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Parkinson’s disease (PD) is a common, progressive neurodegenerative disease, which 
typically presents itself with a range of motor symptoms, like resting tremor, bradykinesia, 
and rigidity, but also non-motor symptoms such as fatigue, constipation, and sleep dis-
turbance. Neuropathologically, PD is characterized by loss of dopaminergic cells in the 
substantia nigra pars compacta (SNpc) and Lewy bodies, neuronal inclusions containing 
α-synuclein (α-syn). Mutations and copy number variations of SNCA, the gene encoding 
α-syn, are linked to familial PD and common SNCA gene variants are associated to 
idiopathic PD. Large-scale genome-wide association studies have identified risk variants 
across another 40 loci associated to idiopathic PD. These risk variants do not, however, 
explain all the genetic contribution to idiopathic PD. The rat Vra1 locus has been linked 
to neuroprotection after nerve- and brain injury in rats. Vra1 includes the glutathione 
S-transferase alpha 4 (Gsta4) gene, which encodes a protein involved in clearing lipid 
peroxidation by-products. The DA.VRA1 congenic rat strain, carrying PVG alleles in Vra1 
on a DA strain background, was recently reported to express higher levels of Gsta4 
transcripts and to display partial neuroprotection of SNpc dopaminergic neurons in a 
6-hydroxydopamine (6-OHDA) induced model for PD. Since α-syn expression increases 
the risk for PD in a dose-dependent manner, we assessed the neuroprotective effects 
of Vra1 in an α-syn-induced PD model. Human wild-type α-syn was overexpressed by 
unilateral injections of the rAAV6-α-syn vector in the SNpc of DA and DA.VRA1 congenic 
rats. Gsta4 gene expression levels were significantly higher in the striatum and mid-
brain of DA.VRA1 compared to DA rats at 3 weeks post surgery, in both the ipsilateral 
and contralateral sides. At 8 weeks post surgery, DA.VRA1 rats suffered significantly 
lower fiber loss in the striatum and lower loss of dopaminergic neurons in the SNpc 
compared to DA. Immunofluorescent stainings showed co-expression of Gsta4 with 
Gfap at 8 weeks suggesting that astrocytic expression of Gsta4 underlies Vra1-mediated 
neuroprotection to α-syn induced pathology. This is the second PD model in which 
Vra1 is linked to protection of the nigrostriatal pathway, solidifying Gsta4 as a potential 
therapeutic target in PD.

Keywords: Parkinson’s disease, α-synuclein, dopaminergic neurons, neuroprotection, glutathione S-transferase 
alpha 4, Vra1
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inTrODUcTiOn

Parkinson’s disease (PD) is a progressive neurodegenerative 
disease characterized by loss of dopaminergic neurons in the 
substantia nigra pars compacta (SNpc) resulting in a range of 
motor and non-motor symptoms. One of the pathological hall-
marks of PD is the accumulation of α-synuclein (α-syn) protein, 
which is abundant in neuronal inclusions termed Lewy bodies 
and Lewy neurites (1). About 10% of PD cases are familial, and so 
far, mutations in seven genes have been linked to PD with a reces-
sive or dominant inheritance pattern (2). The remaining 90% are 
classified as idiopathic PD with a complex etiology, meaning that 
both genetic and environmental factors contribute to the disease 
(3, 4). So far, 41 PD risk loci have been confirmed as associated to 
idiopathic PD (5, 6). There is, however, still a substantial missing 
heritability, i.e., undiscovered genetic risk factors contributing to 
PD etiology.

The Vra1 region on rat chromosome 8 was linked to neu-
roprotection after ventral root avulsion (VRA) was performed 
in an intercross between the inbred Dark Agouti (DA) and 
Piebald Virol Glaxo (PVG.1AV1) rat strains (7). The congenic 
DA.VRA1 strain, carrying PVG.1AV1 alleles in the neuroprotec-
tive Vra1 region on a DA strain background, was used to fine 
map Vra1 and several candidate genes were discovered (8). 
Glutathione S-transferase alpha 4 (Gsta4), a protein involved 
in the elimination of lipid peroxidation by-products, such as 
4-hydroxy-2-nonenal (HNE) (9), was subsequently identified 
as the strongest candidate gene regulating neurodegeneration in 
response to VRA (10) and traumatic brain injury in DA.VRA1 
congenic rats (11).

Glutathione S-transferase alpha 4 belongs to the alpha class 
of glutathione S-transferases (GSTs). GSTs are a family of isoen-
zymes involved in cellular detoxification mechanisms including 
clearance of lipid peroxidation by-products through glutathione 
(GSH) conjugation (9, 12). Not much is known about the expres-
sion patterns of Gsta4 in humans or in rodents, although studies 
suggest that it is expressed ubiquitously (13, 14). Furthermore, 
while rat Gsta4 is only 60% homologous with human GSTA4, the 
two enzymes have similar catalytic affinity to HNE (9), making 
it a valuable experimental target. Genetic associations have been 
made between GSTA4 mutations and risk for certain types of 
cancer (15, 16), but not much is known about the role of GSTA4 
in PD. However, HNE has been shown to be significantly elevated 
in PD brains (17–19), suggesting that GSTA4 is somehow affected 
and could be a key player in the disease. In order to study the 
effects of Gsta4 in a PD model that induces high levels of oxidative 
stress, we recently performed unilateral striatal 6-hydroxydopa-
mine (6-OHDA) lesions in DA and DA.VRA1 rats. At 8 weeks 
post lesion, DA.VRA1 congenic rats suffered less striatal fiber loss 
and were more resistant to SNpc neuronal cell death compared 
to DA rats. In addition, Gsta4 expression was elevated in the 
striatum and midbrain of DA.VRA1 rats at 2  days post lesion 
compared to DA, which is when the first signs of the degenera-
tive process occur after 6-OHDA injections (20), but stabilized 
already after 7 days. This suggests that Gsta4 plays a major role 
in protecting DA.VRA1 rats from a dopaminergic-specific toxin 
and that it exerts its effects early in the degenerative process (21). 

The 6-OHDA lesion, however, does not model the α-syn pathol-
ogy seen in PD.

The genetics linking α-syn to PD is abundant. Mutations 
in SNCA encoding α-syn are linked to monogenic PD (22), 
and copy-number variation of SNCA is linked to PD in a 
dose-dependent manner with several duplications (23–32) and 
triplications (32–34) being reported. In addition, common vari-
ants of SNCA are associated to idiopathic PD (35). Thus α-syn is 
clearly implicated in PD etiology and is, therefore, widely used in 
PD animal models: from transgenic rodent models (36) to viral 
vector-mediated models (37), with the latter being able to deliver 
a more consistent and progressive PD-like phenotype (38).

It has been shown that the overexpression of α-syn in rodents 
through the use of viral vectors leads to a progressive pathology 
with loss of midbrain dopaminergic neurons (39, 40). In fact, 
reports have shown that recombinant adeno-associated viral 
(rAAV) vector-mediated overexpression of α-syn in rats repro-
duces several of the neuropathological aspects seen in patients 
(41–43), making it a relevant research model for studying PD. 
There is also evidence that α-syn activates oxidative stress mecha-
nisms; for example, studies have shown that α-syn overexpres-
sion, like 6-OHDA, leads to mitochondrial impairment, which in 
turn leads to the production of reactive oxygen species (ROS) and 
lipid peroxidation (44–47).

In this study, we investigated if the Vra1 locus encoding 
Gsta4 mediates neuroprotection after overexpression of human 
wildtype (WT) α-syn in the rat SNpc. Compared to DA, DA.VRA1 
congenic rats displayed higher gene expression levels of Gsta4 in 
the striatum and SNpc at 3  weeks after α-syn overexpression. 
Furthermore, at 8 weeks after α-syn overexpression, we observed 
less degeneration of dopaminergic fibers in the striatum and their 
respective cell bodies in the SNpc. Similar to what was previously 
reported from the 6-OHDA model (21), Gsta4 was expressed in 
astrocytes in the SNpc at 8 weeks post rAAV injections. These 
results suggest that the Vra1 locus protects from α-syn-induced 
PD-like neurodegeneration and that astrocytes mediate this 
action through expression of Gsta4.

MaTerials anD MeThODs

research Model
For this study, we used two different inbred strains of rats: Dark 
Agouti (DA) and DA.VRA1, a congenic strain developed by 
transferring Vra1 alleles from the PVGav1 strain to a DA back-
ground strains as previously described (21). 64 male rats were 
used in this study (33 DA and 31 DA.VRA1 congenics), weigh-
ing approximately 220–250 g. Professor Piehl at the Karolinska 
Institutet, Stockholm, Sweden generously provided the founders 
for each strain. 51 (28 DA and 23 DA.VRA1) animals were sub-
jected to unilateral injections of an rAAV6 vector construct to 
overexpress human WT α-syn, while 13 (5 DA and 8 DA.VRA1) 
were injected with the same vector construct to overexpress 
GFP in the midbrain at 12 weeks of age with the following titers: 
α-syn (1.2E + 14 gc/ml) and GFP (3.2E + 14 gc/ml). The expres-
sion of both transgenes is led by the synapsin-1 promoter and 
enhanced with the woodchuck hepatitis virus posttranscriptional 

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive


3

Jewett et al. VRA1 Protects Dopaminergic Neurons

Frontiers in Neurology | www.frontiersin.org April 2018 | Volume 9 | Article 222

regulatory element (WPRE) (42). For quantification of dopamin-
ergic neurodgeneration, the rAAV6-GFP-injected animals of 
both strains were pooled together as one group and abbreviated 
DA (GFP). This was done because no differences were found 
between the two strains after O.D. measurements in the striatum 
and stereological measurements in the SNpc (see Quantification 
of Dopaminergic Fiber Loss in the Striatum and Quantification 
of Dopaminergic Cell Loss in SNpc). The rats were given ad libi-
tum access to food and water during a 12 h light/dark cycle and 
housed 2–3 per cage. 32 animals were sacrificed at 3 weeks post 
surgery for gene expression and immunofluorescence analysis, 
while 32 others were sacrificed at 8 weeks post surgery for histo-
logical analysis. All procedures described were approved by the 
Ethical Committee for the use of laboratory animals in the Lund/
Malmö region.

surgical Procedure
All surgical procedures were performed as described previously 
(21). 3 µl of rAAV6-α-syn or -GFP were unilaterally injected in 
the SNpc, which was targeting using the following coordinates, 
given in millimeters relative to bregma and dural surface (48): 
AP = −5.3, ML = −1.7, DV = −7.2. After the procedure, 0.15 ml 
Metacam (Apoteksbolaget, Sweden) was injected s.c. for postop-
erative analgesia. All animals were then placed in clean cages on 
a heated pad for recovery.

Tissue Preparation and histology
Most tissue preparation and immunostainings were performed 
as described previously (21) For DAB stainings in this study, the 
following primary antibodies were used: mouse anti-tyrosine 
hydroxylase (TH) (1:1,000, Immunostar, Hudson, WI, USA), rab-
bit anti-vesicular monoamine transporter 2 (VMAT2) (1:4,000, 
Immunostar Hudson, WI USA), mouse anti-human WT α-syn 
(1:2,000, Santa Cruz, CA, USA), and chicken anti-GFP (1:20,000 
Abcam, Cambridge, UK). The SNpc sections were given an initial 
antigen-retrieval incubation in Tris/EDTA (pH 9.0) at 80°C for 
45 min when stained for TH.

Double immunofluorescence stainings were performed as 
described previously (21). The primary antibodies used were 
rabbit anti-GSTA4 (1:100 Antibodies-online GmbH, Aachen, 
Germany), mouse anti-Gfap (1:1,000, Santa Cruz, CA USA), 
chicken anti-IBA1 (1:500 Synaptic Systems, Göttingen, Germany), 
and mouse anti-NeuN (1:1,000 Millipore, Billerica, MA USA) 
and were incubated together at 4°C. To compare immunofluo-
rescent stainings of midbrain and striatum for Gsta4 and Gfap at 
3 and 8 weeks, stainings were performed in parallel and images 
were taken with the same settings. All images were captured at 
high-resolution with the confocal Leica SP8 microscope (Leica 
Microsystems, Wetzlar, Germany).

Quantification of Dopaminergic Fiber loss 
in the striatum
Striatum pictures were acquired as described previously (21). 
Dorsal (D) striatal TH+ fiber density was evaluated as optical 
density (O.D.) by image densitometry at six coronal levels (+1.60, 
+1.15, +0.70, +0.25, −0.20, −0.75  mm from bregma) using 

the ImageJ software (https://imagej.nih.gov NIH, USA). The 
Rodbard calibration function within the software was used to 
normalize the range of gray-scale (0–255) into O.D. values. Each 
image was transformed into 8-bit (gray-scale). The contralateral 
(CL) and ipsilateral (IL) striatum was delineated for each section, 
and the O.D. values representing the strength of the TH+ staining 
from each side were obtained. O.D. values from the corpus cal-
losum were used to correct for non-specific background staining. 
Finally, the dopaminergic fiber loss was expressed as relative to 
the CL side versus the intact side for each animal. Three DA rats 
were excluded from the analysis due to complications during 
surgery or with tissue processing, leaving 7 DA, and 6 DA.VRA1 
for quantification. Striatum divisions between D and ventral (V) 
are shown in Figure 2B.

Quantification of Dopaminergic cell loss 
in snpc
Dopaminergic neurons in the SNpc were quantified by 
stereology of TH+ cells according to the optical fractiona-
tor principle using the Stereo Investigator software (MBF 
Bioscience, USA) as described previously (21). With a Leitz 
DMRBE microscope (Leica, Germany), a 5× objective was 
used to delineate the areas of interest for each section, and a 
100× oil-immersion objective was used for the cell counting. 
A frame ratio of 11% was assigned to each slide, and the aver-
age mounted section thickness (h) was 24.3 µm (±2.1). The 
average number of dopaminergic neurons counted in each 
individual was 286 (±73). A maximal Gundersen coefficient 
of error (C.E.) (49) of 0.08 was accepted. The counting criteria 
used matches the one previously used (21). Three animals 
were excluded from the analysis due to complications dur-
ing surgery or with tissue processing, leaving 7 DA, and 6 
DA.VRA1 for quantification.

gene expression analysis
Animals were sedated and sacrificed at 3 weeks postsurgery as 
described previously (21). Pieces of right and left striatum and 
ventral midbrain weighing approximately 30 mg were dissected 
from the brain and placed in lysing matrix beaded tubes (MP 
Biomedicals, USA) and immediately stored at −80°C. The 
RNeasy Mini kit (Qiagen, Germany) was used to extract RNA 
from these samples, following the supplier’s protocol with 
some variations already mentioned in Jewett et al. (21). Reverse 
Transcription and Quantitative (RT)-PCR followed using the 
SuperScript® III First-Strand Synthesis System (Invitrogen, USA) 
and SSoAdvanced Universal SYBR green Supermix (BioRad, 
USA), respectively. qPCR was performed with this protocol: 5 µl 
Supermix + 0.5 µl of each primer + 4 µl cDNA for each sample. 
Sample amplification followed this 3-step protocol (1. 30 s at 95°C; 
2. 60 s at 62°C for 39 cycles; 3. 5 min at 68°C) with the following 
primers (5′-3′): Gsta4 (fw: GACCGTCCTGAAGTTCTAGTGA, 
rev: TGCCTCTGGAATGCTCTGT), gapdh (fw: CAACTCCC 
TCAAGATTGTCAGCAA, rev: GGCATGGACTGTGGTCATGA)  
and β-actin (fw: AAGTCCCTCACCCTCCCAAAAG, rev: 
AAGCAATGCTGTCACCTTCCC). Levels of Gsta4 gene expres-
sion were calculated using 2−ΔΔCq (50) and normalized relating 
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FigUre 1 | Glutathione S-transferase alpha 4 (Gsta4) gene expression in the striatum and midbrain after recombinant adeno-associated viral (rAAV)-mediated α-syn 
overexpression in the substantia nigra pars compacta. Gsta4 expression was significantly higher in DA.VRA1 compared to DA striatum (a) and midbrain (B) at 
3 weeks post rAAV injection. There was no difference within each strain between ipsilateral (IL) and contralateral (CL) sides. Data were normalized to DA CL mean 
values for the respective brain region. Mean ± SD, *p < 0.05, **p < 0.01.
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each value to CL DA of within the respective brain regions (stria-
tum and SNpc).

statistical analysis
All statistics were performed with GraphPad Prism (version 7, 
La Jolla, CA, USA). Values are expressed as mean ± SD. Due to 
the low number of animals used for each data set, a Shapiro–
Wilk normality test was performed to determine whether to 
proceed with parametric or non-parametric tests. Stereology and 
densitometry differences between groups were analyzed using a 
one-way ANOVA followed by Bonferroni’s multiple comparisons 
post  hoc test; statistical significance was set at p-value  <  0.05. 
Correlation analysis was performed using the Pearson correlation 
coefficient (r), statistical significance was set at p-value <0.05, 
and a 95% confidence interval was used. A one-way ANOVA was 
used to calculate gene expression differences between groups at 
each time point, followed by Bonferroni’s multiple comparisons 
post hoc test.

resUlTs

Da.Vra1 rats Present higher levels  
of gsta4 gene expression
Glutathione S-transferase alpha 4 has been shown to be upregu-
lated in IL and CL sides of both striatum and midbrain of DA 
and DA.VRA1 rats at 2  days post striatal 6-OHDA injections, 
which is when the first signs of neuronal degeneration become 
evident within that model (20, 21). For this study, we wanted to 
investigate Gsta4 expression levels within those same regions at 
a time point relevant to dopaminergic degeneration within the 
model of nigral rAAV-α-syn overexpression. We, therefore, chose 
to assess gene expression of Gsta4 at 3 weeks after rAAV-mediated 
α-syn injections in the SNpc using the CL striatum and midbrain 
regions as internal controls (42). Gsta4 expression is significantly 
higher in the striatum (Figure  1A) (p  <  0.05) and midbrain 
(Figure 1B) (p < 0.01) of DA.VRA1 compared to DA rats. There 
are no differences in Gsta4 expression between the CL and IL side 
within each strain (Figures 1A,B).

Da.Vra1 congenic rats Display less 
Dopaminergic Fiber loss after α-syn 
Overexpression
The rAAV-α-syn model was chosen because it has been shown to 
produce partial and progressive degeneration of dopaminergic 
fibers in the striatum and cell bodies in the SNpc, a hallmark of 
PD (42). In order to evaluate accurate targeting and expression of 
the transgenes, striatum and midbrain sections were stained for 
GFP and human WT α-syn. The histological analysis shows high 
levels of both GFP and α-syn expression with accurate target-
ing of the nigrostriatal pathway (Figure 2A). Furthermore, our 
stainings of dopaminergic (TH+) fibers in the striatum indicate 
that mainly the dorsal striatum was denervated upon α-syn over-
expression. Therefore, the striatum was subdivided into dorsal, 
mainly innervated by the SN, and ventral, mainly innervated by 
the ventral tegmental area (51) (Figure 2B). Optical densitometry 
measuring the density of TH+ fibers of the IL compared to the CL 
striatum points to a higher proportion of remaining TH+ fibers in 
the IL dorsal striatum of DA.VRA1 compared to DA rats [mean 
(SD): 69 (13) vs. 54 (9)%, p  <  0.023], with DA(GFP) animals 
being unaffected (Figure 2C). PVG.1AV1 alleles in the Vra1 locus 
thus protected striatal dopaminergic fibers of DA.VRA1 congenic 
rats from α-syn-induced degeneration.

Da.Vra1 congenic rats are Partially 
Protected From Dopaminergic cell  
loss in snpc
Midbrain dopaminergic neurons were quantified at 8 weeks post 
α-syn overexpression and GFP as a control (Figures  3A–D). 
Stereological cell counting performed with TH+-stained sec-
tions shows a reduction in dopaminergic cells in the IL SNpc of 
both DA and DA.VRA1 congenic rats compared to DA(GFP); 
however, there was no significant difference in the proportion 
of remaining TH+ neurons between DA and DA.VRA1 rats [50 
(9) vs. 40 (8)%, p  =  0.06, Figure  3B]. Due to the possibility 
of TH being downregulated, thus giving an underestima-
tion of dopaminergic neurons, VMAT2 was also used as a 
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FigUre 2 | Striatal dopaminergic fibers are protected from α-syn-induced degeneration by alleles in the Vra1 locus. (a) Sample images showing GFP/α-syn 
transgene expression in the striatum and midbrain 8 weeks post unilateral recombinant adeno-associated viral (rAAV)-GFP/α-syn injections into the substantia nigra 
pars compacta (SNpc). (B) Representative pictures from DA (GFP), DA, and DA.VRA1 rats showing dopaminergic fibers in the striatum stained for tyrosine 
hydroxylase (TH) at 8 weeks after rAAV-α-syn injection. The lesioned striatum is divided in two parts: dorsal (D), the region receiving most afferent projections from 
the cells of the SNpc, and ventral (V). (c) Optical density quantification of TH+ fibers in the lesioned relative to intact dorsal striatum at 8 weeks post surgery. DA.
VRA1 rats display higher levels of remaining TH+ fibers in the lesioned striatum compared to DA. Mean ± SD, p < 0.05 based on a one-way ANOVA followed by a 
Bonferroni post hoc test. O.D., optical density, scale bars = 500 µm.
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dopaminergic marker to stain and count nigral cells. VMAT2 
is a molecule essential for recruiting cytosolic dopamine into 
synaptic vescicles, and is, therefore, considered a reliable 
marker for dopaminergic cells (52, 53). Indeed, when quantify-
ing VMAT2+ neurons, we can see Vra1-mediated protection 
of nigral dopaminergic neurons in the IL SNpc of DA.VRA1 
congenic vs DA rats [54 (7) vs. 44 (7)%, p < 0.004, Figure 3D]. 
In order to verify whether the loss of dopaminergic fibers in the 
striatum reflects the extent of dopaminergic cell death in both 
strains, we performed a correlation analysis between the two 
sets of data. We found a strong positive correlation between 
striatal TH + fiber density and remaining dopaminergic cells 
in the SNpc marked with VMAT2 in both strains (p < 0.002; 
r = 0.8, Figure 3E).

gsta4 is expressed in Midbrain astrocytes
We have previously observed Gsta4 expression in astrocytes but 
not in microglia or neurons at 8  weeks after 6-OHDA lesion 
(21). We made the same evaluation with double fluorescence 
immunostainings on midbrain sections combining Gsta4 with 
astrocytic (Gfap), microglial (Iba1), or neuronal (NeuN) mark-
ers at 8 weeks after α-syn overexpression (Figure 4). The stain-
ings reveal a similar co-localization pattern of Gsta4 with Gfap 
(Figures  4A,D,G,G') and not Iba1 (Figures  4B,E,H) or NeuN 
(Figures  4C,F,I) within this model, thus confirming astrocytic 

expression of Gsta4. This pattern remains constant in DA(GFP), 
DA, and DA.VRA1 animals (Figures 4A–I). Once again, the co-
localization is more clear in the somas of SNpc astrocytes rather 
than the projections (Figure 4G').

Since the gene expression analysis was performed at 3 weeks, 
and in order to check for any visible differences between Gsta4 
gene and protein expression patterns at this time point, we chose 
to look at Gsta4 localization at 3 weeks as well. Immunofluorescent 
stainings for Gsta4 and Gfap were compared between midbrain 
and striatum sections at 3 and 8 weeks post rAAV-α-syn delivery. 
The staining intensity for both Gsta4 and Gfap is visibly lower at 
3 weeks when compared to 8 weeks (Figures 5A–D'). At 3 weeks, 
Gsta4-stained cell bodies do not stand out compared to the back-
ground and less Gfap-positive cells are visible. In addition, no 
co-localization of Gsta4 is detectable with Gfap (Figures 5A,B), 
NeuN, or Iba1 (data not shown). However, at 8 weeks post rAAV-
α-syn delivery, there is clear co-localization of Gsta4 and Gfap in 
both the midbrain and striatum (Figures 5C,D). This suggests 
a delayed increase in astrocytic Gsta4 expression in response to 
α-syn overexpression.

DiscUssiOn

In this study, we show that PVG alleles in the Vra1 locus partially 
protect the nigrostriatal pathway of DA.VRA1 congenic rats 
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FigUre 3 | The Vra1-locus mediates partial protection of nigral dopaminergic neurons in response to α-syn overexpression. (a) Representative images showing 
midbrain TH+ cells in DA(GFP), DA, and DA.VRA1 rats at 8 weeks post unilateral recombinant adeno-associated viral (rAAV)-α-syn injection. Dashed lines represent 
the area used for stereological cell counts. (B) Stereological quantification of TH+ neurons in the SN shows no significant difference in the percentage of remaining 
TH+ neurons in the IL side between DA and DA.VRA1. (c) Representative images showing midbrain vesicular monoamine transporter 2 (VMAT2)+ cells in DA(GFP), 
DA, and DA.VRA1 rats at 8 weeks post unilateral rAAV-α-syn injection. (D) Stereological quantification of VMAT2+ dopaminergic neurons at 8 weeks post injection 
shows a similar pattern as for TH+ cells, but with DA.VRA1 congenic rats displaying partial protection to dopaminergic cell loss in the IL substantia nigra pars 
compacta (SNpc) compared to DA rats. (e) The ratio of dopaminergic cells quantified by VMAT2 in the lesioned vs intact SNpc strongly correlates with the relative 
density of TH+ fibers in the dorsal striatum. Individual data points and mean ± SD are shown. CL, contralateral; IL, ipsilateral; scale bars = 500 µm. *p < 0.05, with 
one-way ANOVA followed by a Bonferroni post hoc test. r = Pearson correlation coefficient.
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from α-syn-induced neurodegeneration. At 3 weeks after uni-
lateral rAAV-α-syn delivery, Gsta4 expression levels were higher 
in both the IL and CL striatum and midbrain of DA.VRA1 rats 
compared to DA. When quantifying dopaminergic neurodegen-
eration at 8  weeks, the density of striatal dopaminergic fibers 
in the lesioned side was significantly higher in the congenic 
rats compared to DA, and similar evidence of Vra1-mediated 

neuroprotection was observed for midbrain dopaminergic cell 
bodies by stereological cell counts of TH+ and VMAT2+ neurons. 
These results are in line with our previous observations where 
DA.VRA1 rats displayed partial dopaminergic neuroprotection 
to striatal 6-OHDA lesion (21). However, while the toxin-based 
model results in dopaminergic loss mediated by the generation 
of ROS and mitochondrial damage, the current study models 
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FigUre 4 | Glutathione S-transferase alpha 4 (Gsta4) is expressed in midbrain astrocytes 8 weeks after rAAV-GFP/α-syn injection. Immunofluorescent staining of 
Gsta4 combined with cell-specific markers for (a,D,g,g') astrocytes; Gfap, (B,e,h) microglia; Iba1 and (c,F,i) neurons; NeuN in DA(GFP), DA, and DA.VRA1 rats. 
Gsta4 staining co-localized with Gfap (a,D,g) but not Iba1 (B,e,h) or NeuN (c,F,i), suggesting astrocytic expression. Pictures taken at 20×; scale bar = 20 µm.  
(g') 60× image showing co-localization, with Gsta4 mainly expressed in the soma; scale bar = 100 µm. All markers were combined with the nuclear marker  
DAPI (blue).
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α-syn-induced pathology, similar to that seen in PD patients. 
In addition, we show that Gsta4 is expressed in the cytoplasm 
of midbrain and striatal astrocytes at 8 weeks after α-syn over-
expression, suggesting that astrocytes play an important role in 
protecting nearby neurons and neurites from α-syn-induced 
toxicity.

Our previous work, detailing the neuroprotective effects 
of Gsta4 after striatal 6-OHDA injections, puts focus on the 
oxidative stress aspects of PD. The neurodegenerative process 
of 6-OHDA is thought to be due to accumulation of ROS 
(20) and high levels of HNE within the affected cells (18, 54). 
Furthermore, 6-OHDA models have been shown to reproduce 
progressive and retrograde degeneration of the nigrostriatal 
pathway, mirroring some aspects of the same degeneration 
seen in PD patients with mild to moderate stages of the disease 
(55, 56). However, the striatal 6-OHDA model does not cover 
other pathogenic mechanisms of PD, such as the production 
of toxic α-syn species or impaired protein degradation (57). 
The functional link between α-syn and PD is very strong, with 
α-syn-containing Lewy bodies being present in both familial 
and idiopathic PD, and the SNCA gene being both linked to 
familial PD and associated to the risk of developing idiopathic 

PD. The rat rAAV-α-syn model employed here is based on the 
clear link between α-syn and PD-like pathology and comple-
ments the 6-OHDA model, which can be considered a model for 
toxin-induced PD. The rAAV vector used in the current study 
includes the WPRE element, which amplifies the expression of 
the transgene and induces unilateral overexpression of α-syn, 
progressive dopaminergic neurodegeneration, and motor 
impairment, which peak at 8  weeks postinjections (42). The 
rAAV-α-syn model also induces more progressive behavioral 
impairments compared to the striatal 6-OHDA model, prob-
ably due to the buildup of toxic α-syn species leading to deficits 
in synaptic function (57, 58).

With the striatal 6-OHDA model, aiming to examine causality 
of the neuroprotection observed in DA.VRA1 rats at 8 weeks, we 
measured Gsta4 expression at 2 and 7 days post lesion, when the 
very early signs of neurodegeneration are seen in the striatum 
(59). In the rAAV-α-syn model, the first signs of dopaminergic 
dysfunction and cell loss occur at 3  weeks postinjection (42). 
Therefore, to keep within the same line of thinking for this study, 
we performed gene expression analysis of Gsta4 at 3  weeks. 
Gsta4 expression was higher in both striatum and midbrain of 
DA.VRA1 rats compared to DA rats. The strain difference was 

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
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FigUre 5 | Expression of glutathione S-transferase alpha 4 (Gsta4) and 
Gfap is increased at 8 weeks after recombinant adeno-associated viral-α-syn 
injection. Co-immunofluorescent stainings of Gsta4 and Gfap in the midbrain 
(a,c), and striatum (B,D) of a DA.VRA1 congenic rat. Both Gsta4 and Gfap 
display a lower expression at 3 weeks (a,B) compared to 8 weeks  
(c,D). Pictures taken at 20×, scale bar = 20 µm. (D') 60× image showing 
co-localization of Gsta4 with Gfap; scale bar = 100 µm. Stainings were 
combined with the nuclear marker DAPI (blue).
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seen in both the lesioned and the intact sides, suggesting that 
α-syn overexpression does not induce Gsta4 gene expression 
at this time point. Based on the observation that, along with 
increased Gfap staining, Gsta4 immunostaining was enhanced 
at 8 weeks compared to 3 weeks post transgene delivery, there 
might be a delayed increase in Gsta4 gene expression after the 
α-syn transgene overexpression is established. Alternatively, 
a modest and continuous increase in Gsta4 gene expression in 
the DA.VRA1 congenic strain is sufficient to partially protect 
midbrain dopaminergic cell projections and somas from 
degeneration.

There is plenty of evidence suggesting that α-syn overexpres-
sion increases oxidative stress levels, which is a key feature of PD. 
Both in vivo and in vitro models have shown that accumulation of 
α-syn can lead to mitochondrial dysfunction through the inhibi-
tion of Complex 1 (C1), which in turn leads to the production of 
ROS (60–62). Interestingly, it has also been shown that ROS are 
a result of depleted glutathione (GSH) in PD brains (63) and low 
levels of GSH can lead to the decrease of C1 activity (64). Indeed, 
one important aspect of Gsta4 activity is its ability to catalyze 
the conjugation of GSH to lipid peroxidation by-products such as 
HNE (9). Furthermore, a study by Shearn et al. on chronic alcohol 
consumption in a Gsta4 null mouse showed that Gsta4 works 
as a mitochondrial detoxifier (65). This strongly suggests that  
α-syn toxicity is partly mediated by oxidative stress mechanisms, 
mainly acting through the mitochondria in dopaminergic cells 
and involving GSH metabolism. The fact that we see a similar 
neuroprotective phenotype of DA.VRA1 rats in both the α-syn 
overexpression model and the striatal 6-OHDA model strongly 

suggests that the Vra1 locus encoding Gsta4 regulates key pro-
cesses in PD-like dopaminergic neurodegeneration. The human 
ortholog GSTA4 is thus a promising therapeutic target in PD with 
a complex etiology.

In rat, Gsta proteins have been found to be abundant in astro-
cytes, the choroid plexus, as well as in endothelial cells and/or 
astrocytic end feet associated with blood vessels, Purkinje cells, 
and neurons (66). Therefore, regional differences in the cellular 
and subcellular distribution of Gsta4 are not unlikely. In our 
previous work where the Vra1 locus was found to protect from 
striatal 6-OHDA lesions, we aimed to uncover the localization 
of Gsta4 within the affected areas of the rat brain. We found 
Gsta4 co-expression with the astrocytic marker Gfap, but not 
with the microglial (Iba1) or the neuronal (NeuN) markers at 
8  weeks post injection (21). In the current study, we confirm 
the astrocytic localization of Gsta4 at 8 weeks in both DA and 
DA.VRA1 strains. In a nerve injury model, expression of Gsta4 
has been shown in spinal motor neurons and not astrocytes (10). 
Of note, we cannot rule out the possibility that dopaminergic 
neurons express Gsta4 at levels not detected by immunostainings 
in our studies.

The relationship between α-syn and astrocytes is well 
studied. α-syn is found mainly in neurons, but can often 
accumulate in astrocytes as well, usually after spreading from 
neurons (67–69), possibly through cell-to-cell transfer (70). 
A recent study by Lindström et  al. points out the important 
role of astrocytes in α-synucleinopathies. They show that in 
a co-culture system, astrocytes engulf large amounts of α-syn 
oligomers but are subsequently not able to degrade them com-
pletely, which leads to the formation of inclusions. It suggested 
that this is most likely brought on by a dysfunctional lysosomal 
system. Astrocytes also showed signs of mitochondrial dam-
age caused by the accumulation of these α-syn oligomers (71). 
Furthermore, studies have shown that astrocytes can produce 
ROS under stressful conditions (72), thus leaving surround-
ing neurons susceptible to damage (73). This is relevant to the 
results obtained from DA.VRA1 congenic rats by us (21) and 
others (10), since ROS production is increased by 6-OHDA 
(20), α-syn overexpression (61), and in nerve injury models 
(74)—all environments where DA.VRA1 rats have been shown 
to express higher levels of Gsta4. When adding the fact that 
astrocytes also have a very high activity and release of GSH, 
which might be neuroprotective in itself (75), the link between 
Gsta4 activity and α-syn pathology is strengthened. More work 
is necessary to uncover the specific mechanisms by which Gsta4 
protects from PD-like pathology in rat PD models. For exam-
ple, a more in-depth analysis of the role of Gsta4 in astrocytic 
mitochondria might help answer key questions surrounding 
potential neuroprotective mechanisms.

In conclusion, this is the first report suggesting potential 
neuroprotective effects of the Vra1 locus and Gsta4 in an 
α-syn-induced PD model. Moreover, this study emphasizes the 
importance of utilizing animal models with naturally occurring 
allelic differences in order to gain a better understanding of neu-
rodegenerative diseases with complex traits, such as PD. Gsta4 
has now been implicated as a potential neuroprotective agent in 
both the 6-OHDA and α-syn overexpression PD models, making 

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive


9

Jewett et al. VRA1 Protects Dopaminergic Neurons

Frontiers in Neurology | www.frontiersin.org April 2018 | Volume 9 | Article 222

the human ortholog a very attractive candidate for future PD 
therapeutic research.
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