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Introduction
The COVID-19 pandemic has shed light on the 
challenges we face as a global society in prevent-
ing and containing emerging and re-emerging 
pathogens. Multiple intersecting factors, includ-
ing environmental changes, host immunological 
factors, and pathogen dynamics, are intimately 
connected to the emergence and re-emergence of 
communicable diseases.1–3 There is a large and 
expanding list of communicable diseases that can 
cause neurological damage, either through direct 
or indirect routes. Novel pathogens of neuro-
tropic potential have been identified through 
advanced diagnostic techniques, including 
metagenomic next-generation sequencing, but 
there are also known pathogens which have 
expanded their geographic distribution to infect 
non-immune individuals. Factors including pop-
ulation growth, climate change, the increase in 

animal and human interface, and an increase in 
international travel and trade are contributing to 
the expansion of emerging and re-emerging path-
ogens. Challenges exist around antimicrobial 
misuse giving rise to antimicrobial-resistant infec-
tious neurotropic organisms and increased sus-
ceptibility to infection related to the expanded 
use of immunomodulatory treatments. In this 
article, we will review key concepts around emerg-
ing and re-emerging flaviviruses, a group of vec-
tor-borne pathogens that have expanded globally 
in recent years and have proven capable of wide-
spread outbreak.4–6 These viruses are transmitted 
through arthropod vectors, primarily mosquitoes 
and ticks. Notable mosquito-borne neurotropic 
flaviviruses include Japanese Encephalitis Virus 
(JEV), Dengue Virus (DENV), West Nile Virus 
(WNV), Zika Virus (ZIKV), St Louis Encephalitis 
Virus (SLE), and Murray Valley Encephalitis 
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Virus (MVE). Meanwhile, Tick-Borne 
Encephalitis Virus (TBEV) and Powassan Virus 
(POWV) are prominent tick-borne neuroinfec-
tious flaviviruses.7 We highlight several neuro-
tropic flaviviruses of interest and discuss factors 
associated with neurotropism and neuroinvasion, 
emphasizing diseases which impact the central 
nervous system (CNS).

Emergence of neurological infections: the 
pathogen and the host
Close interactions between humans, animals, and 
the environment contribute substantially to the 
emergence of infectious pathogens.8 Most human 
infections, including those which are neurotropic, 
have origins in animals, which are estimated to 
contribute approximately 60%.9 To be precise, 
neurotropic pathogens can directly infect cellular 
populations of the nervous system including neu-
rons and glial cells.10 Neurovirulence refers to a 
pathogen’s ability to cause disease specifically in 
the nervous system.11,12 More broadly speaking, a 
pathogen may have ‘neurological properties’ if 
causes neurological dysfunction secondary to the 
infection without directly invading the nervous 
system.12 A pathogen’s ability to infect the nerv-
ous system and ensuring disease course also 
depends on host factors, primarily the response of 
the immune system and destruction of vascular 
and brain parenchyma by both the infection itself 
and the inflammatory response.13

Overview of clinical findings of neurotropic 
infectious diseases
Encephalitis, or infection of the brain paren-
chyma, classically presents with acute or subacute 
onset of fever, headache, altered mental status, 
personality changes, perceptual changes, and dis-
orientation.14 Patients will also present with spe-
cific neurological signs that localize to the infected 
region of the brain, which can vary widely.14 
Meningoencephalitis, rhombencephalitis (infec-
tion of the brainstem), and encephalomyelitis 
(infection of the brain and spinal cord) can be 
seen.15 Certain neuroinvasive infections may affect 
the peripheral nervous system (PNS), including 
the muscle nerve and neuromuscular junction, 
sometimes in combination with CNS phenomena. 
Neurological signs and symptoms often are not 
specific to a particular pathogen, making systemic 
manifestations important in  

narrowing the differential diagnosis – for example, 
upper respiratory symptoms, rash, and history of 
tick bites.15 Cerebrospinal fluid (CSF) studies 
typically show lymphocytic or neutrophilic pleocy-
tosis (10–500 cells/µl), moderately elevated pro-
tein (0.5–1.5 g/l), elevated IgG synthesis rate, and 
elevated CSF: serum oligoclonal bands.15 
Immunocompromised patients may show other 
abnormalities, such as acellularity or high CSF 
white blood cell count.15 Imaging studies are help-
ful to identify clinical encephalitis but are often 
nonspecific, such as hyperintensity on FLAIR/
T2-weighted images and enhancement with gado-
linium.15 Some viruses are known to cause specific 
patterns on magnetic resonance imaging (MRI), 
such as periventricular enhancement seen in 
infants with Cytomegalovirus (CMV) encephali-
tis.15 The hallmark features of viruses that will be 
discussed in this review are summarized in Table 
1. Important considerations based on recent liter-
ature related to neurological manifestations of 
these viruses are also presented.

JEV

General overview
JEV is a vector-borne, enveloped flavivirus that is 
considered one of the most important encephali-
tis-causing flaviviruses globally. The severe neu-
rologic sequelae associated with the disease have 
established JEV as the arthropod-borne virus 
causing the most disability-adjusted loss of life 
years annually.19 JEV is transmitted via Culex 
mosquito vectors and exists in an enzootic cycle 
in which pigs act as the amplifying host and 
aquatic birds serve as the maintenance host.20 
Humans with JEV are ‘dead-end’ hosts as they do 
not develop a high enough viral load to infect 
other species.21 Currently, JEV is endemic in 24 
countries across Asia, particularly in rural and 
agricultural areas of Southeast Asia and the 
Western Pacific during the summertime and rainy 
seasons.21 According to the World Health 
Organization (WHO), the incidence in these 
regions ranges from 1 to over 10 cases per 100,000 
and outbreaks occur every 2–15 years, with most 
cases occurring in children less than 14 years of 
age.22

Currently, five different genotypes of JEV have 
been identified (G1–5) and are thought to derive 
from a common ancestor in Southeast Asia. 
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However, with rising global temperatures from 
climate change, there is growing concern that JEV 
will become endemic globally with potentially 
catastrophic effects.23 Geographic trends have 
suggested that typical genotype distributions are 
evolving to become more widespread with infec-
tions increasing in non-traditional regions. JEV-
G1, which was typically endemic to Southeast 
Asia, has expanded its regional spread to parts of 
South, Central, and East Asia, and has now 
become the most dominant genotype in Asia 
above the previously dominant G3.24,25 JEV-G3 
RNA has been found in birds in Europe, and the 
first case of sequence-confirmed JEV-G3 in Africa 
was reported in Angola during the 2016 Yellow 
Fever epidemic.26,27 A 19-year-old male without a 
history of foreign travel presented with fever, 
jaundice, headache, and blood sample positive for 
yellow fever, and was subsequently found to be 
JEV-positive via RNA sequencing. The emerging 
presence of JEV in non-endemic areas indicates 
that the strain has potential to amplify the current 
JEV disease burden in traditionally dormant 
regions.27 After a 60-year silent period following 
the initial detection of JEV-5 in 1952, a novel 
strain of JEV-G5 emerged in Tibet, China in 
2009 and has since been detected in multiple 
areas of South Korea in following years.28 With 
over 3 billion people already at risk for JEV in epi-
demic areas, these patterns of re-emergence and 
spread in novel areas emphasize that continual 
monitoring of JEV in both traditional and non-
traditional endemic areas is critical for controlling 
future disease burden.

Neurotropism of JEV
As with most flaviviruses, the viral glycoprotein E 
binds to host cell receptors and is endocytosed 
with clathrin-coated vesicles (endocytosis).29 
Following a bite from an infected mosquito, JEV 
first enters the epidermis and infects dendritic 
cells, then travels to lymphoid organs where it 
replicates, enters circulation, and disseminates to 
other organs.29 The mechanism of JEV entry into 
the CNS remains poorly understood, with recent 
studies suggesting that inflammatory cytokine 
and protease-driven breakdown of the blood–
brain barrier (BBB) allow for paracellular inva-
sion of neuroinvasive JEV.30 In vitro models 
suggest that JEV is capable of transcellular migra-
tion through endothelial cells allowing it to 
breech the BBB and may also be able to replicate 
in the endothelium.31,32 JEV-specific cellular 

receptors have been proposed but not clearly 
identified to date.29

JEV infection has been found primarily in the gray 
matter of the hypothalamus, thalamus, hippocam-
pus, and substantia nigra, including in pericytes, 
astrocytes, microglia, and developing neurons.29–31 
JEV has been reported to have preference for neu-
ronal cell injury, allowing for virus spread through 
inhibition of neuronal cell proliferation. On infec-
tion, there is an increased production of microglial 
nodules, and it has been suggested that microglia 
contribute to the neuronal cell death caused by 
JEV.33 Neuropathological features of JEV include 
neuronal necrosis predominantly of the thalamus 
and brainstem, cerebral astrocytosis, perivascular 
cuffing by mononuclear cells, and focal gliosis.34

Neurological features of JEV
Most patients are asymptomatic or have limited, 
mild symptoms including fever, headache, nausea, 
and vomiting. Before the onset of JEV encephalitis, 
patients may experience nonspecific symptoms, 
such as diarrhea or coryza. Neuroinvasive compli-
cations develop in an estimated 1% of infected 
individuals and are associated with a 20–30% mor-
tality rate.22,35 Of the patients who survive up to 
50% experience chronic neurological sequelae of 
the disease. Patients with encephalitis or menin-
goencephalitis can present with rapid onset of high 
fever, headache, altered mental status, seizure, 
paralysis, speech changes, psychosis, cranial nerve 
palsies, and parkinsonian features.36 Damage to 
the anterior horn cells can cause a poliomyelitis-
like flaccid paralysis, while parkinsonian symp-
toms, such as rigidity, tremors, and mask-like 
facies, indicate involvement of the basal ganglia.37 
Studies have shown that up to 45–50% of patients 
have seizure activity during the acute phase of ill-
ness, and in children, these rates are even higher.38

Unique features of JEV course
While JEV illness is usually monophasic, a  
secondary phase of immune-mediated anti-N-
methyl-D-aspartate receptor (NMDAR) enceph-
alitis has been reported in children and adults.39–45 
Ma et  al.40 reports three cases of unvaccinated 
children with immunoglobulin M (IgM)-
confirmed JEV who developed symptoms of 
choreoathetosis, irritability, sleep disorders, agita-
tion, mutism, and rigidity 25–29 days after their 
initial illness phase. The patients were found to 
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have anti-NDMAR IgG in CSF samples and 
made full recoveries with immunoglobulin. Pastel 
et al.,44 Shaik et al.,45 and Tian et al.41 similarly 
each report a case of pediatric anti-NMDAR 
encephalitis 10 days and 4 weeks, respectively, 
after confirmed JEV infection. In a prospective 
study of 31 pediatric patients with clinically diag-
nosed JEV, five developed autoimmune encepha-
litis within 2 weeks to 2 months after their acute 
infection phase: two with anti-NMDAR antibod-
ies, one with anti-GABABR antibodies, and two 
with other unidentified anti-neuronal surface 
antibodies.42 JEV RNA was not found in the CSF 
of all five patients during their second phase of 
illness. The study also found that compared to 
patients who only had one phase of illness, 
patients with autoimmune encephalitis suffered 
more long-term neurological deficits. Adult cases 
of JEV-induced anti-NMDAR encephalitis have 
also been reported, but the presentation tends to 
vary from pediatric cases; declining cognition and 
abnormal behaviors are the most common signs 
in adults, while chorea is most common in chil-
dren and adolescents.43 Importantly, Wang46 
reports an anti-NMDAR encephalitis case in a 
2-year-old patient after receiving the JEV vaccine. 
Patients with a recent history of JEV infection 
who present with new onset behavioral or move-
ment disorders should be evaluated for anti-
NMDAR antibodies.

Diagnosis, treatment, and prognosis
A diagnosis of JEV should be considered in 
patients presenting with encephalitis with a his-
tory of recent travel or residence in endemic areas. 
JEV-specific IgM presence in CSF by enzyme-
linked immunosorbent assay (ELISA) is best for 
diagnostic confirmation because the JEV viral 
load is typically low in humans, and the test has 
>95% specificity after 1 week of systemic ill-
ness.21,35,47 Neuroimaging will often show sym-
metric thalamic, basal ganglia, and brainstem 
lesions on computed tomography (CT) and MRI. 
Other reported findings include T2 hyperintensi-
ties in the hippocampus, cerebellum, and cerebral 
hemispheres.48–50 A recent case study of nine 
cases of JEV in China revealed that abnormal 
MRI lesions were most located in the thalamus, 
hippocampus, midbrain, temporal lobe, basal 
ganglia, and insula, respectively.51 However, 
these findings may not be a sufficient diagnostic 
tool for JEV encephalitis compared to serological 
tests: one comparison found that thalamic lesions 

had 100% specificity for JEV, but only 23% 
sensitivity.52

Treatment of JEV is limited to supportive care as 
there are no approved antiviral medications. 
Recent analyses have suggested minocycline may 
have some clinical efficacy during the acute infec-
tious period; however, these therapies have not 
been validated for use.53 Vaccines against JEV 
are recommended for those who live or plan to 
travel to endemic regions for longer than 
1 month.22 There are currently four approved 
vaccines for JEV – the inactivated mouse brain-
derived, inactivated vero cell, live attenuated, 
and chimeric vaccines. Vaccinations have proven 
to be extremely effective in reducing incidence of 
JEV and the associated encephalitis syndrome, 
reducing the morbidity in China by 97% from 
1971 to 2005, and reducing incidence in Nepal 
by 72% just between 2004 and 2009.54,55 In the 
United States, the inactivated vero cell-derived 
vaccine is given as two-dose series 28 days apart 
with the last dose given at least 1 week prior to 
travel to a high-risk region. A booster is also rec-
ommended in the setting of continued JEV expo-
sure or if the initial series was received more than 
1 year prior.22 JEV vaccination may also provide 
cross-protection against ZIKV.56

Although JEV encephalitis has proven to be vac-
cine preventable, recent epidemiological shifts in 
traditional JEV genotype distribution have 
spurred the development of targeted monoclonal 
antibody therapies allowing for inhibition of 
infection from several strains. One study group 
testing a panel of anti-JEV mAbs on animal mod-
els found that antibodies specifically mapped to 
protein E domains I and III (JEV-31, JEV-169), 
exhibited the strongest neutralizing activity 
against multiple JEV genotypes likely as a result 
of inhibition of viral fusion.57 These therapies 
have not been tested in humans but show promise 
in identifying potent molecular targets for future 
drug development as prevalence of additional 
JEV strains rises.

While neurological symptoms typically improve 
slowly over 6 months to 1 year, 20–50% of patients 
who develop encephalitis have permanent neuro-
logical sequelae, including paralysis, seizures, and 
difficulty speaking.21,22,35 A recent 10-year pro-
spective study of Lao patients with severe JEV 
found that one-fifth of patients died and two-
thirds of survivors had neurological sequelae for a 
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median duration of 4.5 years.58 Importantly, these 
sequelae were more common in children than 
adults.

Neuroinvasive WNV

General overview
WNV is another enveloped flavivirus with single-
stranded, positive-sense RNA. Like other flavivi-
ruses, its genome codes for three structural and 
seven nonstructural proteins and enters cells via 
endocytosis. Current evidence suggests that the 
viral glycoprotein E infects cells by attachment to 
cellular glycosaminoglycans, C-type lectins, or inte-
grins, but the direct mechanism is still unknown.59

The first known human case of WNV, a vector-
borne pathogen occurred in Uganda in 1937.60 It 
is currently endemic in Africa, and has spread 
worldwide to Europe, the Middle East, West 
Asia, Australia, and North America. The first 
North American case was reported in 1999, pre-
cipitating a US epidemic that lasted through 2010 
and is now the most common arboviral infection 
in the continent.60–63 While several subtypes of 
WNV have been identified, Lineages 1 and 2 are 
most widespread and implicated in severe 
cases.62,64 WNV exists in a cycle between mosqui-
toes and birds, where birds are the primary viral 
reservoirs and mosquitoes are the primary vec-
tor.65 Humans are infected by the bites of infected 
Culex mosquitoes. Warmer temperatures are 
associated with increased incidence, with the 
highest rates of disease occurring between July 
and September in North America.66 Humans are 
dead-end hosts; the viral load is insufficient to 
transfer back to mosquitoes. WNV transmission 
has been reported through organ transplant, 
blood transfusion, and breast milk, but these 
reports are rare 67–70 (Iwarmoto et al., Pealer et al., 
Hinckley et al.). There has been one single report 
of vertical WNV transmission.61

Neurotropism of WNV
WNV first enters the skin after an infected mos-
quito bite. It then infects keratinocytes and den-
dritic cells of the dermis, then reaches the lymph 
nodes, where it is believed to replicate before 
traveling to other organs, including the CNS. 
Infected neurons are most often found in the 
basal ganglia, thalamus, midbrain, and cerebel-
lum.71 It is unknown exactly how WNV enters the 

CNS, but direct invasion of the BBB, endothelial 
transport, axonal retrograde transport, or ‘Trojan 
Horse’ mechanisms through infected immune 
cells have all been proposed.72 In vitro models of 
the BBB suggest WNV can cross the barrier with-
out disrupting it, but whether this occurs in vivo 
is still unknown.73,74 Hussmann et al.75 also dem-
onstrated that WNV can replicate in both 
endothelial cells and neurons but not well in 
astrocytes. Transneuronal routes of infection are 
also under consideration.71

Neurological features associated with WNV
An estimated 80% of WNV cases are asympto-
matic. 20–25% of patients may develop West 
Nile Fever, a self-limited condition characterized 
by high temperature, headache, body aches, mac-
ulopapular rash, nausea, and vomiting lasting for 
3–6 days.61,72 About 1% of patients develop seri-
ous neurological complications including enceph-
alitis, meningitis, myelitis, and acute flaccid 
paralysis.76 In addition to headache and fever, 
these patients present with neck stiffness, altered 
mental status, flaccid paralysis, and photophobia. 
Some patients have also been reported to experi-
ence acute respiratory distress secondary to dia-
phragmatic paralysis caused by WNV.77 The risk 
of neuroinvasive disease is greater with advanced 
age, as individuals above 65 years of age are at 
least 15 times more likely to develop neurological 
complications.78 Neurological presentation of 
WNV in children is similar to adults. A review of 
WNV cases from the Centers for Disease Control 
and Prevention from 1999 to 2009 found that 
children were more likely to present with menin-
gitis than encephalitis.79

Up to 75% of patients with neuroinvasive disease 
develop encephalitis, with presentation ranging 
from mild confusion to personality changes to 
coma.80 Autoimmune encephalitis, which has 
been associated with related JEV, may also be 
triggered by WNV.71 Karagianni et al.81 report a 
case of an 84-year-old male who presented with 
encephalitis during the initial phase of WNV 
infection, recovered, and then declined at day 10 
with worsened mental status, difficulty speaking, 
extrapyramidal signs, and workup revealing anti-
glycine receptor antibodies.

Extrapyramidal signs, such as upper extremity 
coarse tremor, myoclonus, and bradykinesia, 
have also been commonly reported. Flaccid 
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paralysis typically occurs as a result of anterior 
horn cell destruction typically presenting with 
proximal asymmetric weakness within 48 h. 
Progressive paralysis can lead to respiratory fail-
ure, and some patients with extensive spinal cord 
involvement may develop quadriplegia.80 Notably, 
Chan et al.82 reported a case of acute flaccid mye-
litis without altered mental status secondary to 
WNV that presented similarly with poliomyelitis, 
suggesting that even without encephalitis, WNV 
may be an important differential in asymmetric 
paralysis.

Diagnosis, Treatment, and Prognosis
Diagnosis is confirmed by reverse transcription 
polymerase chain reaction (RT-PCR), cell cul-
ture, or WNV-specific IgG and IgM antibodies in 
serum or CSF. IgM antibodies are detected with 
IgM antibody-capture enzyme-linked immuno-
sorbent assay (MAC-ELISA) and may be found 
within 8 days of illness onset with persistence in 
serum for over a year.61,83 In immunocompetent 
hosts, RT-PCR may be insensitive due to the 
transient viral presence in the CSF, therefore 
serological IgM is the test of choice.84 However, it 
is important to note that in immunocompromised 
patients, the opposite approach may be more 
effective due to delayed or absent antibody 
response causing false seronegative results, and 
enhanced viral persistence in CSF allowing for 
prolonged detection by RT-PCR.85 In patients 
with neurological complications, lumbar punc-
ture often shows elevated protein levels (<150 mg/
dL) and leukocytosis (<500 cells/uL), first with 
predominantly neutrophils and later lympho-
cytes. Neuroimaging may exhibit leptomeningeal 
enhancement, parenchymal spinal cord signal 
abnormalities, periventricular inflammation, and 
focal lesions in the pons, basal ganglia, anterior 
horn, and thalami on MRI.80,86 Even though MRI 
is the most useful imaging for WNV, only 20–
70% of patients exhibit imaging abnormalities.87

Treatment is currently limited to supportive care. 
Although there have been several investigated 
therapeutic agents, there are no WNV-specific 
antiviral medications and no vaccines that are 
licensed for humans. Some therapies that have 
shown variable effectiveness against WNV include 
IVIG, interferon, and ribavirin. While human 
immunoglobulin with high titers of WNV IgG 
(Omr-IgG-am) developed by a study team in 
Israel showed promise in enhancing both 

prophylaxis and acute treatment of neuroinvasive 
WNV, a subsequent clinical trial conducted by 
the National Institute of Allergy and Infectious 
Diseases Collaborative Antiviral Study Group 
found no statistically significant difference in out-
comes between patients receiving treatment with 
high-titered anti-WNV antibody IVIG compared 
to standard IVIG or normal saline.88,89

Monoclonal antibodies (mAbs) have also emerged 
as a potential therapeutic against WNV. The 
developed mAb E16 directed against flavivirus 
surface E glycoprotein showed in vitro and in vivo 
inhibition of viral replication through blockade of 
WNV release from endosomes into the cyto-
plasm.90 Recent work has analyzed the efficacy of 
monoclonal antibodies against epitopes on enve-
lope E protein domain II (mAb WNV-86), which 
demonstrates enhanced neutralization against 
mature virions and a 50% inhibitory concentra-
tion three times lower than mAb E16.91 In 
addition, antibodies against flavivirus nonstruc-
tural protein 1 (NS1), a glycoprotein involved in 
recruitment of viral replication factors, have 
shown protection against WNV through trigger-
ing complement-mediated clearance of infected 
cells.92 Although these targeted therapies have 
shown initial effectiveness in enhancing clearance 
of WNV in animal models, there is still concern 
over effectively mitigating the risk of antibody-
dependent enhancement of infection and they 
have yet to be tested for therapeutic efficacy in 
humans.93

There are vaccines currently authorized for use in 
veterinary practice in Europe, and emerging 
research suggests that E protein-based vaccines 
may be effective.94 Prevention of the condition is 
focused on community mosquito control meas-
ures and diligent surveillance of vector popula-
tions. In the setting of increased vector mosquito 
populations, low-volume organophosphate or 
insecticide application may be indicated.86 Most 
patients with WNV have an uncomplicated recov-
ery; however, mortality among those with neu-
roinvasive disease is 10%. Survivors often present 
with permanent complications from the viral neu-
rological sequelae. Documented chronic deficits 
include neuropsychological impairment, fatigue, 
and cognitive decline even years after resolution 
of the infection.77,95 Along with chronic deficits, 
patients with WNV have elevated long-term mor-
tality risk. A cohort study assessing the outcomes 
of patients hospitalized with WNV found that 
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there was a twofold increase in mortality of these 
patients for up to 3 years after illness onset, and 
factors associated with increased mortality in 
these patients included older age, encephalitis 
during acute infection, and need for endotracheal 
intubation during hospital course.96 However, a 
2018 single-center retrospective review found 
that on long-term follow-up, most patients who 
had been hospitalized with neurological WNV 
manifestations had improved modified Rankin 
scores (improved from average scores of 3–5 dur-
ing hospitalization to 0–2), indicating that func-
tional impairment may improve over time.97 
Recent studies suggest there is an association 
between WNV and future development of neuro-
degenerative disease due to the impaired BBB 
causing persistent microglial activation and 
impaired clearance of amyloid aggregates.98

Neuroinvasive ZIKV infection

General overview
ZIKV is a mosquito-borne flavivirus. While the 
Aedes mosquito is the primary source of spread, 
ZIKV also spreads through blood, sexual encoun-
ters, and vertical transmission.99–101 The primary 
vectors are Aedes aegypti and Aedes albopictus 
mosquitoes.102 ZIKV was first detected in mon-
keys in Uganda in 1947; the first-known spread to 
humans occurred in 1952. For several decades, 
ZIKV cases were contained within Africa and Asia, 
but recent outbreaks in Micronesia (2007), French 
Polynesia (2013–2014), and most significant, 
Brazil (2015) spread the virus around the world.99 
In response to the outbreak in Brazil in 2016, the 
WHO deemed ZIKV a public health emergency of 
international concern and outlined its potential to 
spread through sexual transmission.103

Like other flaviviruses, viral glycoprotein E and 
precursor protein M are most implicated in the 
infection mechanism of ZIKV. Following endocy-
tosis, viral RNA is released into the cytoplasm 
which serves to both allow the virus to replicate 
and trigger the host cell’s innate immune 
response.99,104 The incubation period can last from 
3 to 18 days, but most infected individuals never 
develop symptoms. In those who do, symptoms 
are usually mild, such as fever, rash, conjunctivitis, 
myalgia, joint pain, fetal malaise, and headache, 
and last for 2–7 days, on average.101 However, in 
some cases, neurological complications may 
develop, including Guillain-Barré syndrome 

(GBS), neuropathy, myelitis, and ophthalmic 
abnormalities. Furthermore, the neurotropic 
potential of ZIKV has been confirmed through 
the detection of the ZIKV and anti-ZIKV anti-
bodies in the CSF of patients with neurological 
disease. Perhaps most worrisome – especially 
given the asymptomatic nature of most ZIKV 
cases – is the association of infection with sponta-
neous abortion and congenital abnormalities, 
such as microcephaly (termed ‘Congenital Zika 
Syndrome’ or CZS).101,105

Neurological complications of ZIKV
Since the Brazil outbreak of 2015, CZS resulting 
from vertical transmission has become the most 
well-known neurological manifestation of ZIKV. 
The most reported neurological signs in affected 
infants include microcephaly, hypertonicity, sei-
zures, irritability, and ophthalmologic changes, 
including optic nerve, retinal, and vision abnormali-
ties, nystagmus, and strabismus.100,106,107 A case–
control study of microcephalic infants found higher 
levels of ZIKV RNA and Zika-specific IgM anti-
bodies in the CSF and serum of cases versus non-
microcephalic infants.108 Fetal CNS anomalies were 
found to be higher in women who had confirmed 
Zika infections during pregnancy versus not.109 A 
study comparing CNS and eye defects in infants 
born in Columbia found abnormalities were more 
common during a ZIKV outbreak (from 2015 to 
2016) than in the period before and after.110 
Interestingly, prior to the Brazil outbreak, most 
studies showed only 0.3–0.5% of ZIKV-infected 
mothers gave birth to infants with microcephaly. 
However, during the epidemic, 46% of infected 
mothers had children with microcephaly, suggest-
ing that the severity of the infection evolves based on 
multiple factors.106 Mortality for infants diagnosed 
with CZS ranges 4–7%, and surviving children have 
a variety of chronic neurological impairment, such 
as hearing loss, developmental delay, and vision dif-
ficulty.111 In addition, within children of mothers 
infected with Zika that showed no anomalies at 
birth, up to 9% exhibited some neurodevelopmen-
tal delay before the age of 2 years.112

In adults, Guillain-Barré syndrome (GBS) is the 
most frequently reported neurological sequela of 
Zika infection and has been linked to several out-
breaks in different countries. It has been postulated 
that this autoimmune complication occurs second-
ary to molecular mimicry between ZIKV structural 
proteins and gangliosides, which are glycolipids 
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containing sialic acid found in the nervous sys-
tem.113 Patients who develop GBS in the context of 
Zika usually exhibit symptoms 5–10 days after the 
onset of acute illness.114 A case–control study of 
GBS patients during the ZIKV outbreak in 2013–
2014 in French Polynesia found that 100% of cases 
had Zika antibodies versus only 56% of the control 
group composed of patients presenting to the same 
hospital with a non-febrile illness.115 Similarly, 27 
out of a sample of 29 patients diagnosed with GBS 
in Brazil in 2016 were found to be Zika-positive; 
another prospective study of 71 GBS patients in 
Brazil from 2014 to 2017 found that half of the 
patients with recent evidence of an arbovirus infec-
tion had ZIKV.116,117 It has been suggested that 
individuals with Zika-associated GBS have higher 
morbidity and more severe chronic neurological 
sequlae, such as, cranial nerve palsies.118 Other 
neurological complications associated with adult 
Zika infection include encephalomyelitis, menin-
goencephalitis, transverse myelitis, encephalopa-
thy, and chronic inflammatory demyelinating 
polyneuropathy (CIDP).116,119,120

Diagnosis, treatment, and prognosis
Diagnosis of acute ZIKV is made with RT-PCR 
or nucleic acid amplification tests. However, 
since ZIKV is asymptomatic in most patients and 
often only transiently present in blood and serum 
samples, RT-PCR is not a consistently reliable 
diagnostic measure. For this reason, serology 
testing for Zika antibodies using MAC-ELISA is 
usually preferred for the detection of Zika in all 
phases. Zika IgM antibodies usually appear in the 
CSF 4–7 days after the onset of illness and persist 
for up to 12 weeks.121 In addition, Zika can be 
detected in urine and saliva, as viral shedding in 
these mediums persists longer than serum and 
can be found 7–14 days after onset of illness. It is 
important to recognize that Zika can serologically 
cross-react with other flaviviruses, which can lead 
to potential false-positive or equivocal results. For 
samples exhibiting cross-reactive results, the 
plaque reduction neutralization test (PRNT) has 
shown diagnostic utility; however, this test is 
often limited by the need for more developed 
infrastructure as it is both time- and resource-
intensive. There is still a significant need for 
accessible and inexpensive testing for Zika despite 
the major global burden of the disease it causes. 
Currently, treatment of ZIKV is supportive as 
there are no FDA-approved treatments or vac-
cines for the disease.101

Long-term outcomes: adults.  In the post-acute 
period, adults with Zika infection may continue to 
experience neurological complications. In one study 
of 34 Zika-associated GBS cases, patients with GBS 
during their acute Zika infection were more likely to 
report disability and depression after 1 year com-
pared to patients who had uncomplicated ZIKV.122 
In vitro studies of human and mouse brain tissue 
suggest that ZIKV can replicate within human and 
mouse brain cells and may lead to memory and syn-
aptic changes via virus-induced inflammation and 
disrupted neuronal–glial communication.123,124 This 
suggests that patients with a history of Zika infection 
may be at a higher risk of neurodegeneration and 
need to be monitored for clinical signs.

Long-term outcomes: children.  Recently, it has 
become clear that congenital neurodevelopmental 
complications of vertical Zika transmission may 
manifest later in development, even if infants 
appear asymptomatic at birth. A study of children 
with intrauterine Zika infection who were normo-
cephalic at birth performed worse in several neu-
rodevelopmental domains than those without 
intrauterine infection at 6-month follow-up, in 
addition to having shorter attention spans and 
longer processing times of visual stimuli.125 Data 
from the Dominican Republic outbreak found 
that children of women who had been infected 
during pregnancy developed post-natal develop-
mental abnormalities, including post-natal micro-
cephaly, hypotonia, hypertonia, hearing issues, 
and transient developmental delay.105 A 18-month 
longitudinal study of Columbian mothers with 
ZIKV during pregnancy and their infants found 
that newborns without CZS showed declines over 
time in neurodevelopmental outcomes using two 
validated assessments of infant development.126 
Hcini et  al.127 report similar findings that both 
symptomatic and asymptomatic children are at 
risk of neurodevelopmental delay at least as far as 
3 years old. A recent study analyzing neuroimag-
ing of children diagnosed with CZS at 3-year fol-
low-up revealed delayed myelination, persistent 
intracranial calcifications, ventriculomegaly, cere-
bellar hypoplasia, and cortical abnormalities on 
CT. All children included in this analysis displayed 
severe neurodevelopmental impairment.128

While the mechanism for these delayed effects is 
unclear, murine models suggest that Zika infection 
of oligodendrocytes and subsequent cell death in 
the post-natal period leads to secondary immune 
demyelination.129 It is also possible that ZIKV has 
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persistent replicating ability in the CNS, which 
could increase the risk of neurological issues in 
children with intrauterine Zika exposure.130 
Together, these data present a strong case that 
clinically normal infants at birth whose mothers 
had a known Zika infection during pregnancy 
should be closely followed for the signs of neurode-
velopmental delays years after initial diagnosis.

TBEV

General overview
TBEV is a flavivirus common in Europe and parts 
of Asia. TBEV is typically caused by one of the 
three strains: European (TBEV-Eu), Siberian 
(TBEV-Sib), and Far Eastern (TBEV-FE). 
Recent studies have also shown the emergence of 
the Baikalian (TBEV-Bkl) and the Himalayan 
(TBEV-Him) subtypes.131,132 TBE-FE is associ-
ated with the most severe disease course, while 
TBEV-Eu and TBEV-Sib have been documented 
to have a milder presentation. The virus can occa-
sionally be transmitted after the intake of unpas-
teurized milk products from viremic livestock. 
TBEV-infected ticks are likely to become more 
abundant as a result of emerging climatic changes.

Neurological complications of TBEV
The median duration of the first stage of illness is 
5 days (range 2–10) with a 7-day symptom-free 
interval to the second phase (range 1–21). In the 
first viremic stage, the virus replicates in the 
Langerhans cells of the skin, travels to draining 
lymph nodes, and causes common systemic signs 
of infection as it spreads through the blood-
stream.133 In the second stage, the virus crosses 
the BBB and replicates in the neurons of the ante-
rior horn, medulla oblongata, pons, cerebellum, 
dentate nucleus Purkinje cells, and striatum. The 
clinical spectrum ranges from mild meningitis to 
severe encephalitis with or without myelitis and 
spinal paralysis. Importantly, TBEV-Sib is associ-
ated in up to 3% of cases with a chronic, progres-
sive encephalitis that is thought to develop over 
years. A flaccid poliomyelitis-like paralysis may 
occur as well during the febrile phase of the infec-
tion, and in about 5–10% of cases, monoparesis, 
paraparesis, and tetraparesis can develop, and 
paralysis of respiratory muscles. Some patients 
also present with an asymmetrical cranial nerve 
dysfunction predominantly affecting the ocular, 
facial, pharyngeal, and vestibular nerves.134 It has 

also been suggested that individuals experiencing 
monophasic rather than typical biphasic presenta-
tion have a more severe course of disease.135

Diagnosis, treatment, and prognosis
Diagnosis is established by clinical presentation 
suggestive of meningeal involvement, elevated cell 
counts in the CSF, and positive serological test-
ing. Positive serum TBEV-IgM typically is posi-
tive in diagnosis, with intrathecal IgM and IgG 
antibody response detectable in CSF, but several 
days later than in serum. Enzyme immunoassays 
are usually used for specific serodiagnosis. 
Neuropathological findings of this include diffuse 
lymphocytic and neutrophilic infiltrates within the 
meninges, and gray matter lesions are made up of 
lymphocytes, glial cells, and necrotic nerve cells.136

No specific treatment for tick-borne encephalitis 
exists, though some patients have been responsive 
to steroids and intravenous immunoglobulin. 
Vaccination against TBE with the European 
vaccines is recommended for all age groups 
above 1 year in the highly endemic areas (⩾ 5 
cases/100,000/year) and for individuals at risk in 
areas with a lower incidence.137 Travelers to 
endemic areas should be vaccinated if their visits 
will include extensive outdoor activities. Other pre-
ventive techniques include general tick avoidance, 
protective clothing, and pasteurization of milk.

The prognosis of TBEV is linked to the severity of 
the acute phase of the infection, as individuals with 
more severe symptoms have been shown to have a 
protracted recovery period. In addition, data have 
shown that up to 40–50% of patients with TBE 
develop a post-encephalitic syndrome involving 
deficits in cognition, psychiatric complaints, head-
ache, hearing loss, and vision changes.138

DENV

General overview
DENV is one of the most common Aedes mos-
quito-borne viruses worldwide, particularly in 
tropical and subtropical regions, and is responsi-
ble for an estimated 390 million infections yearly 
– nearly 100 million of which are symptomatic.4,139 
There are four known serotypes, DENV-1 
through DENV-4; while infection with one sero-
type provides lifetime protection against re-infec-
tion of that serotype, it provides only mild and 
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temporary protection against infection with other 
serotypes. In fact, secondary infection with a dif-
ferent serotype is associated with more severe dis-
ease.4 DENV has spread from just nine countries 
in 1970 to over 100 today, with the highest bur-
den in Asia. While Europe has not seen a DENV 
epidemic, cases are now seen regularly, and an 
epidemic is now considered a possibility.139

The disease spectrum of DENV can vary widely, 
from subclinical to severe dengue characterized 
by acute capillary leakage, thrombocytopenia, 
and hemorrhage leading to hypovolemic shock 
and organ failure.4,140 Symptomatic cases com-
monly present first with acute onset of fever with 
headache, retroorbital pain, rash, myalgia and 
arthralgia, anorexia, abdominal pain, and nausea. 
As of 2009, the WHO classifies DENV infection 
in three ways: dengue (1) with or (2) without 
warning signs and (3) severe dengue. Warning 
signs include abdominal pain or tenderness, per-
sistent vomiting, clinical fluid accumulation, 
mucosal bleeding, lethargy, liver enlargement of 
greater than 2 cm, and increasing hematocrit with 
rapid and simultaneously decreasing platelets.140 
Severe dengue is defined as severe plasma leak-
age, severe bleeding, or severe organ involve-
ment.140 It is associated with secondary DENV 
infection with a different serotype and time 
between infections is associated with increased 
disease severity.4,141 If untreated, severe dengue 
has a mortality of up to 20%.141

Neurotropism and neurological manifestations 
of DENV
DENV was initially considered to be non-neuro-
tropic, and neurological sequelae of DENV  
infection were attributed to systemic, immune-
mediated, or metabolic complications. In recent 
decades, an increasing body of evidence, includ-
ing the presence of virions within the CSF, sug-
gests that DENV can invade the nervous system, 
most likely hematogenously via the BBB.142 
Infection with DENV has been implicated as the 
cause of encephalitis and encephalopathy in 
patients from an endemic region, without evi-
dence of other viruses.143 Genomic comparison of 
serologic and CSF samples of DENV patients 
with neurologic manifestations showed 99.7% 
similarity, further suggestive of the ability of the 
virus to cross the BBB.144 In particular, serotypes 
DENV-2 and DENV-3 are most commonly asso-
ciated with neurologic manifestations.144

The most common neurological manifestations of 
DENV infection are encephalitis and encephalopa-
thy. DENV-associated encephalopathy, which is 
often seen in the cases of severe dengue, has a 50% 
mortality rate.145 Other CNS complications include 
meningitis, stroke, cerebellar syndrome, transverse 
myelitis, and acute disseminated encephalomyelitis, 
and cerebellitis.146–149 Ophthalmologic complica-
tions have also been widely reported in association 
with DENV infection, including retinopathy, mac-
ulopathy, and choroiditis.150–153

DENV virus in children can manifest differently 
than adults. Children under the age of 1 year and 
between 4 and 9 years of age are at the highest risk 
of developing severe dengue. Mortality ranges 
2.5–5% but can be as high as 44% if disease 
advances to shock.145 Neurological manifestations 
reported in children include acute disseminated 
encephalomyelitis (ADEM), hepatic encephalop-
athy, parkinsonism, epilepsy, transverse myelitis, 
subarachnoid hemorrhage, and stroke.145

Diagnosis, treatment, and prognosis
DENV has an incubation period of 2–7 days fol-
lowed by a symptomatic period of 4–10 days. 
Diagnosis via RT-PCR or viral NS1 protein lev-
els is most useful during the febrile phase of infec-
tion. Rapid NS1 tests are commercially available 
and are particularly useful in endemic regions.139 
However, ELISA for dengue-specific antibodies 
is the preferred method for definitive diagnosis; 
IgM levels are detectable within 1 week and are at 
their highest levels 2–4 weeks following infec-
tion.141 In primary infections, IgG antibodies typ-
ically appear around day 10 of infection but will 
rise rapidly within the first week in the setting of 
secondary infection.139 Because DENV and JEV 
are common in similar regions and the virions are 
serologically cross-reactive, DENV encephalitis 
can be difficult to distinguish clinically from JEV 
and careful evaluation is the key.154

To date, no specific treatment for DENV infec-
tion exists. Severe dengue and hypovolemic shock 
must be managed carefully with intravenous 
rehydration. For milder symptoms, acetami-
nophen and paracetamol are recommended while 
NSAIDS should be avoided due to the risk of 
hemorrhage associated with DENV infection.139

Effective and safe vaccine development for dengue 
has proved challenging. To date, one live-attenuated 
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recombinant tetravalent vaccine, CYD-TVD 
(Dengvaxia, manufacturer: Sanofi Pasteur) is com-
mercially available. However, it has been associated 
with an increased risk of severe dengue if the first 
natural infection of DENV comes after vaccination 
and is only recommended for those with a confirmed 
previous infection of DENV.139,155,156

Conclusion
Neurotropic infectious diseases are a growing con-
cern to the global population, with significant 
associated morbidity and mortality. Ongoing envi-
ronmental changes are increasing the population’s 
susceptibility to emerging and re-emerging flavivi-
ruses. Enhancing early detection of neuroinvasive 
infections, optimizing prevention strategies and 
public health surveillance systems in the years 
ahead will be critical to decrease the impact of 
neurotropic infectious diseases.
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