants were ex-
posed to a consistent room in each training block. Consistent
room exposure has been shown to benefit speech perception

for native listeners (Brandewie& Zahorik, 2010; Srinivasan&
Zahorik, 2013), presumably allowing them to take advantage
of regularities in the distortions that the reverberation pattern
specific to each room imposes upon the exposed phonemes.
The current results suggest that a more detailed mapping be-
tween phonetic cues and room acoustics could be obtained in
varying acoustic environments, resulting in richer and more
elaborate perceptual representations, upon which reinforcing
signals can act. If that is the case, then varying rooms on a
trial-by-trial basis might result in an even stronger implicit
learning.

The finding of weaker transfer of learning to an untrained
voice is in line with the well-known observation in the pho-
netic learning literature that talker variability during training is
crucial for generalization of learning to new voices (Lively
et al., 1993; Logan et al., 1991; Pruitt et al., 2006). Logan
et al. (1991) trained Japanese listeners with words that
contained /r/ and /l/ in various syllable positions produced
by five different speakers. Following this high-variability
training regime, participants showed robust learning of the
training set and transfer to novel tokens and voices. Lively
et al. (1993) further demonstrated that listeners trained with
a broad range of stimuli produced by a single talker failed to
show transfer of learning to new voices, whereas participants
trained with multiple voices were able to overcome phoneti-
cally irrelevant, talker-specific representations and showed
learning for novel words produced by novel voices. More
recently, Pruitt et al. (2006) used an adaptive training proce-
dure in which more difficult phonetic stimuli and additional
speakers were gradually introduced, and showed robust trans-
fer of learning across multiple dimensions simultaneously,
including both vowel and consonant contexts and a new voice.
These studies further substantiate that variability during train-
ing along critical acoustic-phonetic dimensions supports
transfer of learning across these dimensions. In the present
study, our primary focus was on the effects of varying room
environments on phonetic learning, therefore performance on
the untrained speaker was not examined further. However, it
would be interesting to investigate how varying voices would
interact with varying acoustic environments during implicit
training.

At first glance, the finding of no learning for 1R training is
surprising, and seemingly contradictory to prior results in
which implicit learning has been found on these same Hindi
stimuli without manipulation of room reverberation (Vlahou
et al., 2012). Although there are a number of possible expla-
nations that may reconcile these findings, an important differ-
ence is likely that the implicit training approach used in our
study differed from the one used in the prior study in that the
phonetic tokens were not predictive of targets in the
videogame. In our previous work, the sounds from one cate-
gory always predicted the task target, thus learning the sound
differences (even without a clear awareness of doing so) could
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have benefitted participants (Vlahou et al., 2012; although see
Seitz & Watanabe, 2008). In contrast, here, sounds from one
category were only played after the participants successfully
responded to the target. Although the results of the multiple
room training showed that this is indeed sufficient to result in
learning, the timing of the sound presentation may be subop-
timal, and other factors that normally contribute to implicit
learning (such as direction of attention or predictiveness of
the sounds) may be lacking, resulting in poorer overall learn-
ing. In this case, it may be that the extra stimulation found
through presenting diverse acoustic environments (3R condi-
tion) was needed to boost activity above a learning threshold,
as proposed by Seitz and Dinse (2007).

Although this study provides an important first step in ad-
dressing the effects of reverberation on nonnative phonetic
learning, there are several limitations that need to be pointed
out. First, although there is evidence that the current implicit
training paradigm failed to induce learning when training was
performed in a fixed—anechoic or reverberant—room, the
analysis of 1R subgroups was underpowered, thus preventing
us from drawing firm conclusions as to whether the primary
cause was the lack of reverberation or room variation. Second,
even though we used acoustic environments that are arguably
typical of everyday listening, the range of tested reverberation
times was limited. Future work can investigate whether simi-
lar results would be obtained using additional rooms, includ-
ing environments with more severe reverberation and noise.
Furthermore, the stimulus set included two speakers, with
only one speaker used during training, thereby lacking the
necessary information that would support generalization of
learning to new voices (e.g., Lively et al., 1993). Also, the
effects of reverberation were examined using only one pho-
netic contrast. Thus, it is unclear whether these results would
generalize beyond the specific sounds, to cover a wider range
of nonnative phonetic categories. Finally, as noted above, the
particular implicit training variant that we used might be sub-
optimal, diminishing learning effects for the more severe re-
verberant environments. Thus, though these results provide a
first insight into the effects of varying acoustic environments
on phonetic learning, future work needs to expand our find-
ings and refine our understanding on nonnative phonetic
learning in complex listening environments.

In summary, investigating phonetic learning in situations
that resemble more real-world settings is important to help us
understand adult phonetic plasticity. So far, no studies have
investigated how exposure to a varying room environment
affects the acquisition of novel phonetic categories. Even
modest levels of reverberation can degrade the speech signal;
still, normal-hearing native listeners rapidly and flexibly ad-
just cue weighting and compensate for interfering effects of
room acoustics. Thus, perceptual adaptationmechanisms have
been postulated that take into account contextual reverberation
patterns (Brandewie & Zahorik, 2010; Creel et al., 2012).

Here, we showed that nonnative listeners also achieve im-
proved performance in reverberation and even benefit from
experiencing the novel phonemes in different rooms during
implicit training. Further, it is notable that the current results
are not consistent with the view that adult plasticity is restrict-
ed to stimuli that predict behaviorally relevant events (e.g.,
Polley et al., 2008; Polley, Steinberg, & Merzenich, 2006).
Altogether, these results have potential implications for the
design of effective, ecologically inspired phonetic training ap-
plications, suggesting that rather than disrupting the learning
process, exposure to multiple rooms can enhance unsuper-
vised phonetic learning.
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