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A B S T R A C T

Objective: Chondrocyte viability (CV) can be measured with the label-free method using second harmonic gen-
eration (SHG) and two-photon excitation autofluorescence (TPAF) imaging. To automate the image processing for
the label-free CV measurement, we previously demonstrated a two-step deep-learning method: Step 1 used a U-
Net to segment the lacuna area on SHG images; Step 2 used dual CNN networks to count live cells and the total
number of cells in extracted cell clusters from TPAF images. This study aims to develop one-step deep learning
methods to improve the efficiency of CV measurement.
Method: TPAF/SHG images were acquired simultaneously on cartilage samples from rats and pigs using two-
photon microscopes and were merged to form RGB color images with red, green, and blue channels assigned
to emission bands of oxidized flavoproteins, reduced forms of nicotinamide adenine dinucleotide, and SHG sig-
nals, respectively. Based on the Mask R-CNN, we designed a deep learning network and its denoising version
using Wiener deconvolution for CV measurement.
Results: Using training and test datasets from rat and porcine cartilage, we have demonstrated that Mask R-CNN-
based networks can segment and classify individual cells with a single-step processing flow. The absolute error
(difference between the measured and the ground-truth CV) of the CV measurement using the Mask R-CNN with
or without Wiener deconvolution denoising reaches 0.01 or 0.08, respectively; the error of the previous CV
networks is 0.18, significantly larger than that of the Mask R-CNN methods.
Conclusions: Mask R-CNN-based deep-learning networks improve efficiency and accuracy of the label-free CV
measurement.
1. Introduction

Articular cartilage provides a smooth, lubricated surface to reduce
shear and distribute loads during movement to protect underlying bone.
This function is facilitated by a complex and well-organized extracellular
matrix (ECM) maintained by chondrocytes [1,2]. Though they occupy a
small percentage of cartilage, chondrocytes are critical in maintaining a
balance between anabolism and catabolism of matrix constituents such as
water, proteoglycans (PGs), and collagens. A disturbance to this balance
can cause osteoarthritis (OA), the most common joint disease affecting an
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estimated 10% of men and 18% of women over 60 years of age world-
wide [3]. Chondrocyte viability (CV), the fraction of viable chondrocytes
in cartilage tissue, is an essential quantitative measure to evaluate
cartilage injury [4,5], degeneration [6,7], and repair [8,9]. The CV of
osteochondral allografts at the time of implantation is also an important
factor that affects the long-term allograft survival rate [10–12]. Methods
to measure CV primarily rely on individually labeling and counting cells
through the introduction of dyes [13–15]. However, due to the potential
cytotoxicity, dye-labeling does not allow measuring CV in in vivo appli-
cations, longitudinal studies, or allografts to be placed in patients.
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Autofluorescence of intracellular fluorescent coenzymes, such as
reduced forms of nicotinamide adenine dinucleotide (NADH) or nico-
tinamide adenine dinucleotide phosphate (NADPH) and oxidized flavo-
proteins (FPs) [16], have been long used as a label-free means to study
metabolic states of cells [17,18]. Previous studies found that intensities
of NAD(P)H and FP emission underwent significant variation when cells
were transitioning from viable to nonviable states [19–21]. Using
two-photon excitation and freshly excised cartilage tissues from rat
tibias, our studies [22] showed that live chondrocytes exhibited higher
autofluorescence intensity from NAD(P)H than dead chondrocytes did.
This observation suggested a label-free viability assay, in which live
chondrocytes were identified with their bright and green color when
images from NAD(P)H and FPs channels were merged and assigned with
green and red pseudo colors, respectively. Both sensitivity and specificity
of our label-free viability assay exceeded 90% in imaging cartilage on
intact rat tibias [22].

Similar to the dye-labeling assay, our label-free viability assay needs
to count live and dead cells individually to calculate CV once every cell is
classified. The entire process of CV measurement requires human
participation, and the analysis throughput is low as a result. Ideally,
automated CV analysis needs to segment individual cells on TPAF images
and classify each segmented cell as either live or dead based on
appearance. However, individual cell segmentation is difficult because
both cell and the ECM regions give out comparable levels of signals, and
multiple chondrocytes are often nested in the lacuna, leaving a little gap
between cells. As such, we previously proposed [23] (pCV-Nets) a
strategy to avoid the requirement of individual cell segmentation using
the following two-step cell cluster segmentation and classification: 1)
utilizing SHG images to generate masks for lacunae, and 2) using the
generated masks to extract cell clusters on TPAF images for classification.
We used a U-Net model to segment chondrocyte clusters and two inde-
pendent convolutional neural networks (CNNs) to identify the number of
live or the total number of cells in each cluster. CV was determined by
summing up the number of live and all cells while going over every
cluster. Although a high accuracy was achieved in the viability analysis,
the proposed method had an obvious disadvantage: three separate net-
works required three training data sets, causing high workload and
computing costs. To improve the efficiency of CV measurement, this
study aims to develop a single deep-learning network for individual
chondrocyte segmentation and classification to improve efficiency and
accuracy of the CV measurement.

Mask R-CNN [24] has been recently developed for instance segmen-
tation that includes both segmentation and classification in a single ar-
chitecture. The ROI Align technique and Fully Convolutional Network
(FCN) [25] provide a pixel-level accuracy in segmentation and classifi-
cation, suitable for microscopic image processing, where image contrast
and the number of pixels covering a cell are both limited. In this study,
we hypothesize that the Mask R-CNN architecture can provide a higher
efficiency and maintains a high accuracy in the label-free CV measure-
ment compared with the previous networks. For simplicity, we will use
“previous CV networks” or pCV-Nets to indicate the previously developed
multi-network deep learning method for CV analysis.

2. Materials and methods

2.1. Sample preparation

Rat and porcine cartilage samples were used in this study. Images of
rat cartilage samples were acquired by a commercial two-photon mi-
croscope in the previous study [23]. Images of porcine cartilage were
acquired specifically for this study on samples harvested from ten hind
knee joints from adult Yorkshire pigs obtained from a local meat pro-
cessing company. Muscles were stripped away from the joint, and the
joint cavity was opened to reveal the articular cartilage surface. An
average of 8 cartilage punches per plateau was harvested from tibia
plateaus using 5 mm (ID) sample corers (18035-05, Fine Science Tools)
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and were stored in Dulbecco's phosphate-buffered saline (DPBS, Corning)
at 25 �C. To generate samples with a spectrum of CVs, 60 cartilage
punches with no damage on surface (examined under our homebuilt
two-photon microscope) were selected and randomly divided them into 4
groups with 15 samples/group: 1) the fresh sample group, which was
imaged right after harvesting; 2) the 4 �C group, in which samples were
kept in Dulbecco's phosphate-buffered saline (DPBS, Corning) at 4 �C
in a refrigerator; 3) the cultured group, of which samples were
cultured in mixed culture medium (DMEM w/Sodium Pyruvate,
Penicillin-Streptomycin, Non-essential amino acids, and Fetal Bovine
Serum) at 37 �C in a VWR CO2 incubator (10810-944, VWR Air Jacketed
CO2 incubator) for 3 days; and 4) the frozen group, of which samples
were frozen in Dulbecco's phosphate-buffered saline (DPBS, Corning)
solution at �20 �C. All four sample groups were put in Petri dishes or
3D-printed sample holders and submerged in DPBS for imaging.

2.2. Label-free CV assay and TPAF/SHG imaging

As demonstrated previously [22], TPAF/SHG images were acquired
and merged to form three-channel RGB pseudo-colored images by
assigning red, green, and blue colors to FPs, NAD(P)H, and collagen
channels, respectively. Bright, green chondrocytes were visually identi-
fied as live cells, while dim, red ones were dead cells. This assay is
label-free and forms the basis for the automated CV measurement
methods developed here.

In this study, rat samples were imaged by a commercial multi-
photon laser scanning microscope (FV1200 inverted, Olympus Cor-
poration, Tokyo, Japan) in the previous study [23] when our
homebuilt microscope was under construction. The details of the mi-
croscope setting can be found elsewhere [22]. Briefly, a 30�, NA 1.05
silicone-oil immersion objective lens (UPLSAPO 30x, Olympus) was
used to acquire images with a size of 1024 � 1024 pixels and a field of
view (FOV) of 423 μm � 423 μm. A stack of 50 slices was acquired to
cover a thickness of 50 μm of the cartilage tissue. TPAF and SHG
imaging stacks were combined to form three-channel stacks using
ImageJ (FIJI) [26] for viability analysis. An example of such a set of
TPAF and SHG images is shown in Fig. 1(A)–(D).

The porcine samples were imaged by the home-built multi-channel
two-photon microscope equipped with an ultrafast Ti:Sapphire laser
(Chameleon Ultra II, Coherent Inc.), two GaAsP PMTs (PMT2101,
Thorlabs), and one Multialkali (PMTSS, Thorlabs). The system was
designed with a focus on label-free imaging and was described previously
elsewhere [27]. This microscope allowed us to acquire images on all
three channels (NAD(P)H, FPs, and SHG) simultaneously with a single
excitation wavelength at 740 nm. Laser power was adjusted between
30–50 mW (measured at the exit pupil of the imaging objective) ac-
cording to the image contrast. The transmission bands of the bandpass
filters were 421–463 nm (NAD[P]H), 572–642 nm (FPs), and 352–388
nm (SHG). The imaging objective was a 16�, NA 0.8, long working
distance water dipping lens (CFI75 LWD 16X W, Nikon). Typically, at
each location, an image stack containing more than 30 slices with a step
size of 2 μm was acquired from the surface to deeper layers of a sample.
Each image has a size of 512 � 512 pixels or a FOV of 150 μm � 150 μm.
TPAF and SHG imaging stacks were merged to form three-channel stacks
using ImageJ (FIJI) [26] for further analysis. A set of TPAF and SHG
example images is shown in Fig. 1(E)–(H).

2.3. Deep-learning CV analysis using previously developed multiple
networks (pCV-Nets)

In our previously proposed CV measurement strategy (pCV-Nets), we
used a U-Net plus Watershed method to find the masks for lacunae and
two CNN networks to determine the total number of cells and the number
of live cells in each cell cluster extracted from the TPAF image. Every
CNN network classified each cell cluster into five categories according to
the number of live cells or the total number of cells. The five categories



Fig. 1. Typical label-free images acquired by two-photon microscopes from rat and porcine cartilage tissues. The top (A–D) and bottom (E–H) rows are images
acquired from rat and porcine cartilage, respectively. The blue, green, and red colors are assigned to SHG, NAD(P)H, and FPs channels. (D) and (H) are merged RGB
images. Red arrows indicate dead cells, whereas green arrows indicate living cells. Scale bar: 20 μm.
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were specified by 0–3, and 4 or more cells in a cluster, respectively. Three
networks required three training data sets. The details of building all
three networks were described elsewhere [23]. Once the total number of
cells and the number of live cells in each cluster were determined, the CV
was calculated by the following equation,

CV ¼
PN
i¼1

NðiÞ
Live

PN
i¼1

NðiÞ
Total

(1)

where NLive and NTotal refer to the number of live cells and the total
number of cells in the i-th cell cluster;N is the total number of cell clusters
segmented in a measured (imaged) area.

In this study, we implemented pCV-Nets only on rat images. The
training dataset contained over 300 1024 � 1024 8-bit RGB images ac-
quired previously from rat cartilage samples. Half of images in this
training dataset was used to train U-Net (segmentation only) model in the
previous study [23]; thus, we did not retrain the U-Net model for this
study. The two CNN-based classification models were retrained based on
the segmentation results. Additionally, a test dataset containing 120,
8-bit RGB 3-channel, 1024� 1024 images acquired in the previous study
was used to compare the performance between the pCV-Nets and Mask
R-CNN based networks.
2.4. Deep-learning viability analysis using mask R-CNN architecture

Mask R-CNN [24,28] has been recently developed to significantly
improve the accuracy of instance segmentation, which recognizes in-
stances of objects and finds their boundaries at the pixel level in an
image, and has quickly become an industry standard within several years.
Adopting Mask R-CNN architecture, we developed a specific network
called Mask R-CNN Chondrocyte Viability Network (MCV-Net) for
measuring the CV via analyzing label-free images. MCV-Net outputs not
only binary masks for each individual chondrocyte but also live or dead
classification results for each cell. The output information is sufficient for
calculating the CV of each imaged region.

Quantum yields of NAD(P)H and FPs are inherently low, resulting in
low contrasts of TPAF images and potentially affecting the accuracy of
3

the viability analysis. To address this concern, we added the Wiener
deconvolution [29], a widely used noise deduction method, in the pre-
processing before MCV-Net and developed Wiener deconvolution
MCV-Net (wMCV-Net). TheWiener deconvolution algorithm is described
in detail in Supplementary Methods. Fig. 2 summarizes the major com-
ponents of MCV-Net or wMCV-Net. (W)MCV-Net is implemented in two
consecutive stages. In Stage 1, ResNet-50 and Region Proposal Network
(RPN) equipped with deformable convolutions (DC) are implemented to
efficiently create feature maps with a set of regions of interest (ROIs)
from an input image. RPN-DC enhances the MCV-Net's ability to recog-
nize chondrocytes in various sizes, shapes, and orientations. In Stage 2,
the ROI Align layer first extracts fixed-size feature maps for all candidate
chondrocytes proposed by Stage 1. Then, using the fixed-size feature
maps produced by ROI Align, Fully Convolutional Network (FCN) [25]
generates the bounding boxes encapsulating single cells and Fully Con-
volutional Layer (FCL) classifies each bounding box as live or dead cell as
well as a mask that defines the cell region. Mask R-CNN replaces con-
ventional ROI pooling with ROI Align, employing bilinear interpolation
to protect the high-resolution features located at the cell border. Skip
connections [30] are added between the convolutional layers in (w)
MCV-Net to maintain the accuracy of the cell mask generation in pro-
cessing images containing cells with a large variation in size, shape, or
type. Various data augmentation, such as random cropping, rotation,
flipping, and scaling, are applied to the training data to expand data
volume and to diversify data distribution, which further enhances the
adaptability of (w)MCV-Net.

The matplotlib 3.3, CUDA toolkit 10.2, Pytorch 1.8, and Torchvision
0.9 were used to implement the Mask-R-CNN model. On a specialized
computer with an Intel i9-7920x CPU and an EVGA GeForce GTX 3080Ti
GDDR6X graphics card, the training process took around 3 h. The CV was
calculated simply by dividing the number of live cells by the total number
of cells. The code will be available from the corresponding author upon
request.

Models were trained and tested within species; for example, a model
trained with rat images were not used for porcine images. For training rat
or porcine models individually, training datasets were built by manually
annotating chondrocytes in rat or porcine images as described in Sup-
plementary Methods. The rat training dataset was the same as the one
used for training the pCV-Nets. For the evaluation of the network



Fig. 2. The architectural diagram of MCV-Net or wMCV-Net for determining chondrocyte boundary and live or dead classes. Wiener deconvolution is an optional
preprocessing for noise reduction before the network input. ResNet-50: residual network with a 50-layer convolutional neural network; RPN-DC: region proposal
network with deformable convolution; FPN: feature pyramid network; FCL: fully connected layers; ROI: region of interest.
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performance, we built a test dataset for samples from each species. The
rat test dataset was the same as the one used for the pCV-Nets. The
porcine test set consisted of 120, 8-bit RGB 3-channel, 512 � 512 images
selected from 50 individual image stacks (typically 30–50 images/stack)
acquired from different tibia cartilage samples. All images in the test
dataset were annotated with LabelMe [31]. The live/dead cell status of
each cell was validated by dye-labeling assay, as shown in Supplementary
Methods.

2.5. Performance evaluation of the CV measurement methods and
statistical analysis

The performance evaluation of the CV measurement methods
included two aspects: the performance of networks and the error of the
CV measurement. For evaluating the performance of networks, we
adopted a standard set of evaluation metrics (precision, recall, and F1
score) commonly used in instance segmentation. Their definitions are as
follows.

precision ¼ True positive
True positiveþ False positive

(2)

recall ¼ True positive
True positiveþ False negative

(3)

F1 ¼ 2*
precision*recall
precisionþ recall

(4)

In the above equations, true-positive, false-positive, and false-
negative indicate the number of masks falling in each category and
were determined differently when we compared the performance be-
tween pCV-Nets and (w)MCV-Net. For pCV-Nets, the evaluation was
done by going over every cell cluster segmented by the U-Net. True
positive was only assigned to those clusters that correctly predicted the
number of live and all cells according to the ground truth; otherwise,
false positive was assigned. The false negative was assigned to cell
clusters where the algorithm failed to detect existing cells. For (w)MCV-
Net, the evaluation was done by studying the intersection over union
(IoU) of every mask of each class (dead or live cells). IoU is a measure to
quantify the intersection area between a predicted mask and a ground
truth mask. The threshold of IoU was used to determine if a prediction
was correct. A mask was defined as a true positive if its IoU is equal to or
larger than 0.5 and otherwise as a false positive. A false negative was an
4

undetected mask. Precision reflects the fraction of correct predictions
among all detectedmasks, while recall (also known as sensitivity) reflects
the fraction of correct predictions among all masks in the ground truth.
By calculating the harmonic mean of a classifier's precision and recall, the
F1-score [32] is a single value for reflecting the overall performance.

Ultimately, we use the mean average precision (mAP) and mean
average recall (mAR) [32,33] across classes to evaluate the performance
of networks using the following equations:

mAP¼ 1
N

XN
i¼1

mAPi (5)

mAR¼ 1
N

XN
i¼1

mARi (6)

wheremAPi andmARj are themeanaverage precisionand themeanaverage
recall of the ith class, respectively, and N is the total number of classes. In
pCV-Nets, only one class was needed to include themask for cell clusters. In
(w)MCV-Net, two classes (live and dead) of masks were detected. For each
class, AP is definedas the areaunder the precision-recall curve (PR curve) at
a threshold value of IoU. While the IoU threshold is adjusted from 0.5 to
0.95with an increment of 0.05, 10APs, known as AP@[0.5:0.05:0.95], can
be found and their average value is defined asmAP of a class. ThefinalmAP
is calculated by averaging through all classes.

The error of the CV measurement was evaluated using the absolute
error (AE) for each analyzed image and the mean absolute error (MAE)
for an average over the number of test images. Additionally, the root
mean square error (RMSE) was used to reflect the confidence of a
measured CV. AE, MAE, and RMSE are defined as follows:

AEi ¼
��CVi

G � CVi
P

�� (7)

MAE ¼ 1
N

XN
i¼1

AEi (8)

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i¼1

�
CVi

G � CVi
P

�2

N

vuuut
(9)

where CVi
G and CVi

P are the ground truth and predicted CV for the i-th
image, respectively; N is the number of images in a test data set.
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We conducted a one-way analysis of variance (ANOVA) [34] using
Kruskal–Wallis and Friedman tests as well as paired t tests. The pro-
cessing group of the pig model (MCV-Net or wMCV-Net) was evaluated
using the paired t tests [35]. The processing group (pCV-Nets, MCV-Net,
and wMCV-Net) of the rat model served as the independent variables in
one-way analyses of variance (ANOVA) with Kruskal–Wallis and Fried-
man tests. The dependent variables were accuracy, and Pearson's corre-
lation coefficient and p-values of less than 0.05 were regarded as
statistically significant in all situations. GraphPad 9 (GraphPad Software,
Inc.) was used to perform statistical analysis.

3. Results

3.1. Performance of instance segmentation at the single-cell level

Representative segmentation results for rat and porcine images with
their ground truth are shown in Fig. 3(A)–(F). The initial visual assess-
ment shows that both MCV-Net and wMCV-Net can predict masks and
cell classification; wMCV-Net seems to perform a little better with fewer
missed or wrongly identified cells, and masks trace the cell edge more
accurately. For quantitative assessment, we calculated mAP, mAR, and
F1 score for each test image and performed statistical analysis of the
outcome from 120 test images of each species. The F1 score was calcu-
lated using averaged mAP and mAR for each species. The statistical
analysis is summarized in Fig. 4(A) and Table 1. The mAP, mAR, and F1
score of MCV-Net and wMCV-Net for either species exceed 0.9 except for
mAP and F1 scores of the porcine test dataset using MCV-Net. This
demonstrates Mask R-CNN based methods exhibit high performance in
chondrocyte segmentation and classification. Further analysis shows that
the noise reduction with Wiener deconvolution significantly improves
the segmentation performance (p < 0.001). mAP- and mAR-IoU curves
shown in Fig. 4(B) and (C) provide more evidence of the benefit of noise
reduction. Both mAP- andmAR-IoU curves of wMCV-Net are broader and
Fig. 3. Example RGB images used for annotation, training, and viability analysis for
the rat and porcine cartilage images, respectively. Red and green dotted circles enclos
segmentation and classification using MCV-Net, while (C) and (F) are the results u
chondrocytes, respectively. Red arrows indicate missed or incorrect cell classification
arrows mark the ground truth for those cells pointed with red or green arrows.
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taller than those of MCV-Net in either species. Table 1 summarizes the
statistical analysis.

3.2. Performance comparison of the networks for CV measurement

The goal of this study is to test if Mask R-CNN based CV networks
(MCV-Net and wMCV-Net) could provide at least the same performance
as the previous CV networks (pCV-Nets) for CV measurement. For this
purpose, we used the test datasets from rats to compare the accuracy of
the CV measurement among the output of three above-mentioned net-
works. As shown in Fig. 5, there is a significant difference among the
MAEs of pCV-Nets, MCV-Net, and wMCV-Net (p � 0.001). MCV-Net is
significantly better than pCV-Nets. The results also demonstrate that
noise reduction with Wiener deconvolution effectively improves the ac-
curacy in CV measurement.

4. Discussion

In this report, we demonstrate a deep learning approach with
improved efficiency for cell segmentation and classification using Mask
R-CNN based networks (MCV-Net and wMCV-Net) for label-free CV
measurement. (W)MCV-Net has two significant improvements over the
previously proposed method [23] (pCV-Nets). Firstly, pCV-Nets use
separate networks for segmentation and classification; each network
needs its own training and test data sets, which increases the workload of
both annotation and training. (W)MCV-Net is a single integrated archi-
tecture that can identify individual cells and, at the same time, classify
them with live or dead status. This integrated architecture only needs a
single annotated training and test dataset, making the training and
viability analysis more efficient. Secondly, (w)MCV-Net performs instant
pixel-level segmentation, which identifies each chondrocyte as a distinct
object with the category that it belongs to and the boundary that sepa-
rates it from the rest of the pixels in an image. In comparison, pCV-Nets
rat and porcine cartilage samples. (A) and (D) are the annotated ground truth of
e the dead and live chondrocytes, respectively. (B) and (E) are the results of cell
sing wMCV-Net. Red and green solid circles are boundaries of dead and live
, while green arrows represent the correct classification. For comparison, white



Fig. 4. Comparison of instance segmentation accuracies achieved by MCV-Net and wMCV-Net on rat and porcine cartilage samples. (A) mAP, mAR, and F1 scores with
IoU threshold equal to 0.5. (B), (C) MAP-IoU and mAR-IoU curves of MCV-Net and wMCV-Net using specialized data (n ¼ 240 test images, 120 for rat and porcine
cartilage images individually). The IoU threshold measures the degree to which a predicted mask matches a ground-truth mask; a value of 1 denotes a pixel-perfect
match, while a value of 0.5 denotes the proportion of successfully matched pixels to missed and false positive pixels. **: p-value < 0.01; ***: p-value < 0.001.

Table 1
Performance evaluation of different CV networks with images acquired from
samples of different animals.

Networks
(Species)

mAP mAR F1 MAE RMSE

pCV-Net (Rat) 0.84 � 0.07 0.85 � 0.09 0.84 0.14 � 0.06 0.34
MCV-Net (Rat) 0.91 � 0.04 0.94 � 0.03 0.92 0.08 � 0.05 0.25
wMCV-Net
(Rat)

0.94 � 0.02 0.96 � 0.03 0.95 0.01 � 0.02 0.14

MCV-Net
(Porcine)

0.87 � 0.05 0.90 � 0.04 0.88 0.06 � 0.05 0.28

wMCV-Net
(Porcine)

0.95 � 0.02 0.96 � 0.02 0.95 0.02 � 0.02 0.10

Fig. 5. Absolute errors of CV measurement using pCV-Net, MCV-Net, and
wMCV-Net only with rat samples. ****: p-value < 0.0001.
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perform semantic segmentation, which only outputs masks for cell
clusters (multiple cells) but not individual cells. In addition, using the
same testing data sets from rat samples, we also demonstrate that (w)
MCV-Net provides significantly higher performance on recognizing in-
dividual cells and their categories than pCV-Nets. (W)MCV-Net shows
higher mAP, mAR, and F1 scores, as seen in Table 1, leading to higher
accuracy in CV measurement.

Cell counting, as it is in the CV measurement, generally requires
instance segmentation though pixel-level segmentation is not necessarily
required. When we started the deep learning CV measurement project,
6

available algorithms of instance segmentation did not perform well. The
difficulties came from two aspects: the low image contrast associated
with TPAF imaging and the limitation of algorithms before Mask R-CNN
was published. As such, we developed pCV-Nets to get around the diffi-
cult task of instance segmentation. PCV-Nets utilize the relatively better
contrast of SHG images to segment the region of lacunae and use the
generated lacuna masks to extract cells on TPAF images for the CV
analysis. Since each lacuna may contain multiple cells, the classification
in pCV-Nets focuses on identifying the total or live cell numbers in each
lacuna. Although this strategy is effective for CV analysis, further single-
cell-based analysis is difficult.

(W)MCV-Net is a pixel-level instance segmentation method, which
requires a pixel-level annotation for training and a relatively complicated
architecture for finding the model. The improved efficiency and accuracy
come with increased expense of annotation and training. For the CV
measurements, (w)MCV-Net is perhaps an “overkill.” However, it is
worthwhile to have such a network that can provide pixel-level seg-
mentation of chondrocytes for further cell-based analysis. Other than
viability, classifications based on other features, for example, morpho-
logical features, are well suited for (w)MCV-Net. One advantage of the
deep learning approach is its capability of automated feature extraction,
effectively recognizing subtle morphological differences between cate-
gories. For example, morphological changes of chondrocytes may be used
to associate with the stage of cartilage degeneration [36,37].

5. Conclusion

In this article, utilizing the Mask R-CNN architecture, we successfully
demonstrate a new integrated network, (w)MCV-Net, which provides
improved efficiency and accuracy of the label-free CV measurement than
previously developed networks. The instance segmentation allows
further quantitative cell-based analysis beyond the assessment of CV. An
integrated imaging-CV measurement workflow is possible to be imple-
mented with proper training, which may provide real-time, in situ CV
measure of the cartilage. (W)MCV-Net is also possible to perform the cell
viability measurement with other cell or tissue types though either re-
training or transfer-learning is necessary.
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