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Drug repositioning is used to find new uses for existing drugs, effectively shortening

the drug research and development cycle and reducing costs and risks. A new model

of drug repositioning based on ensemble learning is proposed. This work develops

a novel computational drug repositioning approach called CMAF to discover potential

drug-disease associations. First, for new drugs and diseases or unknown drug-disease

pairs, based on their known neighbor information, an association probability can be

obtained by implementing the weighted K nearest known neighbors (WKNKN) method

and improving the drug-disease association information. Then, a new drug similarity

network and new disease similarity network can be constructed. Three prediction

models are applied and ensembled to enable the final association of drug-disease

pairs based on improved drug-disease association information and the constructed

similarity network. The experimental results demonstrate that the developed approach

outperforms recent state-of-the-art prediction models. Case studies further confirm the

predictive ability of the proposed method. Our proposed method can effectively improve

the prediction results.

Keywords: drug repositioning, ensemble strategy, similarity measure, matrix completion, drug-disease

association

1. INTRODUCTION

Traditional drug discovery is a high-risk, high-investment, and long-term process (Li et al., 2015).
It is well-known that it usually takes more than 10 years and more than $800 million to bring a new
drug to market (Adams and Brantner, 2006). Additionally, the probability of drug approval success
is below 10% (Ashburn and Thor, 2004). Considering the challenges of traditional drug discovery,
the drug repositioningmethod is rising in popularity (Cano et al., 2017) and has attracted increasing
interest from the research community and pharmaceutical industry (Shameer et al., 2015). Some
successful repositioning drugs, such as duloxetine, sildenafil, and thalidomide, have generated high
revenues in the history of their patent holders or companies (Ashburn and Thor, 2004).

The purpose of drug repositioning is to discover new indications for old drugs. Recently, many
computational drug repositioning techniques, such as machine learning-based models, have been
used to identify potential drug-disease interactions (Li et al., 2015). For example, Napolitano et al.
(2013) melded drug-related features into a single information layer, which was used to train a
multi-class support vector machine classifier whose output was a therapeutic class for a given drug.
Chen and Li (2017) proposed the flexible and robust multiple-source learning (FRMSL) method to
integrate multiple heterogeneous data sources to obtain drug-drug similarity and disease-disease
similarity, and used the Kronecker regularized least squares (KronRLS) approach to solve the
prediction problem. Liang et al. (2017) used Laplacian regularized sparse subspace learning to find
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novel drug indications, integrating multiple pieces of
information. Most machine learning-based models using
negative samples are generated randomly from unknown
associations, among which some false negatives may be included,
resulting in a biased decision boundary (Liu et al., 2016a).

In recent years, with the rapid advance of high-throughput
biology, huge amounts of multi-omic data have been yielded
and several databases have been developed to store these
valuable data (Chen et al., 2019; Luo et al., 2020). With the
development of publicly available drug-related or disease-related
databases, the network-based method is widely used in drug
repositioning. The network-based method discovered potential
drug–disease associations by propagating information in a
heterogeneous biological network containing some information
about diseases, drugs, or targets (Luo et al., 2018). For
example, Yu et al. (2015) used drugs, protein complexes,
and diseases to construct a tripartite network, which inferred
the association probabilities of drug-disease pairs. Martìnez
et al. (2015) developed DrugNet, a model for drug-disease
and disease-drug prioritization; a network of interconnected
drugs, proteins, and diseases was built, and DrugNet was used
for drug repositioning. Luo et al. (2016) utilized drug- and
disease-related properties to compute comprehensive similarity
measures and the utility bi-random walk (BiRW) algorithm
to find new uses for existing drugs. In recent years, the
matrix factorization-based method has been successfully applied
to biological association prediction, such as lncRNA-disease
(Fu et al., 2017; Lan et al., 2020), drug-target (Liu et al.,
2016b; Shi et al., 2018), and drug-disease (Zhang et al.,
2018). The method can integrate prior information flexibly
and integrate much information and many features into the
framework to improve the accuracy of prediction. Zhang et al.
(2018) developed a similarity-constrained matrix factorization
approach (SCMFDD), which utilizes known drug-disease
interactions, drug features, and disease features to predict
potential drug-disease associations. Gönen and Kaski (2014)
developed a new probabilistic method KBMF2MKL, which
extended kernelized matrix factorization by incorporating
multiple kernel learning. However, association prediction with
matrix factorization has some limitations on the accuracy
and prediction performance, especially for new diseases or
drugs, which are called cold start problems. So, given different
prediction approaches, an ensemble method is a promising way
to combine their capacity in predicting the associations between
drugs and diseases.

In this work, we develop a new drug repositioning model,
CMAF, which integrates three methods (matrix factorization-
based, label propagation-based, and network consistency
projection-based methods) to obtain the final prediction result.
To assess the performance of the developed approach, 10-fold
cross-validation was implemented, and from the experimental
results, we can see that ensemble models can combine different
information to achieve high-accuracy performance. The
experimental results demonstrate that CMAF obtained better
results than the other four recent models in predicting potential
drug-disease associations.

2. MATERIALS AND METHODS

In this section, we first introduce the gold standard dataset
used in this study. Then, a proposed drug repositioning
method named CMAF is presented to discover new uses for
existing drugs. The overall flowchart of CMAF is shown in
Figure 1, which contains the following three steps. First, the
WKNKN algorithm is used as a preconditioning step to compute
the temporary association score for new drugs and diseases
or unknown drug-disease pairs. Second, a new drug-drug
similarity network and a new disease-disease similarity network
can be established. Third, three classical models are used to
predict potential drug-disease associations separately, and their
prediction results are ensembled to obtain the final association
possibility of drug-disease pairs.

2.1. Dataset
The dataset used in this paper is curated manually from multiple
biological datasets (Gottlieb et al., 2011). The dataset has 593
drugs and 313 diseases involving 1,933 validated drug-disease
pairs. The drugs are collected from DrugBank (Wishart et al.,
2006), and the diseases are extracted from Online Mendelian
Inheritance in Man (OMIM) (Hamosh et al., 2002).

The drug similarity is computed by the Chemical
Development Kit (CDK) (Steinbeck et al., 2006) in terms
of SMILES (Weininger, 1988) chemical structures, and the
similarity between drug pairs is denoted as the Tanimoto score
(Tanimoto, 1958) of their 2D chemical fingerprints. The disease
similarity is computed using MimMiner (van Driel et al., 2006),
which measures the similarity of two diseases by calculating the
similarity between the MeSH terms (Lipscomb, 2000) present in
the medical description information from the OMIM database.

2.2. Improved Drug-disease Association
A known drug-disease association Y can be modeled as a two-
dimensional matrix, which has m drug rows and n disease
columns, where each entry is denoted by Yij. The i-th row vector
of the adjacency matrix Y , Y(ri) = (Yi1,Yi2, . . . ,Yin), is the
interaction profile for drug ri. Similarly, the j-th column vector
of the adjacency matrix Y , Y(dj) = (Y1j,Y2j, . . . ,Ymj), is the
interaction profile for disease dj.

It should be noted that the interaction profiles of new drugs
or new diseases are all zero values. Additionally, many of the
non-associations in Y are unobserved situations that could have
potential interactions (i.e., false negatives). Therefore, we used
WKNKN (Ezzat et al., 2017) to obtain the interaction likelihood
value for non-associated drug-disease pairs in terms of their K
nearest known neighbors [the K nearest known neighbors can be
obtained by the K nearest neighbors (KNN) function according
to their drug or disease similarity]. Here, we set K = 5. For
every drug ri, the similarity of its chemical structure with the
K known drugs nearest to it and their corresponding values
in the interaction profiles are utilized to obtain the interaction
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FIGURE 1 | Flowchart of CMAF.

likelihood profile of the drug ri as follows:

Yr(p) =

(

K
∑

i=1

wiY (ri)

)

/Qr (1)

where ri to rk represent the K known nearest neighbors of drug
rp; the weight coefficient is wi = Ti−1Sr(ri, rp) where T ≤ 1 is
the decay term, and here, we set T to 0.5; and Sr(ri, rp) is the

similarity between ri and rp. Moreover, Qr =
∑K

i=1 S
r
(

ri, rp
)

is the normalization term. For the same reason, the interaction
likelihood profile of disease dj is as follows:

Yd(q) =





K
∑

j=1

wjY
(

dj
)



 /Qd (2)

where d1 to dk represent the K known nearest neighbors of
disease dq, the weight coefficient is wj = Tj−1Sd(dj, dq), the decay

term T is 0.5, Sd(dj, dq) is the similarity between dj and dq, and

the normalization term is Qd =
∑K

j=1 S
d
(

dj, dq
)

.

Then, we fuse Yr and Yd to replace Yij = 0 by taking the
average of the two values mentioned above and denote it as Yrd;
we can then obtain a new adjacency matrix Y .

Y = max(Y ,Yrd) (3)

where, Yrd = (Yr + Yd)/2.

2.3. Improved Similarity of Drugs and
Diseases
Similarity-based methods are widely used to find similar drugs
(Vilar and Hripcsak, 2017). Some studies have shown that
the use of similarity measures in drug repositioning often
shows high predictive power (Azad et al., 2020). Therefore,
similarity measurement is always regarded as an important step
in drug repositioning research. The improvement of similarity
can improve the prediction performance (Wang and Kurgan,
2019), reduce the computation cost, and make the similarity-
based method more attractive and promising (Ding et al., 2014).

Relevant studies found that each data point can be linearly
reconstructed from its neighborhood (Wang and Zhang, 2008),
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we can calculate the pairwise drug similarity and pairwise disease
similarity, which is the samemethod as in previous works (Zhang
et al., 2017).

Here, we use drug data points as an example. Let xi represent
the feature vector of the i-th drug. The optimization problem is
expressed as:

where N(xi) denotes the set of K(0 < K < n) nearest
neighbors. Here, we set K to 100.

minωi εi =

∥

∥

∥
xi −

∑

ij : xi∈N(xi)
ωi,ijxij

∥

∥

∥

2

=
∑

ij ,ik : xij ,xik
∈N(xi)

ωi,ijG
i
ij ,ik

ωi,ik = ωT
i G

iωi

s.t.
∑

ij : xij∈N(xi)
ωi,ij = 1,ωi,ij ≥ 0, j = 1, 2, . . . ,K

(4)

Gi
ij ,il
=

(

xi − xij
)T (

xi − xil
)

. ωi,ij are the weights xij for

rebuilding xi and can be seen as the similarity of xi and xij .
To avoid over-fitting, we add the regularization term for

the rebuilt weight wi and the objective function can be
transformed as follows:

minωi εi = ωT
i G

iωi + λ ‖ωi‖
2 = ωT

i

(

Gi + λI
)

ωi

s.t.
∑

ij : xij∈N(xi)
ωi,ij = 1,ωi,ij ≥ 0, j = 1, 2, . . . ,K (5)

where λ denotes the regularization parameter. Here, we set λ = 1.
We adopt standard quadratic programming to solve Equation

(5), and its solution is called the linear neighborhood similarity.
Here, a weight matrixW can be obtained, which we regard as the
drug linear neighborhood similarity Sr

∗

.
Likewise, we can obtain the disease linear neighborhood

similarity Sd
∗

.

2.4. Prediction Method
In this section, we use the drug linear neighborhood similarity
and disease linear neighborhood similarity Sd

∗

to carry out
three classical approaches to predict unobserved drug-disease
interactions separately and ensemble their prediction results to
obtain the final association possibility of drug-disease pairs.

2.4.1. Label Propagation
Label propagation (LP) methods perform the following task:
given a weighted network, in which a small part of the nodes are
labeled (with labels, such as positive), calculate the labels of the
remaining unlabeled nodes (Zhang et al., 2015).

We formulate Sd
∗

as a directed graph, where drugs are nodes
and the edge between drug ri and drug rj is weighted by the linear
neighborhood similarity between the two drugs.

After constructing the graph, we utilize a label propagation
approach to predict the unknown drug-disease pair association
score (LPRIA). The known drug-disease associations are
considered the initial node label information, and then the label
information is updated. In each step, each drug node absorbs its
neighbor’s label information with probability α andmaintains the
initial state with probability 1 − α. Here, we set α as 0.5. The
updated process can be written as:

Y t+1
j = αSr

∗

Y t
j + (1− α)Y0

j (6)

where, Y0
j denotes the j-th column of the initial drug-disease

interaction matrix Y (i.e., the initial states of all drugs for disease
dj). Furthermore, taking all diseases into account, the update
process can be formulated in matrix form as:

Y t+1 = αSr
∗

Y t + (1− α)Y0 (7)

Equation (7) will be used to update the label matrix until it
converges, and Equation (7) will converge to:

Yr∗ = (1− α)
(

I − αSr
∗
)−1

Y0 (8)

where I represents the identity matrix and Yr∗ represents the
predicted drug-disease pair probability from the drug side. For
the convergence analysis of this update process, please refer
to Wang and Zhang (2008).

Likewise, we constructed the label propagation approach from
the disease side to obtain the predicted drug-disease interaction
score matrix Yd∗ . The final association score Y∗ is obtained
according to the average of Yr∗ and Yd∗ .

2.4.2. Non-negative Matrix Factorization
Non-negative matrix factorization (NMF) is an unsupervised
model (Fujita et al., 2018). Its goal is to obtain two non-negative
matrices and take their product as the optimal approximation to
the original matrix. From the perspective of drug repositioning,
the drug-disease association matrix Y ∈ Rm×n is factorized
into two non-negative matrices, W ∈ Rm×k and H ∈ Rn×k

(k≪min(m, n)), here, we set k to 100, and Y ≈WHT .
To avoid over-fitting and increase the learning performance,

Tikhonov and graph regularization terms are added to the
standard NMF model to predict novel drug-disease pairs
(NMFRIA). NMFRIA’s objective function is as follows:

minW,H

∥

∥Y −WHT
∥

∥

2

F
+ λl

(

‖W‖2F + ‖H‖
2
F

)

+ λr Tr
(

WTLrW
)

+λd Tr
(

HTLdH
)

s.t. W ≥ 0,H ≥ 0

(9)

where λl, λr , and λd represent the regularization coefficients;
Tr(·) denotes the trace of a matrix, Lr = Dr − Sr

∗

is the
graph Laplacian matrix for the drug similarity matrices, Sr

∗

and
Ld = Dd − Sd

∗

are the graph Laplacian matrices for the disease
similarity matrices Sd

∗

(Liu et al., 2014); and Dr and Dd represent
the diagonal matrices whose entries are the row sums of Sr

∗

and
Sd
∗

, respectively.
The method proposed by Xiao et al. (2018) is adopted to solve

the minimization problem, and W and H are updated with an
iterative equation. Here, the updating rules can be defined as:

wik← wik

(

YH + λrS
r∗W

)

ik
(

WHTH + λlW + λrDrW
)

ik

(10)

hjk ← hjk

(

YTW + λdS
d∗H

)

jk
(

HWTW + λlH + λdDdH
)

jk

(11)
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where wik represents the i-th row and the k-th column of non-
negative matrix W, and hjk represents the j-th row and the k-th
column of non-negative matrix H.

According to Equations (10) and (11) the two non-negative
matrices W and H are updated until convergence, and then
we can obtain the predicted drug-disease interaction matrix as
Y∗∗ =WHT . Here, we set λl to 2, and λr = λd = 0.0001.

2.4.3. Network Consistency Projection
Network consistency projection (NCP) considers drugs ri that
have a higher similarity to other drugs in the drug similarity
matrix; the more drugs are associated with disease dj, the higher
the spatial similarity of drug ri with disease dj (and vice versa).
Here, we use the NCP approach (Gu et al., 2016) for drug-disease
association (NCPRIA) to obtain the predicted association scores
between unknown drug-disease pairs.

NCPRIA computes the association probability between
drug ri and disease dj by fusing two network consistency
projection scores (the drug and disease space projection scores).
Considering that unknown drug-disease pairs are not confirmed
by experiment, which cannot prove that they are unrelated, and
to prevent 0 from being the denominator, we replace 0 in the
matrix Y with 10–30.

The drug space projection is the projection of the drug
similarity network Sr

∗

on the drug-disease interaction network
Y , which can be described as follows:

NCP−R(i, j) =
Sr
∗

(i, :)∗Y(:, j)

|Y(:, j)|
(12)

where Sr
∗

(i, :) denotes the similarities between drug ri and all
other drugs in the i-th row of matrix Sr

∗

and Y(:, j) denotes the
associations between disease dj and all drugs. |Y(:, j)| represents
the length of the vectorY(:, j).NCP_R(i, j) represents the network
consistency projection score of Sr

∗

(i, :) on Y(:, j). It is worth
noting that the smaller the angle is between Sr

∗

(i, :) and Y(:, j),
the more drugs are related to disease j and the more similar drugs
there are to drug i, the larger the network consistency projection
score NCP_R(i, j).

Similarly, we can obtain the disease space projection score
as follows:

NCP−D(i, j) =
Y(i, :)∗Sd

∗

(:, j)

|Y(i, :)|
(13)

where Sd
∗

(:, j) denotes the j-th column of matrix Sd
∗

and
Y(i, :) denotes the i-th row of drug-disease association Y .
NCP_D(i, j) represents the network consistency projection score
of Sd

∗

(:, j) on Y(i, :).
Finally, the projection score for the drug space and disease

space are fused and normalized as follows:

Y∗∗∗(i, j) =
NCP−R(i, j)+ NCP−D(i, j)
∣

∣Sr
∗
(i, :)

∣

∣+
∣

∣Sd
∗
(:, j)

∣

∣

(14)

where Y∗∗∗ represents the predicted drug-disease association
matrix and Y∗∗∗(i, j) is the final predicted score of drug ri and
disease dj.

2.4.4. Integrating the Prediction Results
According to the three aforementioned computational drug
repositioning methods, to obtain better performance, a fusion
model is adopted to integrate their predicted results, and the
final prediction score between drugs and diseases is computed
as follows:

Rt = 1−
(

1− Y∗
) (

1− Y∗∗
) (

1− Y∗∗∗
)

(15)

In particular, Y∗ is the predicted drug-disease association
probability of the LPRIAmethod, Y∗∗ is the predicted association
probability of the NMFRIA method, Y∗∗∗ is the predicted
association probability of the NCPRIAmethod, and Rt stands for
the final predicted drug-disease association probability.

3. EXPERIMENTS AND RESULTS

In this section, the performance of our approach, CMAF,
is systematically evaluated. First, we describe the evaluation
metrics. Based on a gold standard dataset, we compare our
approach with several recent prediction algorithms and present
the results in this section. In addition, the effectiveness of the
developed method is further confirmed by case studies.

3.1. Evaluation Metrics
To evaluate the prediction performance of the proposed CMAF
method, 10-fold cross-validation was conducted on the gold
standard dataset. In each round of 10-fold cross-validation, all
the recorded drug-disease pairs were randomly divided into 10
equal-sized parts. Each part was taken as a test set in turn,
while the remaining nine parts of the data were merged as
the training set, thus generating 10 pairs of training sets and
test sets. To obtain convincing results, 10-fold cross-validation
was repeated 10 times, and the average value of 10-folds was
taken as the final result. After performing association prediction
based on the training set, we can obtain the prediction values
for each association. Then, for each drug, the test drug-
disease associations are ranked together with all unconfirmed
drug-disease pairs (candidate associations) in descending order
according to the predicted values. For each specific ranking
threshold, four metrics: true positive (TP), false negative (FN),
false positive (FP), and true negative (TN), can be obtained based
on the ranking results. If a test association has a higher rank value
than the given threshold, it is considered as a correctly identified
positive sample. Likewise, a candidate association is considered a
correctly identified negative sample if it has a lower rank than the
given threshold.

To provide an intuitive explanation of the evaluation metrics,
a confusion matrix is first defined, which is built by comparing
actual values with predicted outcomes. The two classes are
constructed with positives and negatives, as shown in Table 1.

Next, the evaluation metrics of the true positive rate (TPR)
and false positive rate (FPR) can be defined as follows:

TPR =
TP

TP + FN
(16)
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FPR =
FP

FP + TN
(17)

Where TP and FP represent the numbers of correctly and
wrongly identified positive samples and TN and FN represent the
numbers of correctly and wrongly identified negative samples;
TPR and FPR are calculated based on these four metrics.
Furthermore, TPR is the ratio of known drug-disease pairs
that are correctly predicted, and FPR is the proportion of
unconfirmed drug-disease pairs that are predicted.

After that, the receiver operating characteristic (ROC) curve
can be drawn based on TPR and FPR at different thresholds.
Meanwhile, the area under ROC (AUC) can be calculated to
evaluate the prediction performance. The larger the value of the
AUC, the better the prediction performance. For instance, if the
value of the AUC is equal to 1, it means the best performance.

3.2. Comparison With Other Methods
In this section, to evaluate the ability of the proposed
approach, we compare CMAF with four other recently proposed
computational drug repositioning approaches: NBI (Cheng et al.,

TABLE 1 | Confusion matrix.

Actual value

Positive Negative

Predicted value
Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

2012), BNNR (Yang et al., 2019), HGBI (Wang et al., 2013), and
NGRHMDA (Huang et al., 2017). NBI is based on a bipartite
network and constructs a two-step diffusion model for drug
repositioning (Cheng et al., 2012). BNNRwas developed to utilize
a bounded nuclear norm regularization approach to construct the
drug-disease matrix under the low-rank assumption (Yang et al.,
2019). HGBI was proposed according to the guilt-by-association
principle and an intuitive interpretation of information flow on
a heterogeneous graph (Wang et al., 2013). NGRHMDA uses
neighbor-based collaborative filtering and a graph-based scoring
method to obtain the association score (Huang et al., 2017).
AlthoughHGBI andNBI were originally used to predict potential
drug-target associations and NGRHMDA was originally used to
predict new microbe-disease associations, they can also be used
to predict new drug-disease associations. The parameter values
used in NBI, BNNR, HGBI, and NGRHMDA are set based on
their corresponding literature.

The predictive ability of all drug repositioning approaches
is evaluated in terms of the AUC specified in section 3.1. As
shown in Figure 2, the results demonstrate that our developed
approach, CMAF, is superior to the other four drug repositioning
approaches. In detail, CMAF obtains an AUC value of 0.941,
while BNNR, HGBI, NBI, and NGRHMDA achieve inferior
results of 0.931, 0.832, 0.583, and 0.503, respectively.

3.3. Comparison of the Three Methods
With Their Combined Model
The effectiveness of the fusion method is evaluated in this
section. We performed drug-disease association prediction on

FIGURE 2 | Prediction results of various methods according to ROC curve analysis.
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the gold standard dataset by using three methods (i.e., the
LPRIA, NMFRIA, and NCPRIA methods) and their combined
method. As shown in Figure 3, the AUC values of the three

methods LPRIA, NMFRIA, and NCPRIA were 0.927, 0.923,
and 0.920, respectively; however, the fusion method CMAF
obtained an AUC value of 0.941. The experimental results

FIGURE 3 | Prediction performance of CMAF and the three individual methods according to the ROC curve.

FIGURE 4 | Prediction performance of CMAF and the other four methods in predicting drug-disease associations for new drugs according to the ROC curves.
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TABLE 2 | Case studies of four chosen drugs: levodopa, flecainide, zoledronic

acid, and amantadine.

Drug (DrugBank IDs) Top 5 candidate

diseases (OMIM

IDs)

Evidence

DB01235 168600 KEGG/DB/CTD

Levodopa 125320 DB/CTD

165199

254770

190400

DB01195 608583 CTD

Flecainide 194200 KEGG/CTD

115000 DB/CTD

157300

608622 CTD

DB00399 166710 KEGG/CTD

Zoledronic acid 102400

144700 CTD

166300

114480 CTD

DB00915 168600 KEGG/DB/CTD

Amantadine 125320 DB/CTD

605055

104300 CTD

607225

For each drug, the top five ranked predicted drugs are listed below.

illustrated the effectiveness of our fusion approach. Specifically,
the CMAF method obtained the best performance among these
four methods.

3.4. Prediction for New Drugs
To test the predictive performance of CMAF for new drugs, a de
novo prediction test was executed. In de novo drug validation,
for each of the drugs, we deleted all of its known associations,
and they were used for testing samples in turn; the other known
drug-disease association was used as the training sample. The
rankings of the removed drug-disease associations relative to the
drug candidate associations were obtained by de novo testing,
which was used to assess the predictive performance. To compare
the predictive ability of different methods in de novo testing of
new drugs, the other four prediction methods also underwent
de novo prediction tests. The experimental results are shown in
Figure 4, and the graph demonstrates that our CMAF is superior
to the other approaches. In detail, CMAF obtains an AUC value
of 0.941, while the results of BNNR,HGBI, NBI, andNGRHMDA
are 0.813, 0.789, 0.575, and 0.519, respectively.

4. CASE STUDIES

After verifying the predicted performance of CMAF in terms
of 10-fold cross-validation, the ability of our proposed model
to identify new indications for a given drug is further validated

here. To predict new drug-disease interactions, all known drug-
disease pairs are considered as the training set, and the remaining
unknown drug-disease pairs form the candidate set. By applying
our CMAF method, we can obtain all the candidates’ set
prediction scores. According to the prediction scores, for every
drug, all the candidate diseases are ranked.

As an example, we selected some drugs and the corresponding
top five candidate diseases as verified information, and then we
found that some of them were confirmed in the KEGG (Kanehisa
et al., 2013), DrugBank and CTD (Davis et al., 2014) databases,
as shown in Table 2. For example, the effectiveness of levodopa
in treating Parkinson’s disease (PD) due to its ability to cross the
blood-brain barrier can be retrieved from the KEGG, DrugBank,
and CTD databases. In addition, relevant literature has shown
that levodopa-treated patients have gained improvement in most
Parkinsonian features in the past half-century (Lewitt, 2015).
Flecainide is helpful for treating atrial fibrillation, as can be
retrieved from CTD, and there is literature to prove that in
clinical trials and real-world use, flecainide is more effective than
other antiarrhythmic drugs (AADs) for the acute termination
of recent-onset atrial fibrillation (Echt and Ruskin, 2020). From
KEGG and CTD, zoledronic acid can be found to treat and
prevent multiple forms of osteoporosis. There is also literature
to prove that zoledronic acid administered once yearly for up to
3 years improved bone mineral density (BMD) at several skeletal
sites, reduced fracture risk and bone turnover, and/or preserved
bone structure and mass relative to placebo in clinical studies in
patients with primary or secondary osteoporosis (Dhillon, 2016).
Amantadine is an antiviral that can be used to cure PD and
can be retrieved from KEGG, DB, and CTD. Relevant literature
suggests that amantadine is an old antiviral compound that
moderately ameliorates impaired motor behavior in Parkinson’s
disease (Müller et al., 2019).

5. CONCLUSION

This work proposed a new computational drug repositioning
model named CMAF to find new uses for existing drugs. First,
the number of known drug-disease interactions is far less than
that of unknown drug-disease interactions in practice, which
leads to the problem of data sparseness for drug repositioning.
Therefore, we used theWKNKNmethod as a pre-processing step
to compute the temporary association scores for these unknown
drug-disease interactions in terms of their known neighbors, and
then we computed the linear neighborhood similarity for drugs
and diseases. After that, the LPRIA, NMFRIA, and NCPRIA
methods were adopted to obtain three predictive association
possibilities. Finally, we adopted an ensemble strategy to fuse
these three prediction models to obtain the hopefully final
prediction result. Compared with several recent computational
drug repositioning models, our proposed CMAF approach
achieves better predictive performance.

Even though our proposed method obtains promising results,
it still has some limitations. First, we plan to consider integrating
more predictive methods into the ensemble strategy. Second,
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CMAF utilizes only single drug-drug similarity and disease-
disease similarity to construct prediction methods. In the future,
we will compute multiple drug-drug similarities and disease-
disease similarities and combine diverse similarities to further
improve the predictive performance.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

CY and JW conceived and designed the approach. WW
performed the experiments. JL analyzed the data. GZ and WW
wrote the manuscript. CY and GZ supervised the whole study

process and revised the manuscript. All authors have read and
approved the final version of manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Nos. 61802113, 61802114, and
61972134), Science and Technology Development Plan
Project of Henan Province (Nos. 202102210173 and
212102210091), China Post-doctoral Science Foundation (No.
2020M672212), and Henan Province Post-doctoral Research
Project Founding.

ACKNOWLEDGMENTS

This paper was recommended by the 5th Computational
Bioinformatics Conference.

REFERENCES

Adams, C. P., and Brantner, V. V. (2006). Estimating the cost of new

drug development: is it really $802 million? Health Affairs 25, 420–428.

doi: 10.1377/hlthaff.25.2.420

Ashburn, T. T., and Thor, K. B. (2004). Drug repositioning: identifying and

developing new uses for existing drugs. Nat. Rev. Drug Discov. 3, 673–683.

doi: 10.1038/nrd1468

Azad, A. K. M., Dinarvand, M., Nematollahi, A., Swift, J., Lutze-Mann,

L., and Vafaee, F. (2020). A comprehensive integrated drug similarity

resource for in-silico drug repositioning and beyond. Brief. Bioinform.

doi: 10.26434/chemrxiv.12376505.v1. [Epub ahead of print].

Cano, G., Garcia-Rodriguez, J., Garcia-Garcia, A., Perez-Sanchez, H.,

Benediktsson, J. A., Thapa, A., et al. (2017). Automatic selection of molecular

descriptors using random forest: application to drug discovery. Expert Syst.

Appl. 72, 151–159. doi: 10.1016/j.eswa.2016.12.008

Chen, H., and Li, J. (2017). “A flexible and robust multi-source learning

algorithm for drug repositioning,” in Proceedings of the 8th ACM International

Conference on Bioinformatics, Computational Biology,and Health Informatics,

ACM-BCB ’17 (New York, NY: Association for Computing Machinery),

510–515. doi: 10.1145/3107411.3107473

Chen, Q., Lai, D., Lan, W., Wu, X., Chen, B., Chen, Y. P. P., et al. (2019).

ILDMSF: Inferring associations between long non-coding RNA and disease

based on multi-similarity fusion. IEEE/ACM Trans. Comput. Biol. Bioinform.

doi: 10.1109/TCBB.2019.2936476. [Epub ahead of print].

Cheng, F., Liu, C., Jiang, J., Lu, W., Li, W., Liu, G., et al. (2012).

Prediction of drug-target interactions and drug repositioning via network-

based inference. PLoS Comput. Biol. 8:e1002503. doi: 10.1371/journal.pcbi.10

02503

Davis, A. P., Grondin, C., Lennon-Hopkins, K., Saraceni-Richards, C., Sciaky,

D., King, B., et al. (2014). The comparative toxicogenomics database’s

10th year anniversary: Update 2015. Nucleic Acids Res. 43, D914–D920.

doi: 10.1093/nar/gku935

Dhillon, S. (2016). Zoledronic acid (Reclast(r), Aclasta(r)): a review in

osteoporosis. Drugs 76, 1683–1697. doi: 10.1007/s40265-016-0662-4

Ding, H., Takigawa, I., Mamitsuka, H., and Zhu, S. (2014). Similarity-based

machine learning methods for predicting drug-target interactions: a brief

review. Brief. Bioinform. 15, 734–747. doi: 10.1093/bib/bbt056

Echt, D., and Ruskin, J. (2020). Use of flecainide for the treatment of atrial

fibrillation. Am. J. Cardiol. 125, 1123–1133. doi: 10.1016/j.amjcard.2019.

12.041

Ezzat, A., Zhao, P., Wu, M., Li, X. L., and Kwoh, C. K. (2017). Drug-target

interaction prediction with graph regularized matrix factorization. IEEE/ACM

Trans. Comput. Biol. Bioinform. 14, 646–656. doi: 10.1109/TCBB.2016.2530062

Fu, G., Wang, J., Domeniconi, C., and Yu, G. X. (2017). Matrix factorization based

data fusion for the prediction of lncrna-disease associations. Bioinformatics 34,

1529–1537. doi: 10.1093/bioinformatics/btx794

Fujita, N., Mizuarai, S., Murakami, K., and Nakai, K. (2018). Biomarker discovery

by integrated joint non-negative matrix factorization and pathway signature

analyses. Sci. Rep. 8:9743. doi: 10.1038/s41598-018-28066-w

Gönen, M., and Kaski, S. (2014). Kernelized bayesian matrix

factorization. IEEE Trans. Pattern Anal. Mach. Intell. 36, 2047–2060.

doi: 10.1109/TPAMI.2014.2313125

Gottlieb, A., Stein, G. Y., Ruppin, E., and Sharan, R. (2011). Predict: a method

for inferring novel drug indications with application to personalized medicine.

Mol. Syst. Biol. 7:496. doi: 10.1038/msb.2011.26

Gu, C., Liao, B., Li, X., and Li, K. (2016). Network consistency projection

for human miRNA-disease associations inference. Sci. Rep. 6:36054.

doi: 10.1038/srep36054

Hamosh, A., Scott, A. F., Amberger, J., Bocchini, C., Valle, D., and McKusick, V.

A. (2002). Online Mendelian inheritance in man (OMIM), a knowledgebase

of human genes and genetic disorders. Nucleic Acids Res. 30, 52–55.

doi: 10.1093/nar/30.1.52

Huang, Y. A., You, Z. H., Huang, Z. A., Zhang, S., and Yan, G. (2017).

Prediction of microbe-disease association from the integration of neighbor

and graph with collaborative recommendation model. J. Transl. Med. 15:209.

doi: 10.1186/s12967-017-1304-7

Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M.

(2013). Data, information, knowledge and principle: back to metabolism in

KEGG. Nucleic Acids Res. 42, D199–D205. doi: 10.1093/nar/gkt1076

Lan, W., Lai, D., Chen, Q., Wu, X., Chen, B., Liu, J., et al. (2020). LDICDL:

lncRNA-disease association identification based on collaborative deep learning.

IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2020.3034910.

[Epub ahead of print].

Lewitt, P. (2015). Levodopa therapy for Parkinson’s disease: pharmacokinetics and

pharmacodynamics.Mov. Disord. 30, 64–72. doi: 10.1002/mds.26082

Li, J., Zheng, S., Chen, B., Butte, A. J., Swamidass, S. J., and Lu, Z. (2015). A survey

of current trends in computational drug repositioning. Brief. Bioinform. 17,

2–12. doi: 10.1093/bib/bbv020

Liang, X., Zhang, P., Yan, L., Fu, Y., Peng, F., Qu, L., et al. (2017).

LRSSL: predict and interpret drug-isease associations based on data

integration using sparse subspace learning. Bioinformatics 33, 1187–1196.

doi: 10.1093/bioinformatics/btw770

Lipscomb, C. E. (2000). Medical subject headings (MESH). Bull. Med. Libr. Assoc.

88, 265–266.

Liu, H., Song, Y., Guan, J., Luo, L., and Zhuang, Z. (2016a). Inferring new

indications for approved drugs via random walk on drug-disease heterogenous

networks. BMC Bioinformatics 17:539. doi: 10.1186/s12859-016-1336-7

Frontiers in Genetics | www.frontiersin.org 9 May 2021 | Volume 12 | Article 666575

https://doi.org/10.1377/hlthaff.25.2.420
https://doi.org/10.1038/nrd1468
https://doi.org/10.26434/chemrxiv.12376505.v1
https://doi.org/10.1016/j.eswa.2016.12.008
https://doi.org/10.1145/3107411.3107473
https://doi.org/10.1109/TCBB.2019.2936476
https://doi.org/10.1371/journal.pcbi.1002503
https://doi.org/10.1093/nar/gku935
https://doi.org/10.1007/s40265-016-0662-4
https://doi.org/10.1093/bib/bbt056
https://doi.org/10.1016/j.amjcard.2019.12.041
https://doi.org/10.1109/TCBB.2016.2530062
https://doi.org/10.1093/bioinformatics/btx794
https://doi.org/10.1038/s41598-018-28066-w
https://doi.org/10.1109/TPAMI.2014.2313125
https://doi.org/10.1038/msb.2011.26
https://doi.org/10.1038/srep36054
https://doi.org/10.1093/nar/30.1.52
https://doi.org/10.1186/s12967-017-1304-7
https://doi.org/10.1093/nar/gkt1076
https://doi.org/10.1109/TCBB.2020.3034910
https://doi.org/10.1002/mds.26082
https://doi.org/10.1093/bib/bbv020
https://doi.org/10.1093/bioinformatics/btw770
https://doi.org/10.1186/s12859-016-1336-7
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Wang et al. Ensemble Strategy Predicting Association

Liu, X., Zhai, D., Zhao, D., Zhai, G., and Gao, W. (2014). Progressive image

denoising through hybrid graph laplacian regularization: a unified framework.

IEEE Trans. Image Process. 23, 1491–1503. doi: 10.1109/TIP.2014.2303638

Liu, Y., Wu, M., Miao, C., Zhao, P., and Li, X. (2016b). Neighborhood regularized

logistic matrix factorization for drug-target interaction prediction. PLoS

Comput. Biol. 12:e1004760. doi: 10.1371/journal.pcbi.1004760

Luo, H., Li, M., Wang, S., Liu, Q., Li, Y., and Wang, J. (2018). Computational

drug repositioning using low-rank matrix approximation and randomized

algorithms. Bioinformatics 34, 1904–1912. doi: 10.1093/bioinformatics/bty013

Luo, H., Li, M., Yang, M., Wu, F. X., Li, Y., and Wang, J. (2020). Biomedical data

and computational models for drug repositioning: a comprehensive review.

Brief. Bioinform. 22, 1604–1619. doi: 10.1093/bib/bbz176

Luo, H., Wang, J., Li, M., Luo, J., Peng, X., Wu, F. X., et al. (2016). Drug

repositioning based on comprehensive similaritymeasures and bi-randomwalk

algorithm. Bioinformatics 32, 2664–2671. doi: 10.1093/bioinformatics/btw228

Martìnez, V., Navarro, C., Cano, C., Fajardo, W., and Blanco, A. (2015). Drugnet:

network-based drug-disease prioritization by integrating heterogeneous data.

Artif. Intell. Med. 63, 41–49. doi: 10.1016/j.artmed.2014.11.003

Müller, T., Kuhn, W., and Möhr, J. D. (2019). Evaluating ADS5102 (amantadine)

for the treatment of Parkinson’s disease patients with dyskinesia. Expert Opin.

Pharmacother. 20, 1181–1187. doi: 10.1080/14656566.2019.1612365

Napolitano, F., Zhao, Y., M Moreira, V., and Tagliaferri, R. (2013). Drug

repositioning: a machine-learning approach through data integration. J.

Cheminform. 5:30. doi: 10.1186/1758-2946-5-30

Shameer, K., Readhead, B., and Dudley, J. T. (2015). Computational

and experimental advances in drug repositioning for accelerated

therapeutic stratification. Curr. Top. Med. Chem. 15, 5–20.

doi: 10.2174/1568026615666150112103510

Shi, J. Y., Zhang, A. Q., Zhang, S. W., Mao, K. T., and Yiu, S. M. (2018). A

unified solution for different scenarios of predicting drug-target interactions

via triple matrix factorization. BMC Syst. Biol. 12:136. doi: 10.1186/s12918-018-

0663-x

Steinbeck, C., Hoppe, C., Kuhn, S., Floris, M., Guha, R., and Willighagen, E.

L. (2006). Recent developments of the chemistry development kit (CDK)–an

open-source Java library for chemo-and bioinformatics. Curr. Pharm. Des. 12,

2111–2120. doi: 10.2174/138161206777585274

Tanimoto, T. T. (1958). An Elementary Mathematical Theory of Classification and

Prediction. New York, NY: International Business Machines Corporation.

van Driel, M. A., Bruggeman, J., Vriend, G., Brunner, H. G., and Leunissen, J. A.

(2006). A text-mining analysis of the human phenome. Eur. J. Hum. Genet. 14,

535–542. doi: 10.1038/sj.ejhg.5201585

Vilar, S., and Hripcsak, G. (2017). The role of drug profiles as similarity

metrics: applications to repurposing, adverse effects detection and

drug-drug interactions. Brief. Bioinform. 18, 670–681. doi: 10.1093/bib/

bbw048

Wang, C., and Kurgan, L. (2019). Review and comparative assessment

of similarity-based methods for prediction of drug-protein interactions

in the druggable human proteome. Brief. Bioinform. 20, 2066–2087.

doi: 10.1093/bib/bby069

Wang, F., and Zhang, C. (2008). Label propagation through linear neighborhoods.

IEEE Trans. Knowl. Data Eng. 20, 55–67. doi: 10.1109/TKDE.2007.190672

Wang, W., Yang, S., and Li, J. (2013). Drug target predictions based

on heterogeneous graph inference. Pac. Symp. Biocomput. 18, 53–64.

doi: 10.1142/9789814447973_0006

Weininger, D. (1988). Smiles, a chemical language and information system. 1.

Introduction to methodology and encoding rules. J. Chem. Inform. Comput.

Sci. 28, 31–36. doi: 10.1021/ci00057a005

Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P.,

et al. (2006). Drugbank: a comprehensive resource for in silico drug discovery

and exploration. Nucleic Acids Res. 34, D668–D672. doi: 10.1093/nar/gkj067

Xiao, Q., Luo, J., Liang, C., Cai, J., and Ding, P. (2018). A graph regularized

non-negative matrix factorization method for identifying microrna-disease

associations. Bioinformatics 34, 239–248. doi: 10.1093/bioinformatics/btx545

Yang, M., Luo, H., Li, Y., and Wang, J. (2019). Drug repositioning based

on bounded nuclear norm regularization. Bioinformatics 35, i455–i463.

doi: 10.1093/bioinformatics/btz331

Yu, L., Huang, J., Ma, Z., Zhang, J., Zou, Y., and Gao, L. (2015). Inferring drug-

disease associations based on known protein complexes. BMC Med. Genomics

8:S2. doi: 10.1186/1755-8794-8-S2-S2

Zhang, P., Wang, F., Hu, J., and Sorrentino, R. (2015). Label propagation

prediction of drug-drug interactions based on clinical side effects. Sci. Rep.

5:12339. doi: 10.1038/srep12339

Zhang,W., Chen, Y., and Li, D. (2017). Drug-target interaction prediction through

label propagation with linear neighborhood information. Molecules 22:2056.

doi: 10.3390/molecules22122056

Zhang, W., Yue, X., Lin, W., Wu, W., Liu, R., Huang, F., et al. (2018). Predicting

drug-disease associations by using similarity constrained matrix factorization.

BMC Bioinformatics 19:233. doi: 10.1186/s12859-018-2220-4

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Wang, Wang, Yan, Luo and Zhang. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 10 May 2021 | Volume 12 | Article 666575

https://doi.org/10.1109/TIP.2014.2303638
https://doi.org/10.1371/journal.pcbi.1004760
https://doi.org/10.1093/bioinformatics/bty013
https://doi.org/10.1093/bib/bbz176
https://doi.org/10.1093/bioinformatics/btw228
https://doi.org/10.1016/j.artmed.2014.11.003
https://doi.org/10.1080/14656566.2019.1612365
https://doi.org/10.1186/1758-2946-5-30
https://doi.org/10.2174/1568026615666150112103510
https://doi.org/10.1186/s12918-018-0663-x
https://doi.org/10.2174/138161206777585274
https://doi.org/10.1038/sj.ejhg.5201585
https://doi.org/10.1093/bib/bbw048
https://doi.org/10.1093/bib/bby069
https://doi.org/10.1109/TKDE.2007.190672
https://doi.org/10.1142/9789814447973_0006
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1093/nar/gkj067
https://doi.org/10.1093/bioinformatics/btx545
https://doi.org/10.1093/bioinformatics/btz331
https://doi.org/10.1186/1755-8794-8-S2-S2
https://doi.org/10.1038/srep12339
https://doi.org/10.3390/molecules22122056
https://doi.org/10.1186/s12859-018-2220-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Predicting Drug-Disease Association Based on Ensemble Strategy
	1. Introduction
	2. Materials and Methods
	2.1. Dataset
	2.2. Improved Drug-disease Association
	2.3. Improved Similarity of Drugs and Diseases
	2.4. Prediction Method
	2.4.1. Label Propagation
	2.4.2. Non-negative Matrix Factorization
	2.4.3. Network Consistency Projection
	2.4.4. Integrating the Prediction Results


	3. Experiments and Results
	3.1. Evaluation Metrics
	3.2. Comparison With Other Methods
	3.3. Comparison of the Three Methods With Their Combined Model
	3.4. Prediction for New Drugs

	4. Case Studies
	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


