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Abstract

State government-mandated social distancing measures have helped to slow the growth of

the COVID-19 pandemic in the United States. Many of the current predictive models of the

development of COVID-19, especially after mitigation efforts, partially rely on extrapolations

from data collected in other countries. Since most states enacted stay-at-home orders

towards the end of March, the resulting effects of social distancing should be reflected in the

death and infection counts by the end of April. Using the data available through April 25th,

we investigate the change in the infection rate due to the mitigation efforts and project death

and infection counts through September 2020 for some of the most heavily impacted states:

New York, New Jersey, Michigan, Massachusetts, Illinois, and Louisiana. We find that with

the current mitigation efforts, five of those six states have reduced their base reproduction

number to a value less than one, stopping the exponential growth of the pandemic. We also

project different scenarios after the mitigation is relaxed.

Introduction

As of April 25, there are 2.8 million confirmed cases and close to 200,000 deaths attributed to

COVID-19 in the world, with over 0.9 million cases and close to 52,000 deaths in the United

States. The first confirmed case of COVID-19 in the United States occurred in Washington

State on January 20, 2020. Until early March, the number of reported cases remained rather

low, with most of them residing in the states of Washington, New York, and California. How-

ever, since early March, the disease has spread to all states, with both recorded deaths and

infections growing at alarming rates in many states. Between mid-March and early-April,

most states issued stay-at-home (SaH) orders.

Since the effects of social distancing measures in the United States have not be known until

recently, most studies of the progress of the epidemic are largely based on extrapolations from

the effects of similar strategies in other countries. However, by mid-April most states have

shown signs of slowing the initial exponential growth of infection. Understanding the effects
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of mitigation efforts based on local data is important, as different countries have implemented

different degrees of social distancing measures and their effects simply cannot be translated

between countries. Moreover, understanding the effect of mitigation is key to predicting the

effects of relaxing those efforts. How will the timing affect the number of infections? What

measures need to be enforced to keep the infection rate sufficiently low to prevent exponential

growth again? For these reasons, we expand our preliminary study of the early stage of

COVID-19 epidemic in Louisiana. [1] As more data is available, we now estimate the death

rate and recovery rate of those in quarantine, which allows us to predict the death count, posi-

tive confirmed count, and perhaps more importantly, the infected yet unidentified count after

social distancing measures.

The goal of this study is to extract the dynamics of COVID-19 in some of the most heavily

impacted states and to investigate the change of the infection rate after the effects of the stay-

at-home orders. We then model several scenarios with different dates for the release of the

stay-at-home orders and different hypothetical increases of the infection rate. We also com-

pare our results to the widely publicized model by the Institute for Health Metrics and Evalua-

tion (IHME). [2]

This paper is organized as follows. In the Model section, we present the model. In the

Method section, we present the method for extracting the parameters of the model. In the

Results section, we present the results for six states. These include New York, New Jersey,

Michigan, Illinois, Massachusetts, and Louisiana. In the Discussion section, we discuss the

error sources and the possible improvement of the projection. In the appendix, we benchmark

our projection to that of the IHME.

Model

We use the Susceptible-Infected-Recovered (SIR) model [3, 4] modified to consider the num-

ber of quarantined people. Similar modifications on the SIR model have been considered else-

where to model the spread of COVID-19. [5–34] The equations defining the dynamics of the

model are as follows:

dSðtÞ
dt
¼ � b

SðtÞIðtÞ
N

; ð1Þ

dIðtÞ
dt
¼ b

SðtÞIðtÞ
N

� ðaþ ZÞIðtÞ; ð2Þ

dQðtÞ
dt
¼ ZI tð Þ � d tð ÞQ tð Þ � x tð ÞQ tð Þ; ð3Þ

dRðtÞ
dt
¼ x tð ÞQ tð Þ þ aI tð Þ; ð4Þ

dCðtÞ
dt
¼ d tð ÞQ tð Þ; ð5Þ

where N is the total population size, S is the susceptible population count, I is the unidentified

while infectious population count, Q is the number of identified positive cases which are quar-

antined, R includes the number of recovered patients, and C is the number of deaths. The

model is characterized by the following parameters: β is the infection rate, η is the detection

rate, α is the recovery rate of asymptomatic people, ξ is the recovery rate of the quarantined

patients, and δ is the casualty rate of the quarantined. All the parameters are in units of (1/
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day). The quarantined population Q is composed of the identified positive cases independently

of whether they are hospitalized or at home. We further assume that all casualties had been in

quarantine prior to death and we consider that only ξ and δ have time dependence. All of these

assumptions are approximations made to allow for inference of the model parameters from

the current available data.

The total death count at time t, D(t), can be estimated as:

DðtÞ ¼
Z t

0

dCðtÞ
dt

dt: ð6Þ

The confirmed positive count is P(t) = Q(t) + RQ(t) + C(t), where RQ(t) are the recovered

patients previously in quarantine. P(t) can be estimates as:

PðtÞ ¼
Z t

0

dPðtÞ
dt

dt

¼

Z t

0

dQðtÞ
dt
þ
dRQðtÞ

dt
þ
dCðtÞ
dt

� �

dt;
ð7Þ

¼

Z t

0

ZIðtÞdt: ð8Þ

Method

We determine two sets of parameters, one before the stay-at-home order and the other after

the social distancing measures are in place. The method for estimating the model parameters

from the data prior to the stay-at-home orders have been discussed in our previous work. [1]

We repeat our approach here for completeness of the present paper.

Adequate testing for COVID-19 remains limited in the USA. For this reason, accurately

predicting the trajectory of the spread of COVID-19 by relying on the number of confirmed

cases alone is a rather questionable approach, especially for early stages in which the percent-

age of people tested was very small and the spread from asymptomatic infected people was sig-

nificant. Alternatively, the number of fatalities attributed to COVID-19 combined with the

mortality rate may be a more reliable estimator of the dynamics of the virus spread. Therefore,

we extract the dynamics of COVID-19 from the death counts supplemented by the number of

confirmed cases. In countries with better testing capabilities, the number of cases might be a

better predictor.

At the beginning of the epidemic, only a small fraction of the population is infected, so we

can assume the susceptible population count is very close to that of the total population, S�
N. With this assumption, one can decouple Eq 2 from the rest of the Eqs 1, 3, 4 and 5, which

gives us,

dIðtÞ
dt
¼ b

SðtÞIðtÞ
N

� ðaþ ZÞIðtÞ � ½b � ðaþ ZÞ�IðtÞ: ð9Þ

The above equation can be solved to obtain the unidentified infected population count in

terms of model parameters: [5, 7]

IðtÞ � Ið0Þ exp ½ðb � ðaþ ZÞÞt�; ð10Þ

At the beginning of the virus spread, the number of quarantined patients is also small com-

pared to the number of infected. With the assumption Q� I, we consider the number of
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confirmed cases at the start of the epidemic, Q(t).

dQðtÞ
dt
¼ ZI tð Þ � d tð ÞQ tð Þ � x tð ÞQ tð Þ � ZI tð Þ: ð11Þ

We are able to simplify Eq 3 by substituting Eq 10 into Eq 11 to obtain:

QðtÞ ¼
Z

b � ðaþ ZÞ
IðtÞ: ð12Þ

Combining Eqs 12 and 5, we relate the rate of increase in the number of casualties with the

number of infected people in the early stages of the epidemic:

dCðtÞ
dt
¼ dðtÞ

Z

b � ðaþ ZÞ
IðtÞ ¼ d0IðtÞ; ð13Þ

where δ0 is the mortality rate. Finally, the casualty count can be obtained by solving the above

equation:

CðtÞ ¼
d0Ið0Þ

b � ðaþ ZÞ
exp ½ðb � ðaþ ZÞÞt�: ð14Þ

In the beginning of the epidemic, it is reasonable to assume exponential growth in the num-

ber of fatalities since the mechanisms for slowing the dynamics, such as improved detection

and social distancing, are delayed in time. To find the initial exponent, β − (α + η), and the

prefactor, the death count and the number of deaths per day are fit to Eq 14 and its derivative
dCðtÞ
dt

� �
, with the first date with one death taken as t = 0. We perform a three-day moving aver-

age to smooth the data prior to the fit. We also discard data with less than ten deaths and use

the data for the next ten days. All states in this study were still in the exponential growth phase

at the last day used for the fitting of the exponent. To identify the initial number of infected

people, I(0), δ0 must be estimated.

The mortality rate, δ0, is estimated by combining the accumulated mortality rate data and

the median time between infection and death. The median time between infection and the

onset of symptoms is about five days while the median time between the onset of symptoms

and death is eight days. [35–38] It is worth noting that the distribution of these time intervals

is close to log-normal, thus a more sophisticated analysis should include the effects of the non-

self-averaging behavior of the distribution. Only the median values are used in the present

work.

The accumulated mortality rate is estimated to be 2.3%. [39] Notably, the mortality rate

does indeed vary by region. This may be due to the rate of testing as well as the capacity of

health care facilities. For areas in which hospitals have been overrun, the death rate would be

much higher. Notwithstanding these uncertainties, assuming that the health care facilities have

not yet been overrun, the mortality rate is estimated to be d0 �
0:023

5þ 8
� 0:0018=day.

We also estimate the recovery rate of asymptomatic people, α, based on our current knowl-

edge of the epidemic. Assuming that the average time to recovery or death from infection are

both 13 days and that half of the infected never show any symptoms, [40] we estimate α = 0.5/

13� 0.0385/day. This is likely closer to an upper bound of the estimate, as this parameter

could easily be smaller in reality.

We estimate η by minimizing the χ2 of the total number of deaths and confirmed cases as

well as their derivatives (daily number of deaths and daily number of new cases) for the last

five days of the ten-day interval we are considering after the death count rises to ten deaths.
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After obtaining η, we can also infer the infection rate β and the reproduction number R0� β/

(η + α). [7]

As opposed to our previous work, [1] in which less data was available, we also estimate both

the death rate, δ(t), and the recovery rate of the quarantined, ξ(t), from the raw data of con-

firmed cases and death count as a function of time. Based on the assumption that the average

time from the onset of symptoms to death or recovery is eight days, δ(t) + ξ(t) = 1/8 = 0.125/

day. For days between the fourth and the eleventh (t� 4 and t� 11), we assume:

dðtÞ �
1

8

Dðt þ 4Þ � Dðt � 4Þ

Pðt � 4Þ � Dðt � 4Þ
: ð15Þ

For day 12 and beyond (t� 12) we assume:

dðtÞ �
1

8

Dðt þ 4Þ � Dðt � 4Þ

Pðt � 4Þ � Pðt � 12Þ � Dðt � 4Þ
: ð16Þ

We assume δ for days 1 through 3 is equal to our estimate for day 4. In order to make pro-

jections, we also consider that for days in the future, the value of δ is equal to the value for the

last dat with available data. This is not an unreasonable approximation, as we find the value of

δ is more or less stable after the stay-at-home order becomes effective. Fig 1 displays the values

of δ in Louisiana for days between March 16 and April 19. Estimates for other states behave in

a similar manner.

Finally, we look at the effects of current mitigation efforts. Within the present model, there

are two major routes for slowing the initial exponential growth of the epidemic, either to

decrease the infection rate β or to increase the testing rate η. Increasing the recovery rate of

unidentified infectious people, α, can also reduce the spread, but this is unlikely to be achieved.

It is expected that the stay-at-home orders reduce the infection rate but do not influence the

testing rate. However, the effect is not universal, but rather highly dependent on the measures

Fig 1. Estimate of the casualty rate of the quarantined cases as a function of time, δ(t) in units of (1/day), for the

state of Louisiana.

https://doi.org/10.1371/journal.pone.0240877.g001
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imposed. Instead of extrapolating the data from other areas, we choose to determine it from

the casualty and confirmed case counts. In addition, there is a time delay for the stay-at-home

order to influence the number of cases and deaths. Therefore we consider the effects of social

distancing measures to be reflected in two parameters, the reduction of the infection rate, r,
and the first day when the measurements are effective, dr. We determine both parameters by

minimizing the χ2 of the values and daily changes of the death and the confirmed infected

count for the five days between April 20 and 24.

Using δ(t) as calculated in Eqs 15 and 16 alongside the initial number of infected, I(0), and

the rest of parameters as shown in Table 1, we can solve the dynamics of the epidemic and esti-

mate the death count, confirmed infected count, and perhaps more importantly the infected

but unidentified count, I(t), in each state.

Results

Results for intact mitigation efforts

We chose six states with high death counts to test our projections. These include New York

(NY), New Jersey (NJ), Michigan (MI), Massachusetts (MA), Illinois (IL), and Louisiana (LA).

The casualty and the confirmed case counts are obtained from the database of the New York

Times. [41] Table 1 displays the parameters of our model for these states. In particular, we

can compare the reproduction number in the exponential growth phase of the epidemic

R0 �
b

Zþ a
with an effective RSaH

0
�

rb
Zþ a

after the SaH order becomes effective. While the R0

values are between 2.64 for Massachusetts and 4.83 for Louisiana, the RSaH
0

values are between

1.01 for Illinois and 0.24 for Louisiana, showing that SaH orders have been effective to reduce

R0 to values less than one and control the exponential growth of the disease in most states.

We solve Eqs 1–8 and Fig 2 shows our predictions for the daily casualties (C(t)), total num-

ber of casualties (D(t)), and total number of confirmed cases (P(t)) for six states: New York,

New Jersey, Michigan, Massachusetts, Illinois and Louisiana. Additionally, the casualty and

confirmed case counts through April 25th that are used to find the model parameters are

included in the plots. First, we see that all of the states have left the exponential phase and are

flattening towards a quasi-linear region about one to two weeks after the SaH orders. However,

the number of cases and fatalities in Illinois are still rapidly growing, albeit at a smaller rate

than before.

Table 1. Parameters for different states: The initial infection rate β, the detection rate η, the initial reproduction number R0� β/(η + α), the initial number of

infected people on the day of the first confirmed death I(0), the first date that social distancing measures are effectively reducing the infection rate in number of

days since SaH order dr, the current reduction in the infection rate r as a proportion of the initial reproduction number, the reproduction number after SaH orders

RSaH
0

, the day of the first death, and the date of the SaH order.

State β η R0 I(t = 0) dr(t) r RSaH
0

t = 0 SaH(t)

NY 0.484 0.070 4.46 1723 9(16) 0.13 0.58 3/15 3/22(7)

NJ 0.436 0.091 3.36 132 14(24) 0.20 0.67 3/11 3/21(10)

MI 0.449 0.057 4.69 881 8(13) 0.11 0.52 3/19 3/24(5)

MA 0.445 0.130 2.64 884 10(13) 0.33 0.87 3/21 3/24(3)

IL 0.421 0.107 2.89 481 11(14) 0.35 1.01 3/18 3/21(3)

LA 0.379 0.040 4.83 479 10(18) 0.05 0.24 3/15 3/23(8)

Massachusetts has not implemented a stay-at-home order but closed non-essential services on March 24th. The recovery rate of asymptomatic people α = 0.0385 is

assumed as a constant of the model. Note that the data for which the simulation begins is defined as t = 0 and the number in the parentheses for columns dr and SaH are

the elapsed days from the simulation start.

https://doi.org/10.1371/journal.pone.0240877.t001
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Fig 2. Log-scale of the daily death count (black solid curve), total number of casualties (dashed red curve), and total number of

confirmed cases (dash-dotted blue curve) as functions of time for six states: New York, New Jersey, Michigan, Massachusetts, Illinois

and Louisiana. The data for the number of deaths and cases are included as circles.

https://doi.org/10.1371/journal.pone.0240877.g002
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The results of the model agree reasonably well with the real casualty and case counts, in par-

ticular with the casualty counts used to estimate the initial exponent of the epidemic growth.

The worst fits occurs with New York and New Jersey. Those are also the states with the largest

number of cases. Difficulties in modeling New Jersey also appear in other models. [42] The

issue might be related to the fact that NJ provides suburban housing for two large metropolitan

areas, New York and Philadelphia. An analysis by metropolitan area instead of by state might

be more meaningful in the case of New Jersey. Table 2 displays the current, as April 25, casu-

alty and confirmed case counts alongside our projections through September 1.

It is worthwhile to compare our results with the widely used Institute for Health Metrics

and Evaluation (IHME) model. [2] The projected total death counts of all six states we analyze

are well within the 95% confidence interval of the IHME model on their update by Apr 25,

except for Illinois. We emphasize that the present analysis is entirely based on the dynamical

modeling of disease spreading with the necessary parameter inferred from death and con-

firmed counts alone. There is no extrapolation or interpolation of data from other countries or

regions.

Unlike models based on statistical inference, the present model can provide additional

information on the epidemic dynamics. We focus on further analyzing the predictions for

Louisiana by plotting the full set of variables. In particular, this provides a hint of the number

of infected but never identified cases. Consequently, the total number of infections can also be

inferred. Fig 3 displays the daily death count
dCðtÞ
dt

� �
, total number of casualties (D(t)), number

of unidentified infected (I(t)), number of quarantined patients (Q(t)), total number of con-

firmed cases (P(t)), and total number of recovered people

Z t

0

dRðtÞ
dt

dt
� �

as a function of

time. Note that by September 1, the total number of recovered people (previously in quaran-

tine or unidentified) is 62,509, almost double of the 33,325 projected confirmed cases.

Due to the underlying present model assumption that the mitigation efforts remain

unchanged, we are implicitly assuming that the infection rate remains unchanged as well.

Starting from late April to May, all states have planned reopening to a certain degree. It is

expected the infection rate will be increased due to relaxation of the mitigation efforts. In the

following subsection, we provide different scenarios of possible development after relaxing the

mitigation effort.

Results for relaxed mitigation efforts

The number of daily confirmed cases dropping below one per million within the population is

a criterion for relaxing the social distancing measures for models based in statistical inference

methods. [2] Since the present model considers the dynamics of the pandemic, we can estimate

Table 2. The total number of casualties and confirmed cases as of April 25 and projected total deaths and cases by September 1, in six states.

State Current

(4/25)

deaths

Current

(04/25)

cases

Projected

(9/1)

deaths

Projected

(9/1)

cases

NY 16,599 282,174 25,842 339,826

NJ 5,863 105,523 12,259 143,672

MI 3,274 37,203 5,882 45,801

MA 2,730 53,348 8,414 96,000

IL 1,884 41,777 13,746 199,474

LA 1,644 26,512 2,789 33,325

https://doi.org/10.1371/journal.pone.0240877.t002
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the increase in the infection and death count by proposing an increase in the infection rate due

to relaxing the stay-at-home orders.

We explore possible scenarios after the relaxation of SaH orders for the state of Louisiana.

We represent the effect of relaxing the mitigation efforts by increasing the infection rate β.

Because the number of susceptible persons S(t) has not changed sufficiently to reach herd

immunity, if the value of β reverts to the one before mitigation, the number of infected people

will again grow exponentially. We investigate the effect of increasing β at different times, e.g.

May 1, May 16, and June 1. The extent to which β will increase once SaH measures are relaxed

depends on various factors, such as possible limitation of mass gatherings and the proportion

of the population wearing personal protective gear. Figs 4 and 5 show predictions for the num-

ber of confirmed cased and fatalities, respectively, for different scenarios. We assume that the

infection rate, β, increases to 25% and 50% of its value prior to the SaH order. We see that if β
increases to 25%, confirmed cases and deaths grow sub-exponentially but with a larger slope

than the case with full mitigation efforts. If β increases to 50%, both confirmed cases and fatali-

ties will grow exponentially again. We notice that the delay on relaxing the mitigation does not

substantially help to lower the number of infections in the long term.

Discussion

We analyze the dynamics of COVID-19 spreading on six states. By late April, most states have

been under stay-at-home orders for almost a month, and the effects of social distancing are

reflected in the data. Additionally, we are able to estimate the recovery rate and the death rate

for the patients under quarantine. This allows us to expand our previous study [1] and estimate

the number of unidentified infected people, which is largely absent in models based on

Fig 3. Model predictions for Louisiana: Daily death count (solid black curve), total number of casualties (dashed

red curve), number of unidentified infected (green dotted curve), count of quarantined patients (double-dot-

dashed maroon curve), total number of confirmed cases (dot-dashed blue curve), and total number of recovered

people (solid magenta curve) as functions of time.

https://doi.org/10.1371/journal.pone.0240877.g003
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Fig 4. Total number of cases as a function of time for several scenarios: Full mitigation efforts are in place (solid

black line), the infection rate, β, returns to 25% (dashed curves) and 50% (dotted curves) of its value prior to the

SaH order at three different times, May 1, May 16, June 1.

https://doi.org/10.1371/journal.pone.0240877.g004

Fig 5. Total number of death counts as a function of time for several scenarios: Full mitigation efforts are in place

(solid black line), the infection rate, β, returns to 25% (dashed curves) and 50% (dotted curves) of its value prior

to the stay-at-home order at three different times, May 1, May 16 and June 1.

https://doi.org/10.1371/journal.pone.0240877.g005
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statistical inference. Our results confirm the widely believed speculation that the number of

infected is much larger than the confirmed positive cases.

We find that by late April, the infection rate and the effective reproduction number in all

the considered states have been significantly reduced. However, Illinois is still in the phase of

increasing daily death and confirmed positive counts as of April 25th (see Table 1). Within this

model, we do not assume that the change in the death count is exponentially decreasing after

social distancing measures, but we use the current data to estimate the dynamics of the disease

spreading.

We also provide possible scenarios of reopening with a focus in Louisiana. As there is no

data available from the United States, a reasonable assumption is that the infection rate will

increase after the SaH order is relaxed. If the infection rate returns to a value close to the one at

the beginning of the epidemic, the infection will grow exponentially again. We consider two

different infection rates: 25% and 50% of the rate prior to the SaH order and three different

reopening times–May 1, May 16, and June 1. Clearly, all of these scenarios lead to a substantial

increase of infections and deaths, but we find that the infection rate is more critical than the

timing of the reopening, pointing towards the importance of effective measures to reduce the

infection rate after SaH orders are lifted. Besides lowering the infection rate, the growth can

also be slowed by increasing the sum of the testing rate and the recovery rate of asymptomatic

people. While the recovery rate is probably difficult to change, testing can be expanded. This

highlights the importance of expanding testing capacity and encouraging early testing even

without severe symptoms.

There are many deficits in the present model. Instead of a modified SIR model we could use

a modified SEIR (Susceptible-Exposed-Infected-Recovered) model to better account for the

incubation period. Additional improvement can be achieved by including other factors, such

as correlation with different age groups, the availability of public health care, correlation with

the health condition of the population, effects of the environment such as temperature and

humidity, and many others. In particular, re-infection may be an important factor in the later

stage of the epidemic.

Looking at less aggregated data, such as the data for each county or metropolitan area,

might also be more meaningful than grouping the data by states which could include multiple

metropolitan areas with different disease dynamics. It would be also interesting to study excess

deaths instead of deaths directly produced by COVID-19. Additionally, many of the studied

quantities are not expected to be Gaussian distributed. In the present work, we take either

the mean or median values of their distributions. A more sophisticated study should include

the distribution of these quantities to capture non-self-averaging effects. Similar to most

approaches based on the SIR model, we implicitly assume that the population is homogeneous

and well mixed, and that infection occurs without explicit time delay. The present model is

essentially a mean field model with instantaneous coupling among different dynamical vari-

ables. It is worthwhile to have a detailed comparison between the present study and methods

based on statistical inference of Gaussian-like distributions, such as the IHME model. [2] A

simple comparison can be found in Figs 6 and 7.

After all, most studies of COVID-19 spread use highly cross-grained approximations. The

detailed infection mechanism at the local level is largely ignored. A truly precise approach

should include the dynamics of the interactions among people at the local level. For instance,

it is clear that the dynamics in New York City cannot be the same as that at the rest of New

York state. This difference, while important, is absent in all popular models being used for

the study of the evolution of the COVID-19 pandemic. Utilizing a big data approach at the

local level with graph theory should provide a more meaningful detailed analysis. Given the
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possibility of a second wave of infection, predictions at the local level may provide more

focused mitigation approaches to minimize the economic and social impact of the pandemic.

Other important social and economic factors are missing from the present model, notably

housing and household density, prevalence of multi-generational homes, rates of pre-existing

conditions, poverty rates, and the fraction of the population with essential “higher risk”

employment. These all suggest a less aggregated data should be considered for a more sophisti-

cated modeling.

Fig 6. Percentage error on the projected total death counts by April 27 of the IHME model and the present study

for most states in the USA. Positive and negative values respectively correspond to overestimates and underestimates.

Note that we have subtracted 3,778 death counts from the IHME data for New York. Left panel: seven-day projection.

Data from the IHME model is from its April 21 update. Data from the present study is generated from data prior to the

same day. The average percentage error is 10.7% for the IHME model and 8.9% for our approach. Right panel: eleven-

day projection. Percentage error corresponds to the projections based on data prior to April 17. The average

percentage error is 15.2% for the IHME model and 11.7% for our model.

https://doi.org/10.1371/journal.pone.0240877.g006
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In brief, perhaps the most timely information from this study is that reopening will defi-

nitely increase the projected number of cases and fatalities, but if the infection rate can be

kept to a value much lower than the rate prior to the stay-at-home orders, exponential growth

can be avoided. Control of the infection rate seems to be a more critical factor than the timing

of the reopening. We have extended our approach to all states which had more than ten

COVID-19 fatalities by April 10. Interested readers can find our predictions at https://

covid19projection.org/, where we will update our projections in a timely manner. In particu-

lar, early estimates based on real data of the evolution of the spread after relaxing social

Fig 7. Percentage error on the projected total death counts by May 31 from the IHME model and the present

study for most states in the USA. Positive and negative values correspond to overestimates and underestimates,

respectively. Left panel: 38-day projection. Data from the IHME model is from its April 29 update. The average

percentage error is 37.4% for the IHME model, and 27.2% for our approach. Right panel: 31-day projection.

Percentage error corresponds to the projections based on data prior to May 4. The average percentage error is 16.5%

for the new IHME model, and 23.0% for our approach.

https://doi.org/10.1371/journal.pone.0240877.g007
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distancing measure will be an essential piece of information to predict and control the reper-

cussions of the pandemic.

Appendix: Benchmark against the IHME model

Here we compare our predictions with the ones from the IHME model [2] for seven- and

eleven-day time intervals by calculating the percentage error. The percentage error is defined

as:

Model Projection � Actual Data
Actual Data

� 100: ð17Þ

Since our method captures the effects of mitigation exclusively from the local data and

these effects are not reflected in the data until around mid-April, both projections are for

death counts on April 27.

For the seven-day projection, we take the April 21 update from the IHME model which

includes data through April 20 [2] as well as our model results using the method described in

the Method section with data up to the same day. We then compare the projected total death

counts of both models with the data seven days later on April 27. Given the sparsity of the

data, we do not expect meaningful results can be obtained for those states which recorded less

than ten total death counts by April 10 within our model and they are not considered. These

states include Alaska, Hawaii, Montana, North Dakota, South Dakota, West Virginia, and

Wyoming. The left panel of Fig 6 displays the percentage error of the two models for the rest

of the states in the USA. The average percentage error is 10.7% and 8.9% for the IHME model

and our model, respectively.

Then, we repeat the comparison for a longer term projection of eleven days. We take the

April 17 update from the IHME model, which includes the data up to April 16, [2] and our

results generated with data up to the same day. We then compare the projected death counts

of both models with the real data eleven days later on April 27. In this case, we also eliminate

New Hampshire from the comparison since it did not record ten total deaths by April 6. The

right panel of Fig 6 shows the percentage of error for both models. The average percentage

error is 15.2% for the IHME model, and 11.7% for ours. We conclude that both model predic-

tions are similar with our approach slightly outperforming the IHME model for short term

projection. However, our projection is substantially higher than that of the IHME for longer

term. A more thorough comparison is required to reveal the strengths and weaknesses of dif-

ferent models for simulating the spread of COVID-19.

Further benchmark against the IHME model for longer term

We extend the comparison between our model and the IHME model for longer period of

time. We updated our model with data up to April 24 and April 30. We compare our update

for April 24 to that of the IHME model published at April 29. We also compare our update for

April 30 to that of the IHME model published at May 4. We note that there is a substantial

change in the IHME model from May 4, we denote it as new IHME model.

The left panel of Fig 7 displays the percentage error of our approach (from data up to April

24) and the old IHME model (from the update on April 29) on May 31. The right panel of Fig

7 displays the percentage error of our approach (from data up to April 30) and the new IHME

model (from the update on May 4) on May 31. The new IHME model shows much higher

infection and death counts than the old one. We choose to compare the predictions for May

31, as all states relax their mitigation efforts to different extents by the end of May. We expect
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that the increasing social contact will affect the infection rate making our projection unreliable

after the end of May, as we assume the mitigation efforts remain unchanged.

The average percentage error of the 38-day projection is 37.4% for the IHME model, and

27.2% for our approach. The average Percentage error of the 31-day projection is 16.5% for the

new IHME model, and 23.0% for our approach. It shows that the new IHME model predic-

tions have improved appreciably.
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