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Deep understanding of genetic architecture of water-stress tolerance is critical for
efficient and optimal development of water-stress tolerant cultivars, which is the
most economical and environmentally sound approach to maintain lettuce production
with limited irrigation. Lettuce (Lactuca sativa L.) production in areas with limited
precipitation relies heavily on the use of ground water for irrigation. Lettuce plants are
highly susceptible to water-stress, which also affects their nutrient uptake efficiency.
Water stressed plants show reduced growth, lower biomass, and early bolting and
flowering resulting in bitter flavors. Traditional phenotyping methods to evaluate water-
stress are labor intensive, time-consuming and prone to errors. High throughput
phenotyping platforms using kinetic chlorophyll fluorescence and hyperspectral imaging
can effectively attain physiological traits related to photosynthesis and secondary
metabolites that can enhance breeding efficiency for water-stress tolerance. Kinetic
chlorophyll fluorescence and hyperspectral imaging along with traditional horticultural
traits identified genomic loci affected by water-stress. Supervised machine learning
models were evaluated for their accuracy to distinguish water-stressed plants and
to identify the most important water-stress related parameters in lettuce. Random
Forest (RF) had classification accuracy of 89.7% using kinetic chlorophyll fluorescence
parameters and Neural Network (NN) had classification accuracy of 89.8% using
hyperspectral imaging derived vegetation indices. The top ten chlorophyll fluorescence
parameters and vegetation indices selected by sequential forward selection by RF and
NN were genetically mapped using a L. sativa × L. serriola interspecific recombinant
inbred line (RIL) population. A total of 25 quantitative trait loci (QTL) segregating for
water-stress related horticultural traits, 26 QTL for the chlorophyll fluorescence traits
and 34 QTL for spectral vegetation indices (VI) were identified. The percent phenotypic
variation (PV) explained by the horticultural QTL ranged from 6.41 to 19.5%, PV
explained by chlorophyll fluorescence QTL ranged from 6.93 to 13.26% while the PV
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explained by the VI QTL ranged from 7.2 to 17.19%. Eight QTL clusters harboring
co-localized QTL for horticultural traits, chlorophyll fluorescence parameters and VI
were identified on six lettuce chromosomes. Molecular markers linked to the mapped
QTL clusters can be targeted for marker-assisted selection to develop water-stress
tolerant lettuce.

Keywords: QTL clusters, water-stress, kinetic chlorophyll fluorescence, hyperspectral imaging, vegetation index,
machine learning, random forest, neural network

INTRODUCTION

Drought (water-stress) is a major challenge for crop production
around the globe adversely affecting crop growth and
productivity. Water stress decreases plants growth by affecting
various physiological and biochemical processes such as
photosynthesis, chlorophyll synthesis, nutrient metabolism,
ion uptake and translocation, respiration, and carbohydrates
metabolism (Jaleel et al., 2008; Farooq et al., 2009). Stressed
plants display reduced water potential and turgor pressure,
stomatal closure and decreased cell enlargement (Farooq
et al., 2009) leading to accelerated leaf senescence. Unlike leaf
senescence triggered by plant pathogens, water-stress induced
leaf senescence is not restrained as local symptoms but involves
whole plant (Munné-Bosch and Alegre, 2004). Leaf senescence
triggered prematurely under water-stress leads to earlier
transition to plant reproductive state (Lim et al., 2007; Behmann
et al., 2014) and is characterized by reallocation of nutrients,
degradation of leaf pigments and reduction in leaf chlorophyll
content. Degradation of leaf chlorophyll leads to diminished
photosynthetic efficiency of photosystem II (PSII) and also alters
the ratio between reflected, absorbed, and transmitted radiation
(Blackburn, 2007).

To ensure global food security, emphasis is placed on
enhancing crop productivity which relies largely on breeding
crop plants with increased tolerance to water-stress and other
abiotic stresses. Genetic mechanisms controlling water-stress
tolerance are complex and are often contributed by several traits
with polygenic inheritance. In recent years, the rate of genetic
improvement has increased due to advances in genotyping
technologies. However, exploiting the full potential of advanced
molecular tools in water-stress breeding is often limited by
our ability to precisely phenotype water-stress related traits.
Reduction in photosynthetic efficiency of PS-II and alteration of
spectral characteristics can be evaluated by kinetic chlorophyll
fluorescence and hyperspectral imaging (Behmann et al., 2014;
Yao et al., 2018). Sensor and imaging based non-invasive
phenotyping platforms were used in early detection of plant
physiological stresses (Petrozza et al., 2014), nutrient deficiency
responses (Chaerle et al., 2007), salt stress response (Awlia et al.,
2016), and early selection of biotic and abiotic stress-tolerant
genotypes (Mir et al., 2012).

Kinetics chlorophyll fluorescence follows quenching
kinetics and light curve protocol based on pulse amplitude
modulation (PAM) which can probe the performance of the
photosynthetic apparatus and evaluate the photosynthetic

capacity (Yao et al., 2018). Chlorophyll fluorescence is the light
emitted by a green plant tissue when illuminated by light of
approximately 400–700 nm, during which blue and red light
excite chlorophyll more than green light. The intensity of the
emitted light is inversely proportional to the fraction of energy
used for photosynthesis, a redox effect (Kalaji et al., 2017).
Therefore, the fluorescence signal can be used as a probe for
photosynthetic activity of PSII, which is an important component
of plant photosynthesis, and it is particularly sensitive to the
water stress conditions (Lu and Zhang, 1999). Hyperspectral
sensors can identify changes in the spectral signature of the plant
under water stress conditions. Under normal conditions plant
pigments such as chlorophyll and xanthophyll absorb light in the
visible band but reflect most radiance in the near-infrared (NIR)
band. Plant under water stress changes the reflectance pattern
due to reduced photosynthetic absorbance leading to increased
reflectance in the visible spectral band and reduced reflectance
in the NIR band range. Several vegetative indices (VI) have been
calculated from the ratio of reflectance at different wavelengths
that provide additional details for stress detection (Kim et al.,
2011). For example, simple ratio or SR (NIR/Red), is often
closely related to the leaf area index (LAI) while the normalized
differences vegetation index or NDVI (NIR-Red)/(NIR+ Red) is
often closely related to the green biomass (Nilsson, 1995). Other
well-established VIs to detect plant stress are photochemical
reflectance index (PRI) (Gamon et al., 1997), red edge inflection
point (REIP) (Peñuelas et al., 1993), and carotenoid reflectance
index (CRI) (Gitelson et al., 2006).

Water stress leads to a wide range of physiological and
biochemical responses in the plant which in turn alters leaf
fluorescence and reflectance. Using only one or few fluorescence
parameters or VIs may lead to loss of information leading
to discriminatory accuracy (Römer et al., 2012), however, on
the other hand, including several parameters at a time may
be analytically challenging. Machine learning (ML) approaches
offer a scalable, modular strategy for data analysis of large
sets generated by fluorescence and hyperspectral imaging. ML
refers to a group of computerized modeling approaches that can
learn patterns from a dataset and discover underlying structures
and relationships to explain, predict or classify a new dataset
(Singh et al., 2016). ML approaches are particularly important
for breeders, physiologists, and pathologists in analyzing large
data as it looks at a combination of factors instead of analyzing
each trait individually. For example, random forests (RF), neural
networks (NN) along with support vector machine (SVM) were
applied in identification of biotic and abiotic stress in tomato
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(Prince et al., 2015), citrus (Garcia-Ruiz et al., 2013), rice (Chen
et al., 2014), sugarbeet (Rumpf et al., 2010), chili peppers (Ataş
et al., 2012), and oilseed rape (Baranowski et al., 2015).

Lettuce, Lactuca sativa L., 2n = 2x = 18, is one of the most
important vegetable crops of the United States, is produced
under high irrigation conditions. Lettuce consists of up-to 96%
water and is greatly dependent on high soil water potential to
maintain cell turgidity and palatability (Eriksen et al., 2016).
Over 75% of the total lettuce produced in the United States
comes from California, which has experienced major drought
periods in the past and adequate supply of irrigation water is not
guaranteed in the future. Lettuce production could continue to
encounter economic losses as water supplies continue to diminish
(Eriksen et al., 2016). Genetic basis of water-stress tolerance in
lettuce was previously evaluated in a interspecific population
derived from L. sativa cv. Salinas and its wild progenitor
L. serriola (Johnson et al., 2000; Uwimana et al., 2012). These
two Lactuca species are genetically related and are fully cross
compatible (Koopman et al., 2001) producing fertile progeny.
Using the recombinant inbred line (RIL) progeny derived from
this interspecific cross, QTL clusters were identified for various
abiotic stresses including water-stress in a study conducted in
greenhouse and field experiments (Hartman et al., 2014). Recent
availability of the genome sequence of L. sativa cv. Salinas (Reyes-
Chin-Wo et al., 2017) will facilitate in the identification of
candidate genes located in these QTL clusters. Major bottleneck
in breeding for water-stress tolerance in lettuce is lack of efficient
phenotyping methodologies. Current methodologies are low
throughput, destructive, labor-intensive, time-consuming, and
error-prone in detecting water-stress at early stages. A semi high-
throughput screening method for identifying drought tolerant
seedlings in greenhouse was reported which can be used to
reduce number of breeding lines with high potential of drought
tolerance (Knepper and Mou, 2015). Although, this method is
highly effective, it is based on destructive sampling and might not
provide insight into plant response to drought progression.

Early detection of stress is critical from plant breeding
standpoint as this enables screening of large populations in
the given time thereby improving overall efficiency of the
whole breeding program. Features from chlorophyll fluorescence,
thermography and normalized difference vegetation index were
used for early detection of biotic stress in lettuce (Sandmann et al.,
2018), however, utilization of these techniques for detection of
abiotic stress in lettuce is lacking. The objectives of this study
were to evaluate utility of image-based phenotyping for water-
stress classification and identify genomic loci of horticultural
traits along with the most important chlorophyll fluorescence
parameters and vegetation indices selected by machine learning
models during water-stress progression and recovery.

MATERIALS AND METHODS

Plant Material and Experimental Layout
An interspecific F8 recombinant inbred line (RIL) population
(n = 175) derived from a cross between the cultivated lettuce
(L. sativa cv. Salinas) and its wild relative (L. serriola acc.

US96UC23) developed at UC Davis, CA (Truco et al., 2013)
was used. The cultivated lettuce is a shallow rooted plant which
is highly susceptible to water-stress conditions whereas the
wild relative, L. serriola is a deep-rooted species with greater
tolerance to water stress conditions (Gallardo et al., 1996). Two
independent water-stress trials were conducted in fall of 2018
and spring of 2019 in a completely randomized design with three
replicates under greenhouse conditions. In each trial, ten seeds
of each RIL line were germinated for 7 days in plug trays after
which six healthy seedlings per line were transplanted into 3.5-
inch plastic pots filled with potting soil mix (MiracleGro R©). Plants
were grown in a greenhouse under normal water conditions with
temperatures between 15 and 25◦C and 12 h of daylight provided
with full spectrum lights. Four weeks after transplanting pots
were divided into two groups labeled as control (CT) and water
stressed (WS). Water-stress was administered by completely
withholding water supply to the WS pots while the CT pots
were watered every day. Two weeks after the water-stress was
initiated, above ground biomass from all plants was harvested and
fresh weight (FW) was recorded immediately. All samples were
transferred to brown paper bags and oven dried at 60◦C for five
days to obtain dry weight (DW). Percent water content (WC) was
then calculated as [(FW-DW/FW) × 100)]. Descriptive statistics
and analysis of variance was conducted using the stats-package
of RStudio (RStudio-Team, 2015) and broad-sense heritability
(H2) for each trait was estimated as Vg/(Vg + Ve) × 100
where Vg and Ve are the genotypic and environmental variances
(Wu et al., 2010). In the third experiment conducted in fall of
2019, all RIL lines were grown in a growth chamber (CMP6050,
Conviron, Winnipeg, MB, Canada) at 20◦C under continuous
white light (200 µmol m−2 s−1) and relative humidity between
50 and 70% throughout the experiment and the water-stress was
administered by withholding water supply to plants 2 weeks
after transplanting. Plants were phenotyped using chlorophyll
fluorescence and hyperspectral camera (see below for details) at
four different time intervals (phases): (i) one day before water-
stress is initiated (Pre), (ii) 1 week after water-stress (Early), (iii)
2 weeks after water-stress (Late) and (iv) 1 week after re-watering
the Late water-stress plants (Recovery).

Kinetic Chlorophyll Fluorescence
Imaging
Chlorophyll fluorescence was measured using a custom-made
PAM fluorescence imaging system (Transect FluorCam FC
800; Photon System Instruments, Brno Czech Republic) with
progressive scan CCD camera (effective resolution: 1360 × 1024
pixels) and a prime lens (Fujinin HF8XA-1). The light panel
(FluorCam SN-FC800-257) consisted of two actinic lights (red-
orange (620nm) with max intensity of 415 µmol m−1 s−1 and
a cool white light with max intensities 1,023 µmolm−1 s−1).
The light panel also included pulse-modulated short flashes
(red-orange; 620 nm) for accurate measurements of minimal
fluorescence (F0), a saturating light pulse source (cool white
with 4,753 µmol m−1 s−1) for maximal fluorescence (Fm)
detection and a far-red light source (735 nm with max light
intensity of 12 µmol m−1 s−1) for F0‘ determination. The
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distance between the plants and the camera was held constant
at 240 mm throughout the experiment. Plants were placed in
a dark room for 30 min to open all PSII reaction centers. The
kinetic chlorophyll fluorescence (ChlF) curves and images of
the dark-adapted plants was acquired following Kautsky effect
(Kautsky and Hirsch, 1931; Govindjee, 1995) measured in pulse-
amplitude modulated mode (PAM). Briefly, the measurements
start in the dark-adapted state by measuring minimal chlorophyll
fluorescence (F0) by low intensity measuring flashes followed by
measuring maximum fluorescence (Fm) by exposing the dark-
adapted plants to strong saturating flashes (for 320 ms at 2,300 µ

mol m−1 s−1). Plants are then exposed to a constant actinic
light to measure peak-fluorescence (Fp) and a series of saturated
flashes are applied to measure instantaneous fluorescence (Ft_Ln,
Ft_Lss) and maximum fluorescence (Fm_Ln, Fm_Lss) during
light adaptation. A dark relaxation period follows the actinic
light period during which measurements on instantaneous
and maximum fluorescence (Ft_Dn, Fm_Dn) are recorded.
From the basic chlorophyll fluorescence measurements, 50
parameters were calculated [For details on all parameters refer
to Supplementary Data 1 (Adhikari et al., 2019)].

Hyperspectral Imaging
The VNIR hyperspectral imaging unit in the PlantScreenTM

(Photon System Instruments, Brno, Czechia) consists of a
hyperspectral camera and a uniformly illuminating halogen lamp
mounted directly on the chlorophyll fluorescence imaging unit.
The VNIR camera had CMOS sensors with 1,920 × 1,000
pixel resolution that can measure reflectance in visible and near
infra-red spectrum (350–950 nm). Two sets of calibrations for
image acquisition are performed prior to every measurement.
The first one is a white calibration where an image is snapped
over the calibration plate with lighting. This image is used
for homogeneity calibration in additional data processing. The
second one is a dark calibration where the image is snapped
over the calibration plate but without lighting. This image is
used for camera chip dark current subtraction in additional
data processing. Plant masks were manually created for each
image to extract high quality data from the acquired raw
hyperspectral images that were saved as a BIL (band interleaved
by lines) format. Vegetative Indices (VI) were calculated from
the raw reflectance data using the hsdar package (Lehnert et al.,
2018) in RStudio.

Machine Learning Models
Classification And REgression Training (CARET) (Kuhn, 2015),
a R-package for predictive modeling was used for implementing
machine learning models in this study. All the phenotypic
measurements recorded were partitioned into a training set
(80%) and validation set (20%) using createDataPartition
function and transformed using preProcess function. Recursive
feature elimination (RFE) algorithm was implemented with
these parameters: functions = rfFuncs, method = "repeatedcv,"
repeats = 10 for feature selection from the VI, measured,
and calculated ChlF parameters. Nine classification models
were then built for testing using the features selected with
RFE. The models selected for testing were Support Vector

Machines with Radial Basis Function Kernel (SVMR) (Method:
svmRadial; Library: kernlab), Random Forest (RF) (Method:
rf ; Library: randomForest), Multivariate Adaptive Regression
Spline (MARS) (Method: earth; Library: earth), Neural Network
(NN) (Method: nnet; Library: nnet), k-Nearest Neighbors (KN)
(Method: knn; Library: knn), Self-Organizing Maps (SOM)
(Method: xyf ; Library: kohonen), Naive Bayes (NB) (Method:
naive_bayes; Library: naivebayes), Multi-Layer Perceptron (MLP)
(Method: mlp; Library: RSNNS), and Neural Network with
Feature Extraction (NN2) (Method: pcaNNet; Library: nnet).
Common control method for building models was the training
set, ntrees 2000, resampling method “repeatedcv,” number 10,
repeats 10, tuneLength 10. Models were built by inputting all
phenotypic variables (ChlF and VI) and the function varImp was
used to plot the list of top 10 most important variables specific to
each model. The models were tested on the validation set (20%
of the remainder set) and confusion matrix was generated to
estimate accuracy of each model.

Genetic Linkage Map and QTL Analysis
A high-density genetic linkage map was developed at the
University of California, Davis1 using lettuce 6.6 million feature
Affymetrix high density GeneChip R© (Truco et al., 2013). The
linkage map consisted of 4,880 SNP markers covering all
9 chromosomes (1,584.86 cM recombinational length) with
average density of 3.08 markers per cM. Identification of QTL
and estimation of genetic effects were performed by composite
interval mapping function implemented in QTL cartographer
(Wang et al., 2005). The likelihood ratio (LR) threshold value
(α = 0.05) for declaring the presence of QTL was estimated
from 1,000 permutations (Doerge and Churchill, 1996). Mapping
was performed at 2-cM walk speed in a 10-cM window with
five background cofactors, where the cofactors were selected
via forward–backward stepwise regression method. Quantitative
trait loci were defined by one-LOD confidence intervals on either
sides of the peak position and were named following a method
used in rice (McCouch et al., 1997). Briefly, the QTL is designated
as “q” followed by an abbreviation of the trait name, which is then
followed by the chromosome name. Multiple QTLs on the same
chromosome are distinguished by an alphabetical suffix.

QTL Cluster and Candidate Genes
Analysis
QTL clusters were identified based on co-localization of the
horticultural and ChlF or VI QTLs. To identify candidate genes,
we integrated the QTL confidence intervals on the genetic map
with the lettuce physical map. First the QTL clusters were
demarked and flanking SNP markers were identified, then we
used the sequences of the flanking SNP markers to search
the L. sativa genome sequence using BLAST tool to map
their physical locations. Functional annotation of the lettuce
genome downloaded from the lettuce genome resource2 and
candidate genes were identified based on the Gene Ontology
(GO) enrichment analysis using the Database for Annotation,

1https://michelmorelab.ucdavis.edu
2https://lgr.genomecenter.ucdavis.edu
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Visualization and Integrated Discovery (DAVID) v6.83 with
Uniprot IDs associated with these genes. GO terms with P < 0.05
were considered significantly enriched.

RESULTS

Phenotypic Variation in Horticultural
Traits
The parents of the RIL mapping population possessed strikingly
different phenotypes under well-water and water-stress treatment
(Table 1). Under well-watered treatments the average fresh
weight and dry weight of Salinas was 63.18 and 3.86 g respectively
which was significantly greater than the fresh weight and
dry weight of US96UC23 (19.20 and 2.32 g). Salinas also
had greater average fresh weight and dry weight (3.22 and
1.59 g) under water-stress conditions compared to US96UC23
(1.20 and 1.05 g). The Salinas parent consisted of significantly
higher water content (93.84 and 49.43%) compared to the
US96UC23 parent (87.43 and 13.45%) under well-watered and
water-stress conditions respectively. All traits displayed normal
distribution and transgressive segregation was observed for
all traits among RIL lines under well-water and water-stress
conditions. Normal distribution of measurements indicates the
complex and quantitative nature of these traits under polygenic
control. Heritability of horticultural traits ranged from 78.78%
for dry weight under water-stress conditions to 81% for fresh
weight under well-watered conditions. Statistical parameters of
the RIL population grown under well-water and water-stress
treatment is presented in Table 1.

Model Selection, Principle Component,
and Correlation Analysis
Accuracy to classify validation set was compared between the
models by generating model specific confusion matrix for
ChlF parameters and VI (Table 2). Random Forest (RF) and
Neural Network (NN) outperformed all other models tested with
prediction accuracy of RF at 89.66 with 95% confidence interval
(CI) of 82.63–94.54 for ChlF parameters and the prediction
accuracy of NN at 89.83% (CI: 82.91–94.63) for the VI traits. Top
10 VI and ChlF and VI parameters selected by varImp function
(Table 3) were used for all downstream analysis in this study.

Clustering of samples from the training and validation sets
were performed by PCA using the selected variables (Figure 1).
In the PCA, the first and second dimensions explained 61.4 and
17.8% of the variation respectively. Samples from pre water-
stress stress and early water-stress displayed overlapping pattern
whereas the samples from late water-stress phase grouped as
a distinct cluster. The samples from the recovery phase were
more scattered with some clustering with the early or late
water-stress phase samples. The first dimension explained the
variability in the water-stress progression over time while the
second dimension explained variability in the RIL lines during
water-stress progression.

3https://david.ncifcrf.gov/

Correlation analysis between horticultural, ChlF and VI traits
indicate that the fresh weight (FW) is positively correlated with
all other traits except with Datt5 (r = −0.68) and PRI_norm
(r = −0.51) (Figure 2). QY_max, indicator of photosynthetic
efficiency of photosystem-II, was positively correlated with most
of the traits (r = 0.35 to 0.94) and negatively correlated with
Datt5 (r = −0.80) and PRI_norm (r = −0.78), however, it was
not correlated with DW, WC, and CRI2. Datt5 and PRI_norm
were significantly correlated (r = 0.94) and both were negatively
correlated with most of the traits. CRI2 was correlated only with
NDVI and SR (r = 0.45 and 0.43) respectively.

Parental Variation in ChlF and VI Traits
During Water-Stress Progression and
Recovery
The two mapping parents differed significantly for the selected
ChlF and VI traits as water-stress progressed from pre phase
to recovery phase. Commonly used ChlF parameters such Fm,
Fv along with the ChlF and VI selected by RF and NN
models were used to investigate differential responses of Salinas
and US96UC23 to water-stress conditions (Figure 3A). No
significant differences were observed for Fm and Fv values
between the two parents at pre and early phase of the experiment
(Supplementary Table 1). At the late phase, Fm and Fv increased
by 29 and 31% respectively in ‘Salinas’, whereas Fm and Fv
decreased by 11.5 and 4% respectively in US96UC23 indicating
that most of the captured energy is dissipated in the form
of fluorescence by ‘Salinas’, while US96UC23 is able to use
captured energy for photosynthetic processes even under severe
water-stress conditions. However, in comparison to the late
phase, both Fm and Fv were reduced by an average of 17%
in ‘Salinas’ at recovery phase, suggesting partial resumption of
photosynthetic processes and efficient utilization of the captured
energy (Figure 3A). The mean QY_max values of ‘Salinas’ and
US96UC23 under non-stress condition were 0.79 (+0.02) and
0.81 (+0.01) respectively (Supplementary Table 1). In ‘Salinas’,
the QY_max was reduced by 3.4% at the early phase which
was further decreased by 1.3% (total reduction of 4.7%) at late
phase. In US96UC23, QY_max reduced by 1.6% at early stage and
no further reduction was observed at the late phase, indicating
higher photosynthetic efficiency of PS-II in US96UC23 under
water-stress conditions. At recovery phase, QY_max significantly
increased by 2.1% in US96UC23 while there was no change
in ‘Salinas’. In ‘Salinas’, the non-photochemical quenching of
maximum fluorescence (NPQ_L4) steadily increased from 1.35
(±0.33) at pre water-stress phase to 1.37 (±0.02) and 1.54 (±0.15)
at early and late phases respectively, whereas in US96UC23 the
NPQ values decreased from 1.18 (±0.25) to 0.98 (±0.27) at
the early phase then increased to 1.31 (±0.03) at late phase
of water-stress. A similar trend was observed for the ratio of
fluorescence decline (Rfd) which is an indicator of plant vitality
suggesting that ‘Salinas’ has better photo-protective processes and
is able to dissipate excess energy under water-stress conditions.
There is a significant decline in NPQ and Rfd at recovery
phase in both parents indicating that more of captured energy
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was being used in the photochemical process (photosynthesis)
(Supplementary Table 1).

No significant differences were observed for Normalized
Difference Vegetation Index (NDVI) at pre and early phase,
however, at late phase US96UC23 had NDVI value of 0.80
(±0.01) which was significantly higher (P < 0.01) than
‘Salinas’ (0.78 + 0.05), similarly Simple Ratio Index (SR) of
US96UC23 (9.05± 0.49) was significantly higher (P < 0.05) than
‘Salinas’ (8.19 ± 0.26). At the recovery phase, NDVI decreased
significantly to 0.76 (±0.04) in ‘Salinas’ while it remained
constant in US96UC23. The SR values remained constant for
‘Salinas’ at recovery phase, while it was significantly higher
(9.39± 1.47) in US96CS23, suggesting that US96UC23 remained
photosynthetically active for longer durations under water-stress
conditions. Variation in the Photochemical Reflectance Index

(PRI) was non-significant (P < 0.05) between the two parents at
pre water-stress phase. A significant difference of 0.013 and 0.008
(P < 0.05) was observed between the two parents at early and late
phases respectively while a non-significant increase is observed
during the recovery phase, suggesting that the changes in
carotenoid pigments as a result of water-stress varied significantly
between ‘Salinas’ and US96UC23 (Supplementary Table 1).

Population Variation in ChlF and VI Traits
During Water-Stress Progression and
Recovery
During the early stages of the water-stress, a relatively smaller
reduction was observed in parameters that are indicators of
photosynthetic efficiency such as Fm, Fv, QY_max, instantaneous

TABLE 1 | Phenotypic values and broad sense heritability (H) estimate of different water-stress related horticultural traits in a lettuce recombinant inbred line (RIL)
population (n = 175) of ‘Salinas’ x US96UC23.

Trait Year Treatment Parents RILs

Salinas UC Difference Max Min Mean CV (%)a H(%)b Normc Skewness Kurtosis

Fresh weight (g) 2018 Well-Watered 61.76 16.64 45.12*** 65.40 18.40 40.12 ± 10.00*** 24.93 89.00 0.379 0.09 −0.02

2019 64.59 21.75 42.84*** 70.53 22.23 41.72 ± 9.14*** 21.91 91.00 0.460 −0.17 0.52

2018 Water-Stress 3.60 1.27 2.33*** 5.78 1.14 2.79 ± 1.00*** 35.84 82.24 2.550 0.92 0.63

2019 2.84 1.13 1.71*** 6.03 1.43 2.95 ± 0.93*** 31.53 80.78 0.065 0.70 0.32

Dry weight (g) 2018 Well-Watered 3.27 2.29 0.98** 5.02 1.02 2.68 ± 0.84*** 31.34 83.30 0.401 0.19 −0.12

2019 4.45 2.35 2.1*** 5.29 1.13 2.74 ± 0.72*** 26.28 80.63 0.112 0.21 0.67

2018 Water-Stress 1.41 1.13 0.28** 2.22 0.61 1.44 ± 0.35*** 24.31 78.78 0.180 0.12 −0.61

2019 1.76 0.97 0.79*** 2.15 0.80 1.47 ± 0.27*** 18.37 84.56 0.650 0.11 −0.19

Water content (%) 2018 Well-Watered 94.71 86.88 7.83*** 94.73 88.25 93.25 ± 1.66** 1.78 84.30 0.911 0.04 0.13

2019 92.97 87.98 4.99*** 94.12 86.79 92.38 ± 1.28** 1.39 89.30 0.001 nn −0.71 0.95

2018 Water-Stress 60.84 11.33 49.51*** 92.98 16.49 56.53 ± 19.49** 34.48 78.80 0.007 nn 0.27 −0.77

2019 38.02 15.56 22.46*** 90.68 25.35 54.07 ± 17.06** 31.55 82.89 0.002 nn 0.52 −0.52

** and *** represent significance with P-values of 0.01 and 0.001, respectively.
aCoefficient of Variation.
bBroad sense heritability.
cShapiro-Wilk normality test of residuals. A p-value greater than 0.05 indicates normal distribution. Here ’nn’ represent non-normal distribution of residuals and the data
were square root transformed for further analysis.

TABLE 2 | Machine learning models and their classification accuracies.

Machine Learning Models (library) Abbr ChlF VI

Accuracy Kappa 95% CI Accuracy Kappa 95% CI

Lower Upper Lower Upper

Random Forest (rf) RF 0.8966 0.8621 0.8263 0.9454 0.8475 0.7967 0.7697 0.9070

Neural Network (nnet) NN 0.8362 0.7816 0.7561 0.8984 0.8983 0.8644 0.8291 0.9463

Neural Networks with Feature Extraction
(pcaNNet)

NN2 0.8506 0.7759 0.7580 0.9180 0.8750 0.8125 0.7873 0.9359

Support Vector Machines with Radial Basis
Function Kernel (svmRadial)

SVMR 0.8362 0.7816 0.7561 0.8984 0.8636 0.7956 0.7739 0.9275

Multi-Layer Perceptron (RSNNS) MLP 0.7759 0.7011 0.6891 0.8481 0.8644 0.8193 0.7892 0.9205

Multivariate Adaptive Regression Splines (earth) MARS 0.8448 0.7931 0.7659 0.9054 0.8729 0.8306 0.7990 0.9271

k-Nearest Neighbors (knn) KN 0.7241 0.6322 0.6334 0.8030 0.8390 0.7855 0.7600 0.9002

Self-Organizing Maps (kohonen) SOM 0.7328 0.6437 0.6426 0.8107 0.8559 0.8080 0.7794 0.9138

Naive Bayes (nb) NB 0.6207 0.4943 0.5259 0.7091 0.8051 0.7403 0.7220 0.8722
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PS-II quantum yield during dark relaxation (QY_Dn),
instantaneous PS-II quantum yield during light adaptation
(QY_Ln) and coefficients of non-photochemical quenching in
light adapted state (qN_Ln) (Figure 3B and Supplementary
Table 1). All of these ChlF parameters were further reduced
significantly as the plants experienced severe water-stress (late
phase). Under severe water stress, non-photochemical quenching
in PSII (NPQ) increased due to higher heat dissipation resulting
in lower Fm in late phase of water-stress. At the recovery
phase many plants experienced severe water-stress as evident
by higher non-photochemical quenching in PSII (NPQ) while
many plants had overcome the stress and started photosynthesis
resulting in increased maximum quantum yield of photosystem-
II (QY_max), instantaneous PS-II quantum yield during dark
relaxation (QY_Dn), instantaneous PS-II quantum yield during
light adaptation (QY_Ln). Water-stress affected reflectance
spectra of RIL lines in the visible and near infrared wavelength.
The values of VI such as NDVI, SR, and PRI that provide measure
of the overall amount and quality of photosynthetic material
were decreased as the water stress progressed. The values of
other VI such as Plant Senescence Reflectance Index (PSRI),
Structure Insensitive Pigment Index (SIPI) and Carotenoid
Reflectance Index (CRI), that are indicator of structural and

TABLE 3 | Description of top ten kinetic chlorophyll fluorescence (ChlF)
parameters selected by Random Forest and top ten vegetation indices (VI)
selected by Neural Network model.

Type Abbr Description

ChlF NPQ_L4 Non-photochemical quenching induced in light
measured at saturating flash 4

ChlF NPQ_Lss Steady-state non-photochemical quenching in light

ChlF QY_D1 Instantaneous PSII quantum yield during dark relaxation
measured at far-red flash 1

ChlF QY_D2 Instantaneous PSII quantum yield during dark relaxation
measured at far-red flash 2

ChlF QY_D3 Instantaneous PSII quantum yield during dark relaxation
measured at far-red flash 3

ChlF QY_L4 Instantaneous PSII quantum yield during light
adaptation measured at saturating flash 4

ChlF QY_Lss Steady-state PSII quantum yield in light

ChlF QY_max Maximum PSII quantum yield. Also known as Fv/Fm

ChlF Rfd_L4 Instantaneous fluorescence decline ratio in light.

ChlF Rfd_Lss Fluorescence decline ratio in steady-state

VI CRI2 Carotenoid Reflectance Index 2: 1/R515 - 1/R770

VI Datt5 Datt5: R672/R550

VI DWSI4 Disease water stress index 4: R550/R680

VI GDVI_4 Green Difference Vegetation Index 4: (R4800 -
R4680)/(R4800 + R4680)

VI GI Greenness Index: R554/R677

VI NDVI Normalized Difference Vegetation Index: (R800 -
R680)/(R800 + R680)

VI PRI Photochemical Reflectance Index: (R531 -
R570)/(R531 + R570)

VI PRI_norm normalized PRI: PRI * (-1)/(RDVI * R700/R670)

VI SAVI Soil Adjusted Vegetation Index: (1 + L) * (R800 -
R670)/(R800 + R670 + L)

VI SR Simple Ratio: R800/R680

biochemical changes in leaf canopy, were significantly increased
as the water-stress progressed. Effect of water-stress progression
(pre, early, late and recovery) on ChlF and VI of RIL population
is presented as heatmap of the normalized values (Figure 3B).

Linkage Mapping and QTL Analysis
A total of 25 QTLs were identified for the three horticulturally
important traits studied, 15 (60%) were detected in the well-
watered (WW) whereas 10 (40%) were detected in water-stress
(WS) conditions. Out of the 10 QTLs for fresh weight (FW)
that were detected on 6 chromosomes, 6 were detected in WW
conditions while 4 were detected in WS conditions (Table 4). Two
QTL, qFW-Chr04 and qFW-Chr06a, were consistently detected in
both years under WW condition. The phenotypic variation (PV)
explained by the fresh weight QTLs in WW conditions ranged
from 6.41 to 19.15% whereas PV explained in WS condition
ranged from 7.28 to 12.82%. Favorable allele for all FW QTLs
were contributed by cultivated lettuce ‘Salinas’. A total of 8
QTLs for dry weight (DW) were detected of which 4 were
unique to WW conditions while 3 were identified only under
WS conditions. A QTL on chromosome 4 (qDW-Chr04) that
was identified under both WW and WS conditions but with
peak at slightly different position is considered as same QTL due
to overlap of one-LOD confidence interval. Five out of the 8
DW QTLs were identified in both 2018 and 2019 indicating that
these QTLs are stably expressed across environments. The PV
explained by DW QTLs ranged between 7.29 and 16.26% in WW
conditions and from 7.32 to 12.61% in WS conditions. Favorable
allele for 4 QTLs (qDW-Chr01b, qDW-Chr04, qDW-Chr07a,
qDW-Chr07b) was contributed by ‘Salinas’ while alleles from the
wild parent, US96UC23, increased dry weight at the other 4
QTLs (qDW-Chr01a, qDW-Chr08, qDW-Chr01c, qDW-Chr03).
A total of 6 QTLs for water content (WC) were identified of which
4 QTLs (qWC-Chr01a, qWC-Chr01b, qWC-Chr03, qWC-Chr08)
were specific to WW condition while 2 QTLs (qWC-Chr06a,
qWC-Chr06b) were identified only under WS condition. Five (of
6) WC QTLs had stable expression across environment and were
identified both in 2018 and 2019. The PV explained ranged from
6.88 to 12.33% under WW conditions and between 10.76 and
16.70% under WS conditions. Favorable alleles for 3 QTLs (qWC-
Chr01b, qWC-Chr03, qWC-Chr08) was contributed by ‘Salinas’
while US96UC23 contributed favorable allele for the remaining
3 QTLs. Interestingly, the wild parent improved water content
under both WS and WW condition while the cultivated ‘Salinas’
improved water content only under WW conditions (Table 4).

Linkage mapping for the top 10 ChlF traits and top 10 VIs
selected by RF and NN models identified 26 ChlF and 34 VI
QTLs distributed on 8 lettuce chromosomes. Number of QTLs
per trait ranged from 1 QTL (NPQ_L4, QY_L4, PRI_norm) to
8 QTLs (SR). Four ChlF and 6 VI QTLs were identified before
the water-stress was administered, 7 ChlF and 13 VI QTLs were
identified at early phase of water-stress and linkage mapping at
the late water-stress phase identified 8 QTLs each for ChlF and VI
traits (Table 5). At recovery phase of the experiment, 8 ChlF and
7 VI QTLs were mapped. The PV explained by the ChlF QTLs
ranged from 6.93 to 13.29% whereas it ranged between 7.2 and
17.19% for VI QTLs. Alleles from US96UC23 increased the trait
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FIGURE 1 | Principal component analysis plot of RIL population during water-stress progression.

value for 16 (61.5%) ChlF QTLs and ‘Salinas’ allele increased the
trait value for 18 (52.9%) VI QTLs.

QTL Cluster and Candidate Gene
Identification
QTL analysis further revealed that QTLs for horticultural traits
were mapped along with ChlF or VI QTLs. In total eight co-
located QTL clusters were detected, two were identified on
the chromosomes 1 and 3 and one each on chromosomes 4,
5, 6, and 8. The size of QTL cluster ranged from 13cM on
chromosome 4–51cM on chromosome 6. All clusters consisted
of one or more horticultural QTL along with one or more
ChlF and/or VI QTLs. The number of QTLs in each cluster
ranged from three in cluster IV and V to ten in cluster
VII (Figure 4). Most notably, in the cluster II the QTL for
maximum quantum yield of photosystem-II (qQY_max-Chr01)
identified in the recovery phase co-localized with QTL for
steady state quantum yield of photosystem-II in dark relaxation
(qQY_D1-Chr01) and a dry weight QTL, (qDW-Chr01a). The
additive allele for all these QTLs originated from the wild
parent US96UC23 suggesting the importance of this segment
of chromosome 1 in improving photosynthetic efficiency of the
cultivated lettuce. Co-localization of ChlF and VI QTLs including
QTLs for NDVI, GDVI, PRI, NPQ, and QY along with the
fresh weight QTL qFW-Chr05 on chromosome 5 between 180 to

216 cM (cluster VI) signify the role of this segment in affecting
chlorophyll content, light harvesting and utilization efficiency,
photosynthetic process and overall plant vitality. The QTL cluster
VII on chromosome 6 harbored QTL for maximum quantum
yield of photosystem-II (qQY_max-Chr06) which co-localized
with two QTLs for fluorescence decline ratio (qRfd_L4-Chr06
and qRfd_Lss-Chr06), a QTL for non-photochemical quenching
in PSII (qNPQ_Lss-Chr06), along with two horticultural QTLs,
qWC-Chr06b and qFW-Chr06c. Except for qQY_max-Chr06
all QTLs on this cluster were identified under water-stress
conditions and the additive allele originated from US96UC23
(Table 5). Subsequently, we mapped the sequences of the
SNP markers flanking each QTL cluster to the L. sativa cv
Salinas reference genome (version8) at the comparative genomics
research platform using CoGe blast search4. Topmost enriched
biological processes from GO enrichment analysis included
protein phosphorylation (GO:0006468), response to abscisic acid
(GO:0009737), response to water deprivation (GO:0009414),
metabolic process (GO:0008152), photosynthesis (GO:0015979).
Candidate genes were selected from the enriched functional
annotations involved in important biological function such
as photosynthesis, light harvesting (GO:0009765), response to
water deprivation, and cell de-toxification (GO:0009636). In
total we identified 71 genes on six lettuce chromosomes with

4https://genomevolution.org/coge/CoGeBlast.pl?dsgid=37106
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FIGURE 2 | Correlations between horticultural traits, chlorophyll fluorescence parameters and vegetation indices. Only significant correlations (P-value <0.05) are
presented. The color and size of circles represents direction (positive or negative) and level of significance respectively.

the number of candidate genes ranging from 6 genes on
chromosome 4–17 genes on chromosome 6. Details of the
identified candidate genes along with their physical location,
functional annotation and Arabidopsis homologs is presented in
the Supplementary Table 2.

DISCUSSION

Response to water-stress differed considerably between the two
mapping parents used in this study. The commercially cultivated
lettuce, ‘Salinas’ produced higher fresh weight and dry weight
under control and water-stress conditions and had significantly
higher water content compared to US96UC23. In contrast, the
wild type lettuce produced higher percent biomass under control
and water-stressed conditions suggesting efficient photosynthesis
and robust carbon assimilation compared to the ‘Salinas’ parent.
In a previous study, Gallardo et al. (1996) observed that the
L. serriola produces greater biomass and has markedly higher
photosynthetic rate per unit leaf area and better water use
efficiency under control and water-stress conditions than L. sativa
primarily due to deep taproots that allow the plant to access
deeper water sources and maintain higher stomatal conductance.
Tolerance to water-stress is a complex trait that involves a
dynamic and diverse responses oftentimes controlled by large

number of loci each with small genetic effects. In general,
plants under normal growth condition absorb more visible
light for photosynthesis resulting in lower reflectance value.
However, as the plants experience water-stress there is increase
in reflectance within the visible range. Visual signs of water-
stress effect on plants include leaf curling, shrinking, wilting and
decolorization. During early stages of water-stress, plants employ
protective strategies such as decrease in photosynthesis, increase
in chlorophyll fluorescence and heat emissions (Lichtenthaler,
1996). Under severe water-stress there is increased damage
to chlorophyll pigments resulting in drastic changes in leaf
absorbance and reflectance.

In this study, supervised learning models were used to identify
VI and ChlF parameters that were most informative in classifying
genotypic interaction in response to water-stress progression.
These simulation models are comprehensive environment for
stepwise evaluation of the relative role and importance of each
factor separately or in various combinations to identify system-
level patterns under different environmental conditions (Grimm
and Railsback, 2005; Grimm and Berger, 2016). The parameters
picked by random forest and neural network accounted for a
large proportion of population variability in response to water-
stress progression.

Kinetic chlorophyll fluorescence parameters are important
indicators of plant vitality and health of leaf photosynthetic
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FIGURE 3 | Heatmap depicting changes in chlorophyll fluorescence parameters and vegetation indices during water-stress progression and recovery. (A) Mapping
parents, (B) Recombinant inbred line (RIL) population.

apparatus and can provide accurate diagnostics for detecting
and quantifying water-stress tolerance in plants (Percival and
Sheriffs, 2002). Strong correlation between ChlF parameters
and plant senescence in response to abiotic stress was
documented by several researchers (Greaves and Wilson, 1987;
Araus and Hogan, 1994; Hakam et al., 2000; Percival and Sheriffs,
2002). Chlorophyll fluorescence imaging can be used as a tool to
monitor perturbation in photochemical and non-photochemical
processes. Both parents exhibited different ChlF quenching
curves suggesting differences in photosynthetic strategies to
utilize the absorbed light under water-stress conditions. It
appears that the US96UC23 parent is efficient in maintaining
homeostasis of photosynthetic machinery under early water-
stress stages and thus yielding similar ChlF as at pre water-
stress stage. Primary photochemical processes of PSII or the
associated QY_max (Fv/Fm) of the cultivated and wild lettuce
did not differ at pre and early water-stress stages indicating
that it is not an effective indicator of early plant water-stress.
On the other hand, traits like Rfd_L3 and Rfd_Lss which
indicate potential photosynthetic capacity of the plant differed
significantly between the two genotypes at early water-stress stage

suggesting that these two traits might be more sensitive than
QY_max for detecting early plant water-stress (Lichtenthaler,
1996; Yao et al., 2018). The NPQ_L4 and NPQ_Lss are estimators
of photoprotective processes and reflect plant adaptation to
counteract stressful environments (Murchie and Lawson, 2013).
In the cultivated lettuce, NPQ_L4 and NPQ_Lss increased
as the water-stress progressed from pre to late water-stress
stage but decreased at the recovery phase indicating that
the non-photochemical processes involved in protecting plants
under stress were upregulated. However, in wild lettuce, the
values of NPQ_L4 and NPQ_Lss dropped at early water-stress
but increased rapidly at the late phase suggesting that the
photoprotective mechanism in wild lettuce is different from
the cultivated lettuce and is upregulated only under severe
stress. A similar trend was observed in rose plants subjected
to progressive water stress (Gorbe and Calatayud, 2012) where
they also found that the non-photochemical processes were
upregulated during early water-stress but were downregulated
under extreme water stress conditions. The parameter QY_Dn
measures the photochemical efficiency of PSII and represents
the proportion of light harvested by chlorophyll and utilized
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in the photochemical reaction in PSII (Yao et al., 2018).
A significant reduction in QY_D1 was observed in the cultivated
lettuce indicating reduced CO2 supply to the chloroplast
due to stress-induced stomatal closure (Zhou et al., 2017;
Yao et al., 2018) while the QY_D1 was unaffected in the
wild lettuce indicating that the photochemical efficiency was
maintained under stress condition resulting in higher QY_max
in wild lettuce even under water-stress conditions. Eriksen
et al. (2020) found higher mesophyll conductance rates in
US96UC23, which could allow for increased conductance of

CO2 supply to the chloroplast during stomatal closure and allow
for higher QY_D1.

Plants encountering water stress show higher reflectance
values in the visible range than well-watered plants, because
the non-stressed plants absorb more light in this range for
photosynthesis, therefore having lower reflectance value. The
reflectance values in the blue (450–485 nm) and red (525–
700 nm) regions were significantly high at late phase of
water-stress suggesting reduction in photosynthetic pigment
concentration due to water deficit in the leaves. The results

TABLE 4 | Summary of horticultural QTL identified in two trials of the water-stress experiment.

Trait Treatment QTL name Yeara Marker Interval (cM) LOD score Additive R2 (%)b + ve Allelec

Fresh weight (g) Well-Watered qFW-Chr03a T-1 49.23–55.25 3.79 2.95 7.88 Salinas

Well-Watered qFW-Chr03b T-2 63.56–71.37 3.67 2.93 7.68 Salinas

Well-Watered qFW-Chr04 T-1 98.24–104.74 8.98 5.53 19.15 Salinas

Well-Watered T-2 100.45–104.74 5.12 3.21 11.04 Salinas

Well-Watered qFW-Chr06a T-1 100.95–111.16 3.66 3.34 7.16 Salinas

Well-Watered T-2 103.77–107.05 3.22 2.54 6.86 Salinas

Well-Watered qFW-Chr07a T-2 79.87–83.05 3.30 3.17 6.41 Salinas

Well-Watered qFW-Chr08 T-1 18.01–23.36 3.83 −3.06 8.11 UC

Water-Stress qFW-Chr05 T-2 225.84–228.87 3.33 0.31 7.28 Salinas

Water-Stress qFW-Chr06b T-2 98.28–103.74 4.06 0.29 9.56 Salinas

Water-Stress qFW-Chr06c T-1 121.75–125.66 4.07 0.34 12.36 Salinas

Water-Stress T-2 124.56–128.22 5.52 0.28 12.82 Salinas

Water-Stress qFW-Chr07b T-2 108.06–110.11 3.31 0.28 7.62 Salinas

Dry weight (g) Well-Watered qDW-Chr01a T-1 90.49–98.81 4.72 −0.27 9.80 UC

Well-Watered T-2 92.55–104.88 3.44 −0.23 7.29 UC

Well-Watered qDW-Chr01b T-1 18.57–24.61 3.66 0.32 7.66 Salinas

Well-Watered T-2 20.05–24.87 3.56 0.20 7.48 Salinas

Well-Watered qDW-Chr04 T-1 89.05–100.7 3.89 0.24 7.99 Salinas

Well-Watered T-2 92.08–104.74 5.13 0.38 10.75 Salinas

Well-Watered qDW-Chr07a T-1 76.68–83.05 4.38 0.35 9.06 Salinas

Well-Watered qDW-Chr08 T-1 0.01–8.34 7.55 −0.35 16.26 UC

Well-Watered T-2 8.25–13.08 3.73 −0.21 7.79 UC

Water-Stress qDW-Chr01c T-2 56.56–57.59 3.79 −0.10 8.45 UC

Water-Stress qDW-Chr03 T-2 115.68–118.04 4.31 −0.21 10.64 UC

Water-Stress qDW-Chr04 T-1 101.45–106.25 3.20 0.10 8.39 Salinas

Water-Stress T-2 102.55–107.01 3.06 0.07 7.32 Salinas

Water-Stress qDW-Chr07b T-1 89.63–98.04 5.62 0.12 12.61 Salinas

Water-Stress T-2 96.08–100.04 3.55 0.08 9.10 Salinas

Water content (%) Well-Watered qWC-Chr01a T-1 19.32–21.79 3.52 −0.49 7.50 UC

Well-Watered qWC-Chr01b T-1 51.03–56.02 5.63 0.49 12.28 Salinas

Well-Watered T-2 52.73–58.1 3.16 0.45 6.88 Salinas

Well-Watered qWC-Chr03 T-1 72.87–81.53 4.32 0.40 9.18 Salinas

Well-Watered T-2 81.53–90.25 5.67 0.65 12.33 Salinas

Well-Watered qWC-Chr08 T-1 90.36–95.70 3.82 0.48 8.08 Salinas

Well-Watered T-2 94.18–99.15 3.50 0.37 7.59 Salinas

Water-Stress qWC-Chr06a T-1 104.77–109.62 4.56 −6.10 10.76 UC

Water-Stress T-2 108.07–115.58 7.94 −7.73 17.25 UC

Water-Stress qWC-Chr06b T-1 126.08–130.11 7.44 −7.10 16.70 UC

T-2 125.67–130.11 5.43 −6.71 12.75 UC

aT1: Trial conducted in 2018; T2: Trial conducted in 2019.
bPercentage of total phenotypic variation.
cParent contributed favorable allele. Salinas- L. sativa cv Salinas; UC- L. serriola acc. US96UC23.
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TABLE 5 | Summary of QTL affecting kinetic chlorophyll fluorescence parameters and vegetation indices during water-stress progression.

Trait Typea QTL Name Treatment Marker Position (cM) LOD Score Additive R2 (%)b + ve Allelec

NPQ_L4 ChlF qNPQ_L4-Chr02 Recovery 106.89–110.11 3.6353 0.098 8.63 Salinas

NPQ_Lss ChlF qNPQ_Lss-Chr04a Recovery 144.23–148.98 3.5476 0.1082 8.48 Salinas

qNPQ_Lss-Chr04b Late 185.67–196.36 3.7085 −0.1152 9.17 UC

qNPQ_Lss-Chr05a Early 138.66–141.79 3.6349 −0.1988 8.88 UC

qNPQ_Lss-Chr05b Early 185.72–192.79 3.0818 0.1131 6.96 Salinas

qNPQ_Lss-Chr06 Late 105.37–113.9 4.1049 −0.1501 10.4 UC

QY_D1 ChlF qQY_D1-Chr01a Late 39.75–43.81 4.9633 0.1143 12.63 Salinas

qQY_D1-Chr01b Late 98.97–102.11 3.0432 −0.0678 6.93 UC

qQY_D1-Chr04 Recovery 214.56–216.89 3.6006 −0.0626 9.11 UC

QY_D2 ChlF qQY_D2-Chr01 Late 39.78–42.99 3.3951 0.1062 9.02 Salinas

qQY_D2-Chr04a Pre 135.63–137.99 3.3088 −0.0066 8.63 UC

qQY_D2-Chr04b Recovery 214.56–216.89 3.8923 −0.0804 9.78 UC

QY_L4 ChlF qQY_L4-Chr04 Recovery 214.56–216.89 3.8831 −0.0266 9.57 UC

QY_Lss ChlF qQY_Lss-Chr01 Early 122.36–126.02 3.5701 0.012 8.99 Salinas

qQY_Lss-Chr05 Early 193.75–197.04 3.3239 0.01 8.3 Salinas

QY_max ChlF qQY_max-Chr01 Recovery 101.25–105.34 3.593 −0.0322 8.81 UC

qQY_max-Chr06 Pre 136.99–139.16 5.2644 0.0062 13.29 Salinas

Rfd_L4 ChlF qRfd_L4-Chr04 Late 185.67–196.36 3.703 −0.1191 9.07 UC

qRfd_L4-Chr05a Pre 135.99–139.96 3.0642 −0.1379 7.77 UC

qRfd_L4-Chr05b Early 156.08–160.1 3.107 −0.1296 7.31 UC

qRfd_L4-Chr06 Late 185.72–192.79 3.7949 −0.1503 9.42 UC

Rfd_Lss ChlF qRfd_Lss-Chr05 Pre 136.84–141.3 3.1708 −0.1333 7.88 UC

qRfd_Lss-Chr06a Early 30.09–33.96 3.3007 0.1424 7.66 Salinas

qRfd_Lss-Chr06b Late 185.72–192.79 3.2653 −0.126 8.1 UC

Recovery 112.39–116.78 3.1871 −0.2023 8.31 UC

qRfd_Lss-Chr07 Early 38.99–41.86 3.1248 0.1407 7.92 Salinas

CRI2 VI qCRI2-Chr04 Recovery 32.49–35.69 3.1143 0.3709 7.9 Salinas

qCRI2-Chr05a Early 138.25–141.99 6.0043 −0.7174 14.89 UC

qCRI2-Chr05b Early 179.68–184.11 3.0481 0.3186 7.2 Salinas

qCRI2-Chr05c Recovery 211.23–215.68 3.1283 0.3772 7.91 Salinas

qCRI2-Chr06 Late 26.01–29.73 3.5644 0.2398 8.82 Salinas

Datt5 VI qDatt5-Chr01 Early 102.5–106.29 4.3535 0.0279 11.43 Salinas

qDatt5-Chr03 Late 52.62–56.01 3.0774 −0.047 7.74 UC

DWSI4 VI qDWSI4-Chr03 Early 42.55–45.01 3.4067 0.1207 8.17 Salinas

qDWSI4-Chr05a Early 129.86–132.88 6.0003 0.2479 14.86 Salinas

qDWSI4-Chr05b Early 142.98–146.13 5.7419 −0.2168 14.04 UC

qDWSI4-Chr08 Recovery 98.38–101.81 3.2432 −0.3246 8.5 UC

GDVI_4 VI qGDVI_4-Chr03 Early 118.63–120.99 4.6436 0.0007 17.19 Salinas

qGDVI_4-Chr04a Late 10.84–14.23 3.72 −0.0058 8.94 UC

qGDVI_4-Chr04b Late 23.99–26.68 3.1373 0.0052 8.04 Salinas

qGDVI_4-Chr05 Pre 182.43–185.73 4.6902 0.0001 11.81 Salinas

GI VI qGI-Chr05 Early 142.98–146.13 4.5917 −0.2126 12.04 UC

qGI-Chr08 Recovery 98.38–101.81 3.2193 −0.3358 8.44 UC

NDVI VI qNDVI-Chr01 Early 139.68–143.74 3.5457 −0.0127 8.89 UC

qNDVI-Chr05a Recovery 63.53–68.98 3.5837 0.063 9.17 Salinas

qNDVI-Chr05b Late 106.74–111.45 3.5708 −0.0207 8.34 UC

qNDVI-Chr05c Pre 182.34–186.98 4.0484 0.0099 10.42 Salinas

PRI VI qPRI-Chr04 Late 185.62–188.39 4.7341 −0.0085 11.67 UC

qPRI-Chr05 Early 179.68–184.11 4.3706 0.0027 11.18 Salinas

PRI_norm VI qPRI_norm-Chr05 Early 179.68–184.11 3.1624 −0.0014 7.86 UC

SAVI VI qSAVI-Chr04 Pre 58.95–63.84 3.152 0.0243 8.54 Salinas

qSAVI-Chr05 Recovery 60.59–64.76 4.3681 0.0601 11.08 Salinas

(Continued)

Frontiers in Genetics | www.frontiersin.org 12 February 2021 | Volume 12 | Article 634554

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-634554 February 12, 2021 Time: 18:56 # 13

Kumar et al. Water-Stress QTL Mapping in Lettuce

TABLE 5 | Continued

Trait Typea QTL Name Treatment Marker Position (cM) LOD Score Additive R2 (%)b + ve Allelec

SR VI qSR-Chr02 Pre 124.63–128.07 3.1613 0.1168 7.86 Salinas

qSR-Chr03a Early 28.67–33.45 3.5593 0.4931 8.62 Salinas

qSR-Chr03b Late 111.05–115.95 3.3169 −0.0858 7.97 UC

qSR-Chr05a Late 23.78–27.85 4.9192 −0.3354 12.14 UC

qSR-Chr05b Recovery 64.27–67.93 3.862 0.2548 9.87 Salinas

qSR-Chr05c Early 115.59–121.64 3.9509 −0.5763 9.63 UC

qSR-Chr05d Pre 138.25–141.99 3.0818 −0.5367 8.67 UC

qSR-Chr05e Pre 161.27–166.72 3.4407 0.009 8.2 Salinas

aChlF- Chlorophyll fluorescence; VI- Vegetation indices.
bPercentage of total phenotypic variation.
cParent contributed favorable allele. Salinas- L. sativa cv Salinas; UC- L. serriola acc. US96UC23.

FIGURE 4 | Genomic location of the QTL clusters identified in this study. Color of the legends represent different treatments and the shape of these legends
represent phenotypic traits (square: horticultural traits, tringle: chlorophyll fluorescence parameters, and circle: vegetation indices). The boxes on the SNP
marker-based lettuce density map represent QTL clusters.

indicate that the concentration of primary photosynthetic
pigments can be monitored by recording the amount of
light reflected in the visible region. The photochemical
reflectance index [PRI; Gamon et al. (1997)] and the normalized
difference vegetation index [NDVI; Rouse et al. (1974)] are
the most commonly used and analyzed indices for crop
water stress assessment (Katsoulas et al., 2016). The PRI
is sensitive to the epoxidation state of the xanthophyll
pigment and photosynthetic efficiency (Gamon et al., 1992,
1997; Ihuoma and Madramootoo, 2017). The changes in
xanthophyll are related to the dissipation of the excess
energy that cannot be processed through photosynthesis and
this interconversion of the xanthophyll cycle pigment can
be detected in leaves as subtle changes in reflectance at

531 nm (Gamon et al., 1992, 1997). Sensitivity of PRI for
plant water stress detection is well documented in several
crops such as tomato (Kittas et al., 2003), spring barley
and sugar beet (Borzuchowski and Schulz, 2010), olives
(Sun et al., 2008; Marino et al., 2014), soybean and cotton
(Inamullah and Isoda, 2005). Significant differences in PRI
values between ‘Salinas’ and US96UC23 during water-stress
progression suggest diverse mechanisms involved in the energy
dissipation under water-stress in the cultivated and wild lettuce.
We also found that the PRI is correlated with many other
chlorophyll florescence parameters and VI. Similar results
were reported by Sarlikioti et al. (2010) where they found
a strong correlation between PRI and relative water content,
CO2 assimilation, stomatal conductance, operating efficiency of
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PSII and non-photochemical quenching (NPQ) in greenhouse
grown tomato plants.

The NDVI is based on the reflectance of leaves in the visible
and near-infrared bands of the electromagnetic spectrum and is a
numerical indicator of the amount of chlorophyll and vegetation
greenness. In this study we found that the NDVI was correlated
with horticultural traits including fresh weight and water content
and chlorophyll fluorescence parameters such as Fm, Fv and
QY_max. High correlation between NDVI and plant biomass,
chlorophyll, leaf area and yield in crops plant was reported by
several researchers (Jones et al., 2004, 2007; Köksal et al., 2011)
suggesting it as a good indicator of nitrogen content and biomass.
The NDVI was reported to have a strong correlation with the
plant water status in crops like cotton (Yi et al., 2013), grapes
(González-Fernández et al., 2015), watermelon (Genc et al., 2011)
and apples (Kim et al., 2011). Many other VI analyzed in this
study were reported to be correlated to plant growth parameters
and plant water content in other crops. For example, simple
ratio (SR) and soil adjusted vegetation index (SAVI) were found
to be corelated with plant growth in sugar-beet grown under
different levels of irrigation (Köksal et al., 2011) and was used
for detecting water stress in potatoes (Amatya et al., 2012), and
green beans (Köksal, 2011). The green normalized difference
vegetation index (GDVI) was found to be a good estimator of
water stress for watermelon in semi-arid regions (Genc et al.,
2011) whereas PRI_norm (Berni et al., 2009) was found to be
significantly correlated with relative water content of tomatoes
(Ihuoma and Madramootoo, 2019).

In this study 25 QTL affecting important horticultural
traits were identified and evaluated under well-watered and
water-stress conditions. We observed that four DW QTL
(qDW-Chr01a, qDW-Chr04, qDW-Chr07a, qDW-Chr08) were
previously reported (Hartman et al., 2014; Kerbiriou et al., 2016)
and all the remaining QTL are novel and not previously reported.
We found multi-year as well as multi-treatment QTL for the
horticultural traits clustered on six of the nine chromosomes.
The co-localization of QTLs for different traits is observed in
several crops, for example in cabbage 144 QTLs controlling 24
agronomic traits were identified in 12 QTL clusters on eight
chromosomes (Lv et al., 2016). A total of 16 QTL-clusters were
identified in a wheat double haploid population harboring QTLs
controlling chlorophyll content, NDVI and many agronomic
traits expressing in response to different water regimes (Shi et al.,
2017). The clustering of QTLs for different traits is commonly
seen in several crops and might be caused by one or several
important genes participating in more than one pathway, for
example a single locus Xgwm212 in wheat is associated with
biomass production, tillering, and phosphorus absorption and
utilization (Zhang et al., 2007). A QTL for DW originating
from the ‘Salinas’ parent and identified in recovery treatment
was reported on chromosome 05 (Hartman et al., 2014) in a
marker interval (65cM to 74cM) where three VI QTL (qNDVI-
Chr05a, qSAVI-Chr05, qSR-Chr05b) were mapped in our study.
Interestingly, the three VI QTLs were also detected at the
recovery phase of the water-stress progression experiment and
the alleles from the ‘Salinas’ parent improved the trait. Together,
these findings further suggest that proximal non-destructive

image-based phenotyping can be effectively applied for water-
stress breeding and can provide additional information enabling
in better understanding the genetic architecture of water-stress
tolerance in lettuce. Recent availability of high-quality lettuce
genome sequence gave us opportunity for searching for all
potential candidate genes within QTL confidence intervals.
Typically, the QTL interval consist of hundreds of genes, many
not associated with the trait of interest, therefore selecting
candidate genes is based on the overrepresentation in the
biological processes. Our search of candidate genes in the
QTL interval revealed genes associated with biological processes
such as photosynthesis, chlorophyll biosynthesis and survival
under water-stress condition. Using similar approach in poplar,
candidate genes underlying water-use efficiency were identified in
the marker interval harboring QTLs for productivity, architecture
and leaf traits (Monclus et al., 2012). Similarly in grapes, Correa
et al. (2014) used grapevine reference genome to identify 50
candidate genes from 1,173 genes located in the marker interval
of QTLs for rachis architecture. In a noteworthy observation, we
found co-localization of NDR1/HIN1-like (NHL25), LEA14, heat
shock protein (BIP1), and early dehydration stress responsive
gene (ERD4) with chlorophyll and photosynthesis related genes
on chromosome 6 where QTLs for fresh weight and water content
were detected under water stress conditions. Plant NDR1/HIN1-
like (NHL) and late embryo abundant (LEA) genes play crucial
role in triggering response to biotic and abiotic stresses in many
crops (Bao et al., 2016; Song et al., 2019; Liu et al., 2020).
Overexpression of NDR1/HIN1-like gene NHL6 significantly
improved drought tolerance in transgenic Arabidopsis (Bao
et al., 2016). Heat shock proteins act to protect proteins and
membranes and are reported to improve drought tolerance
in sorghum (Johnson et al., 2014), poplar (Yer et al., 2016),
soybean and tobacco (Valente et al., 2009). The identification
of candidate genes in this study is not comprehensive since
the genes regulating expression of the candidate genes in the
QTL interval may be located elsewhere in the genome and
therefore warrants genome-wide expression study. However, the
co-localization of horticultural QTL for fresh weight, dry weight,
and water content with QTLs for photosynthetic efficiency of
photosystem-II (QY_max) and greenness (NDVI) along with
presence of genes for drought response, photosynthesis and
chlorophyll biosynthesis in the marker interval underline the
importance the chromosomal segments harboring QTL clusters
in improving water-stress tolerance in lettuce.

CONCLUSION

We mapped 85 QTL including 25 QTL for horticultural traits,
26 QTL for kinetic chlorophyll fluorescence parameters and 34
QTL for vegetation indices under well-watered and progressive
water-stress conditions. We identified candidate genes involved
in drought tolerance, photosynthesis and other important
biological processes in the marker interval of the 8 QTL
clusters. Furthermore, we found that machine learning models
are effective in deciphering hidden patterns in vast datasets and
can be helpful in identifying relatively important parameters
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that can be targeted using marker-assisted selection (MAS)
in lettuce breeding programs. Major QTL and their clusters
identified in this study will be helpful for MAS for water-
stress tolerance breeding in lettuce and help in extending
our understanding of genetic architecture of water-stress
tolerance in lettuce.
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