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SUMMARY

Similar universal phenomena can emerge in different complex systems when those systems share a

common symmetry in their governing laws. In physical systems operating near a critical phase transi-

tion, the governing physical laws obey a fractal symmetry; they are the same whether considered at

fine or coarse scales. This scale-change symmetry is responsible for universal critical phenomena found

across diverse systems. Experiments suggest that the cerebral cortex can also operate near a critical

phase transition. Thus we hypothesize that the laws governing cortical dynamics may obey scale-

change symmetry. Here we develop a practical approach to test this hypothesis. We confirm, using

two different computational models, that neural dynamical laws exhibit scale-change symmetry

near a dynamical phase transition. Moreover, we show that as a mouse awakens from anesthesia,

scale-change symmetry emerges. Scale-change symmetry of the rules governing cortical dynamics

may explain observations of similar critical phenomena across diverse neural systems.

INTRODUCTION

The ongoing collective population activity of neurons in cerebral cortex exhibits complex spatiotemporal

fluctuations. This ongoing activity is responsible for themajority of the brain’s energy consumption (Buzsáki

et al., 2007), is closely related to past experiences (Han et al., 2008; Kenet et al., 2003; Luczak et al., 2009),

contributes to memory consolidation (Gupta et al., 2010; Ji and Wilson, 2007), and modulates ongoing

cortical processing (Arieli et al., 1996; Fox et al., 2007, 2006; Petersen et al., 2003). Thus understanding

how ongoing cortical activity is organized is an important goal of systems neuroscience. Comparing

ongoing cortical activity across diverse species, measured with different experimental methods over the

past decade, a common phenomenon has been found with surprising consistency. The spatiotemporal

sizes of ongoing fluctuations follow a specific statistical law; they are distributed according to a power

law probability density function with the same exponent near �1.5. This phenomenon has been observed

in functional magnetic resonance imaging (fMRI) in humans (Haimovici et al., 2013; Tagliazucchi et al.,

2012); magnetoencephalography (MEG) in humans (Shriki et al., 2013); voltage imaging in mice (Fagerholm

et al., 2016; Scott et al., 2014); multielectrode electrophysiology in monkeys (Petermann et al., 2009; Yu

et al., 2017), cats (Hahn et al., 2017), rats (Gautam et al., 2015; Gireesh and Plenz, 2008), and even turtles

(Clawson et al., 2017; Shew et al., 2015); and in vitro brain-in-a-dish systems (Beggs and Plenz, 2003;

Shew et al., 2011). What can explain such shared phenomena observed across such diverse cortical sys-

tems, measured with differing spatial and temporal resolution?

One hypothesis is that the cerebral cortex can operate near the critical point of a phase transition (Beggs

and Timme, 2012; Hesse and Gross, 2014; Plenz et al., 2014; Shew and Plenz, 2013). This hypothesis builds

upon well-established physics of critical phase transitions; at criticality, multiple material properties are ex-

pected to be power law distributed according to universal scaling laws that are insensitive to many details

of the physical system (Stanley, 1987, 1971; Wilson, 1979, 1975). From theory and computational modeling

work, it is clear that neural systems can be tuned into a variety of different dynamical regimes or phases

(e.g., asynchronous, oscillatory, bursting), often with distinct boundaries separating different regimes

(Brunel, 2000; Gautam et al., 2015; Haldeman and Beggs, 2005; Poil et al., 2012; Wang et al., 2011). Similar

to physical systems, near certain regime boundaries these neural models exhibit power-law-distributed

collective dynamics with the same power law exponents, despite many detailed differences amongmodels

(Gautam et al., 2015; Haldeman and Beggs, 2005; Wang et al., 2011). What does the physics of critical phe-

nomena tell us about where this universality comes from?

Fundamental insight into the origins of universal critical phenomena in physical systems (and a Nobel Prize)

came from the realization that the basic laws governing the system obey a peculiar symmetry. The laws are
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the same across different scales; they have scale-change symmetry. Critical phenomena, including power-

law-distributed observables, stem directly from this bizarre fractal symmetry of the governing physical laws

(Wilson, 1979, 1975). Motivated by this basic fact about critical phenomena in physical systems, here we hy-

pothesize that the governing laws for cortical dynamics also conform to scale-change symmetry. Despite

more than a decade of intense research on criticality in neural systems, this basic question has not been

addressed. How does one go about testing this hypothesis?

Here, we develop an approach inspired by renormalization group theory, but with a focus on practical

applicability to real neural data. Renormalization group theory is the mathematical approach used to un-

derstand scale-invariance at criticality in equilibrium physical systems (Stanley, 1999; Stanley and Wong,

1972; Wilson, 1979, 1975), and in certain non-equilibrium dynamical systems (Loreto et al., 1995; Tauber,

2014; Vespignani et al., 1997, 1995). However, renormalization group ideas have not been developed in

the context of neural systems. In brief, the idea begins with a coarse-graining procedure that transforms

all the system variables and governing laws at one spatiotemporal scale to a new set of variables and

laws at a coarser scale. If the system obeys the scale-change symmetry, then an appropriately chosen

coarse-graining procedure will leave the governing laws unchanged and leave the system variables with

identical statistics.

Here, we first applied our approach to two computational models, one simple and the other more biolog-

ically realistic. For both models, we found that dynamical rules were indeed maximally scale-invariant when

operating near a phase transition. Next, we applied our approach to experimental data. We found that, in

the awake state, the apparent rules governing dynamics of mouse cerebral cortex were more scale-

invariant than in the anesthetized state. This suggests that the unconscious cortex deviates further from

criticality than does the conscious cortex.
RESULTS

Simple Model

We developed our approach using a network of binary, probabilistic, excitable nodes similar to that used in

previous studies of non-equilibrium critical phenomena in neural systems (Haldeman and Beggs, 2005;

Kinouchi and Copelli, 2006; Larremore et al., 2011; Shew et al., 2009), but on a two-dimensional L X L square

lattice (L = 400) with nearest-neighbor connections (including self). We interpret each node in the network

as the aggregate state of a group of neurons, analogous to the signals measured using experimental tech-

niques with somewhat coarse spatial resolution (e.g., local field potential, Petermann et al., 2009; voltage

imaging, Scott et al., 2014; or fMRI, Haimovici et al., 2013; Tagliazucchi et al., 2012). The state X(t+1) of a

node at time t+1 is either active (1) or inactive (0) depending on the number of neighbors n(t) that were

active at time t.

Xðt + 1Þ=
�
1 with probability fn = 1� ð1� CÞnðtÞ�1� p

�
0 otherwise

(Equation 1)

and C defines the strength of coupling between all connected pairs of nodes and p defines the probability

of activation without any active neighbors (p = 0.001 unless stated otherwise). We interpret p as an external

source of input to the neural system. The states of all the network nodes are updated synchronously. One

way to characterize the collective network dynamics is by measuring the fraction of active nodes at a time,

or network activity, given by SðtÞ = L�2
PL2

i = 1XiðtÞ. By tuning the coupling strength, we tuned the model

through a critical phase transition at C = C*, separating a low-activity (small S) from a high-activity

(large S) regime (Figure 1). Most of our results consider the range of C from 0.15 to 0.35.

Our first goal was to examine how the dynamical rules governing the system change when considered at

different scales of observation. For this, we consider six activation probabilities fn = 1� ð1� CÞnðtÞð1� pÞ
with n = 0, 1, 2, 3, 4, or 5 (n = 5 means all 4 neighbors plus self). Together, these six probabilities completely

specify the rules of the system dynamics (actually they over-specify the rules, which are completely speci-

fied by C and p, but over-specification can be helpful with noisy data). Importantly, we can estimate these

probabilities directly from data, whether simulated or experimentally measured. For instance, f1 is esti-

mated as the fraction of instances with n(t) = 1 that lead to activation at time t+1. Based on 104 time steps

of data from the model (excluding the transient of duration 102 time steps), we can estimate all six fn prob-

abilities with precision % 2% for 0.15 < C < 0.35 (except f0, which was less accurate for C > 0.3; see

Figure S1).
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Figure 1. Phase Transition in a Simple Neural Model

(A) Each panel shows the two-dimensional lattice of nodes at a single time step. Each pixel represents one node (yellow,

active; blue, inactive). A subset of the full lattice is shown for clarity.

(B) As coupling strength C increases a sharp increase in time-averaged network activity occurs at a critical coupling

strength C* near C = 0.23. S is averaged over 104 time steps excluding a transient period of 102 time steps.
The scale-change symmetry at the heart of critical phenomena in physical systems suggests that the fn

could be invariant across observational scales when C equals its critical value C*, but not if C deviates

from C*. The next step toward testing this possibility was to identify an appropriate coarse-graining re-

normalization transformation to map one observational scale onto a coarser scale.
Coarse-Graining Scheme

Motivated by the limited spatiotemporal resolution of typical experimental data and real-space block

renormalization schemes originally used to gain insight into the critical phenomena in physical systems

(Kadanoff, 1993; Stanley and Wong, 1972; Wilson, 1979), we devised a spatiotemporal transformation

scheme described as follows. Each r 3 r 3t spatiotemporal block of nodes (r 3 r in space and of duration

t) at scale b transforms into a single node at coarser scale b + 1. Thus, an L 3 L 3 T lattice at observational

scale b transforms into a coarse L/r 3 L/r 3 T/t lattice at observational length scale b + 1, as illustrated for

r = 4 and t = 1 in Figures 2A and 2B. The state Xb+1 of a coarse node depends on the average state

Sb = t�1r�2
Ptr2

i = 1X
i
b of the corresponding tr2 nodes at the finer scale according to

Xb+ 1 =

�
1 with probability f ðSbÞ=

�
1+ expð � kðSb � x0ÞÞ

��1
;

0 otherwise:
(Equation 2)

By tuning the transformation parameters k and x0, we can explore a family of logistic function coarse-grain-

ing procedures including majority rules and other previously studied functions. Similar coarse-graining

schemes have been used in previous work on deep learning (Hinton and Salakhutdinov, 2006).

To quantify the change in the dynamical rules due to coarse graining, we define a parameter z

z=
X5

n=0

��fb
n � fb + 1

n

�� (Equation 3)

where fb
n is the activation probability estimate at scale b and fb+ 1

n is the activation probability estimate at

the coarser scale b + 1. Note that root-mean-square differences or any other monotonic function of the dif-

ferences of fb
n and fb+ 1

n would not change our following conclusions. We ran the model for a range of

coupling strengths 0.15 < C < 0.35, simulating 104 time steps for each C. In line with expectations from crit-

ical phenomena in physical systems, we found that z was minimized for C near C* = 0.23 (Figure 2C). This

result was obtained using transformation parameters k = 76, x0 = 0.22, and block size r3r3t = 8 3 8 3 1

(Figure 2C, inset). This means that the dynamical rules governing the network activity are least changed

at C*.

However, some caution is appropriate; if a different transformation function f was used, perhaps the min-

imum zwould occur at a differentC. Therefore, to draw a more definitive conclusion, we next systematically

searched the two-dimensional space of all possible f functions, seeking the function that minimizes z for
iScience 12, 121–131, February 22, 2019 123



Figure 2. Scale-Invariance of Dynamical Rules Peaks at Criticality

(A) Cartoon illustration of coarse-graining scheme. Each block of nodes at fine scale b is transformed probabilistically to one node at the coarse scale b + 1.

(B) Examples of activity snapshots before and after coarse graining.

(C) Upon coarse graining, the dynamical rules change the least (z is minimal) at criticality. Inset shows the coarse-graining transformation function with (k;

x0) = (76; 0.22). Block size was r = 8.

(D) Shown are optimal coarse-graining functions for three example C values and six block sizes (legend in E specifies different values of r and t).

(E) Using the optimal coarse-graining function for each C resulted in the strongest scale-invariance of dynamical rules, i.e., lowest zmin around C = C�. This
result held for multiple choices of block size and duration (see legend).

(F) The valley in zmin as a function of coupling strength C became broader as p was increased. For A–E p = 0.001.
each C independently. We found that, when using such optimal f functions, the dynamical rules remained

most scale-invariant (i.e., lowest z) for C near C* (Figures 2D and 2E). Thus our first conclusion is that scale-

invariance of the governing laws at criticality, one of the most fundamental concepts of critical phenomena

in physical systems, can also manifest in neural systems.

We also verified our results for coarse-graining blocks with different spatial sizes r = 4, 8, 16 (Figures 2D and

2E), different durations t = 1, 2, 4, 8 (Figures 2D and 2E), and different levels of noise p = 10�2, 10�3, 10�4

(Figure 2F). Optimal x0 increased with C and r; optimal k increased with r and was lowest near C = C*

(Figure 2D). Changes in r, t, and p did not qualitatively change our conclusion that coarse graining causes

the least change in the dynamical rules near criticality. However, increasing p, decreasing r, and increasing

t all had the effect of broadening the minimum in zmin and shifting the minimum toward slightly smaller

values of C. For increasing p, this shift in the minimal C may be due to the phase transition becoming

‘‘smeared out,’’ less sharp with increased noise (Williams-Garcı́a et al., 2014), but further investigation is

needed to test this possibility. We chose the range 0.15 < C < 0.35 because at lower values (C < 0.15)

the rates of activity became so small that our estimates of the fn became poor due to subsampling, which

made zmin an unreliable measure (see Figure S2). A skeptical reader may note that z is not zero at criticality

for our model; the scale-invariance we observe is imperfect. Why might this be? In the calculation of z, we

found that the largest contribution to z came from the f0 term in the sum, which represents spontaneous

activation of a node. This is because the coarse-graining procedure tends to cause periods with very low S

at scale b to become S = 0 at scale b+1, thus creating excessive apparent spontaneous activation at scale

b+1. When z is calculated by excluding f0 it still minimizes for C near C* but with a much lower value of z,

indicating higher degree of scale-invariance for the dynamical rules governing interactions, i.e., those with

n > 0 (see Figure S3).

Realistic Model

The abstract binary model we have discussed so far is simple to interpret and directly comparable to pre-

vious work on critical phenomena in neural systems using similar models. Moreover, it is relatively similar to

models of spreading dynamics in previous renormalization group studies (e.g., sand piles, Vespignani

et al., 1995, and forest fires, Loreto et al., 1995). In this sense, it is not terribly surprising that our simple
124 iScience 12, 121–131, February 22, 2019



model conformed to scale-change symmetry of governing rules, which is expected from theory of critical

phenomena. However, our simple binary model is not very biologically realistic. For example, the dynamics

of real cerebral cortex never exhibits a sustained high-firing regime as we see in the simple model with

C > C*. In reality, if the excitability of real cortex is enhanced (or other parameters analogous to C are

enhanced) the dynamics tends to exhibit large, repetitive bursts of activity that are suppressed by depres-

sive adaptive mechanisms before reaching a sustained high-firing regime (Gautam et al., 2015; Shew et al.,

2009). Indeed, activity-dependent adaptive effects can act to make the critical regime more robust (Levina

et al., 2007; Shew et al., 2015), which couldmake the possibility of scale-invariant dynamical rules evenmore

plausible in real brains. Next, we set out to test our ideas in a more realistic model of a neural network

that generates more realistic network activity. Similar to other recent model studies (di Santo et al.,

2018; Gautam et al., 2015), the phase transition we examine in our more realistic model separates an asyn-

chronous phase from an oscillatory ordered phase, which better matches experimental observations.

Building on our simple model, we kept binary, probabilistic, integrate-and-fire neurons on a two-dimen-

sional square lattice (L 3 L = 160 3 160), but now we introduced inhibitory neurons (20% of all neurons),

spike-frequency adaptation, refractoriness, and different distance-dependent connectivity for excitatory

and inhibitory neurons. At each time t, the binary state Xi(t) = 1 with probability piðtÞ; where

piðtÞ=
8<
:

1 for ciðtÞhiðtÞ�1R1
ciðtÞhiðtÞ�1 for 0%ciðtÞhiðtÞ�1<1

0 for ciðtÞhiðtÞ�1<0

(Equation 4)

Input from other neurons is ciðtÞ=
P
jsi

WijXjðt � 1Þ and the activity-dependent adaptation is modeled by

hiðtÞ=
Pt

t0 = t�tXiðt0Þ where t = 80. If this sum is zero, we set h to 1. At each time step a neuron can also

be activated due to external sources with probability pext = 0.001 (treated independently of pi). After a

neuron fires, its state is set to 0 for a refractory period of 1 time step. The default synaptic weight matrix

W is constructed with long-range inhibition relative to shorter-range excitation. Weights of inhibitory syn-

apses were WIðdÞ= � I � exp
�
�d

CI

	2

and those of excitatory synapses were WEðdÞ = E � exp
�
� d

CE

	2

,

where d is the distance from the presynaptic neuron to the postsynaptic neuron. We consider CI = 3 and

CE = 2 (in units of lattice spacing) and fixed excitatory input strength E = 1. By tuning the inhibitory input

strength I, we tuned themodel through a phase transition near I = 0.65 separating a synchronous oscillatory

firing state (high mean pairwise correlation) from asynchronous low-firing (low mean pairwise correlation)

regime (Figures 3A–3C).

Like the simple model, we found that zmin is minimized near the phase transition (Figure 3D). We emphasize

that this more realistic model is outside the bounds of well-understood critical phenomena in physics.

Although it shares some features with simple models of spreading dynamics (e.g., excitable nodes with re-

fractory periods), the presence of inhibition and nonlocal connectivity makes it quite different from these

previously studied models. Thus there is no guarantee that the phase transition we consider here has any-

thing to do with criticality. In this sense, it is substantially more surprising that we observe minimal scale

change of dynamical rules near this phase transition. For the results in Figure 3D, we only considered fn

with n = 1, 2, 3, 4 for z calculation, because f0 tended to be most prone to error as discussed above (Fig-

ure S3). We did not include f5 because the refractory period precluded the occurrence of f5 at scale b.

So far, we have applied our approach to spike data from our two models. However, many experimentally

measured signals are continuous and more closely related to membrane potential, particularly at the

larger spatial scales (e.g., local field potential (LFP), fMRI, electroencephalography, voltage imaging,

wide-field calcium imaging). How might we apply our approach to such continuous signals? To address

this question, here, we first used our more realistic model. We generated a continuous signal from the

model, using the ‘‘membrane potential’’ from the model neurons. We defined the membrane potential of

the ith neuron to be ci(t)hi(t)
�1, as defined above. Next, we binarized the continuous membrane potential

signal. Following a previously established approach (Scott et al., 2014; Tagliazucchi et al., 2012), we

defined time points of activation when the voltage imaging time course crossed above a threshold of

0.5 SD beyond the mean from below (results consistent for different thresholds 0.25 SD and 1 SD) (Fig-

ure 4). We found that, like the spike data presented above, this binarized continuous signal also sup-

ported our main claim: minimal zmin near the phase transition.
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Figure 3. Scale-Invariance of Dynamical Rules Peaks at Phase Transition in a More Biologically Plausible Model

(A) Each panel shows the two-dimensional lattice of neurons at a single time step. Each pixel represents one neuron (yellow, active; blue, inactive). The

spatiotemporal dynamics was limited to small scales for strong inhibition (I = 2.0, bottom row), exhibited massive propagating waves and oscillations for

weak inhibition (I = 0.01, top row), and had more complexity near the transition between these extremes (I = 0.65, middle row).

(B) Time series of network activity reveals the prominent oscillatory activity of the weak inhibition regime (red).

(C) As inhibition is increased, the boundary of the oscillatory regime near I = 0.65 (dashed line) is revealed by the drop in mean pairwise correlations.

(D) Scale-invariance of dynamical rules peaked (zmin is minimal) near the onset of the oscillatory regime. This held for blocks with different spatial sizes and

durations (see legend).
Mouse Cerebral Cortex

One advantage of our approach is that it can readily be applied to experimental data, provided the data

have sufficient spatial resolution and coverage. Here, we demonstrate this for measurements of cerebral

cortex in a mouse awakening from anesthesia. Previous work (Scott et al., 2014) with these data suggested

that as the mouse awakens the cortical dynamics transitioned from a supercritical regime, similar to the

oscillatory regime in our realistic model, toward criticality. The brain activity was measured over the dorsal

surface of nearly an entire hemisphere of mouse cortex with high spatial resolution using genetically en-

coded voltage-sensitive fluorescence imaging. Each dataset was acquired during 1 min with 50 Hz sample

rate and 33 3 33mm2 per pixel spatial resolution. Multiple such 1-min recordings were performed over a

period of 200 min as the mouse awoke. Each pixel represents the aggregate activity of many neurons

within cortical layers 2 and 3. This voltage imaging signal is a continuous signal. To apply our approach,

we followed the same binarization approach described above for the membrane potential analysis of

the realistic model (Figure 4). We converted each pixel voltage time series into binary form (Figure 5A).

For each pixel and each 1-min recording, time points of activation were defined at times when the voltage

imaging time course crossed above a threshold of 0.5 SD beyond the mean from below (results consistent

for different thresholds 0.25 SD and 1 SD).

Under the effect of anesthesia, we found that the mouse exhibited synchronous burst firing, similar to the oscil-

latory regime of our realisticmodel. As themouse woke up,more asynchronous firing was observed (Figure 5B),

similar to the activity near the onset of the oscillatory regime of our realistic model. This changemanifested as a

decrease in pairwise correlations as the mouse awoke from anesthesia (Figure 5C). Next, we assumed nearest-

neighbor interactions among pixels and proceeded to estimate the activation probabilities fb
n . Then, we

applied our course-graining procedure and estimated fb+ 1
n . As with our analysis of the realistic model, only
126 iScience 12, 121–131, February 22, 2019



Figure 4. Applying Our Approach to Continuous Synaptic Input

(A) Mean pairwise correlations of binarized membrane potential for the realistic model.

(B) Change in dynamical rules zmin governing the binarized membrane potential as a function of inhibition strength I for r = 8

(left), r= 16 (right), and different binarization thresholds (color). For all the cases shown t= 1 and network size, L3 L= 1603 160.
four activation probabilities, n= 1, 2, 3 4 were used to estimate zmin. We found that zmin decreased as themouse

awoke from anesthesia. This finding demonstrates that the rules governing cerebral cortex dynamics approach

scale-change symmetry during the transition from anesthetized to awake.

We note that, for higher values of t, there was increased noise in the trend relating zmin to time since drug de-

livery. As t increases, we are left with fewer time points with which we estimate the rules fn and calculate zmin.

This decrease in samples may be responsible for poorer estimates of the rules fn and a noisier zmin versus time

trend. Future studies with longer-duration experimental recordings could better test this possibility.
Relating Rules to Dynamics

The approach we have developed here offers a new way to learn about whether a system is operating near

criticality by examining how the rules governing dynamics change with scale. In contrast, the traditional way

to assess whether a system is near criticality is by examining the dynamics, rather than the rules. For

instance, the experimental data we analyze here (Figure 5) has previously been shown to exhibit dynamics

that are consistent with an approach to criticality as themouse wakes up (Fagerholm et al., 2016; Scott et al.,

2014). This claim was largely based on examining cascades of propagating neural activity, often called

neuronal avalanches. At criticality, theory predicts that different sizes of avalanches occur with probability

that is related to size according to a power law with exponent near �1.5. In contrast, in the ordered phase

(like the oscillatory phase in our realistic model) avalanche sizes are expected to deviate from a power law

distribution, with very large cascades becoming more prominent. When Scott et al. analyzed our experi-

mental data, they found that the anesthetized state was consistent with an ordered phase, whereas the

awake state was more consistent with criticality. This finding is consistent with our conclusion that scale-

change symmetry increases as the mouse wakes up. However, we emphasize that a power law distribution

of avalanche sizes is certainly not equivalent to our finding of scale-change symmetry of rules. Indeed,

power law distributions of observed dynamics can arise due to mechanisms that are totally unrelated to

criticality (Beggs and Timme, 2012; Mitzenmacher, 2003; Reed and Hughes, 2002; Sornette, 1998; Stumpf

and Porter, 2012). If criticality is responsible for a power law distribution of an observable, then we would

expect to also find scale-change symmetry of rules. To clarify how scale-change symmetry of rules is related

to power law avalanche size distributions, we studied our models further. We examined avalanche size dis-

tributions for the simple model as C was tuned through C*, and for the more realistic model as inhibition (I)

was tuned from strong (I = 2) to weak (I = 0.01). We used the previously developed measure k to quantify

deviation from a power law (Scott et al., 2014; Shew et al., 2009). In brief, k = 1 for a perfect match to the

reference power law with exponent �1.5, k> 1 when large avalanches become prominent (as expected in

the ordered phase), and k< 1 when large avalanches become rare (as expected in the asynchronous phase).

Further description of k is given in the Methods section.

As expected for the simple model, we found that the distribution of avalanche sizes was close to a power

law (k near 1) when C was tuned near C* (Figures 6A and 6B). Thus, in this case, zmin was also smallest near

k = 1 (Figure 6C). Comparing k and zmin, we found that k is more sensitive to changes in C for C > C*,
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Figure 5. Increase in Scale-Invariance of Cortical Dynamical Rules as Mouse Awakens

(A) Genetically encoded voltage-sensitive fluorescence imaging was done to measure the spatiotemporal dynamics across one hemisphere of mouse cortex

as it awoke from anesthesia. Each panel shows a snapshot of binarized activity (yellow, active; blue, inactive). The signal of each pixel arises from many

neurons within a 33 3 33 mm2 area.

(B) Time series of binary network activity datasets. Under anesthesia (red), the dynamics exhibited relatively large-scale bursts, whereas the awake dynamics

(blue) tended to be more diverse.

(C) Mean pairwise correlation decreases as the mouse awakens.

(D) Scale-invariance of dynamical rules increases (zmin decreases) as the mouse awakens. Results were qualitatively consistent for three different binarization

thresholds (yellow, red, and blue) and two different coarse-graining block sizes (r = 8 and 16).
whereas zmin is more sensitive for C < C*. For the more complex model, the oscillatory regime (low inhibi-

tion) showed a clear bump in the tail of the avalanche distributions similar to previous studies of dynamics in

the ordered (supercritical) phase (Figure 6D). As inhibition was tuned from weak to strong, the avalanche

size distributions did approach approximate, but rather imperfect power laws. The changes in avalanche

distributions we observed for increasing inhibition is similar to what has been shown previously for our

experimental data as the mouse wakes up (Scott et al., 2014). Despite the imperfect power laws found in

the realistic model, we computed k and found a clear tendency for minimal zmin near k = 1 (Figures 6E

and 6F). These results demonstrate a close relationship between avalanche statistics and the scale-change

symmetry of rules governing a neural system.
DISCUSSION

Here we have shown that in neural network models, the rules that govern the system behavior obtain a de-

gree of scale-change symmetry that is most pronounced when the system operates near criticality. In the

spirit of renormalization group theory in physical systems, our approach offers a potential explanation of

why diverse neural systems can exhibit very similar critical phenomena.

Another useful outcome of our work is that the tools we develop provide a way to assess whether a change

in system dynamics takes the system closer to or further from criticality. Our approach complements tradi-

tional approaches for seeking evidence for criticality based on power laws and scaling relations. Such po-

wer law distributions constitute necessary, but insufficient, evidence for the criticality hypothesis (Beggs

and Timme, 2012; Klaus et al., 2011; Stumpf and Porter, 2012). Our results suggest that a change toward

criticality should be accompanied by an increase in scale-invariance of effective dynamical rules. To be
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Figure 6. Scale-Invariance of Rules Versus Avalanche Size Distributions

(A) Shown are avalanche size distributions obtained from the simple model with different values of coupling, C. The

probability for large avalanches is prominent for strong coupling and dramatically lower for weak coupling. Distributions

are shifted vertically for visual comparison. Black dashed line indicates a power law with exponent �1.5.

(B) The parameter kmeasures deviation between ameasured avalanche size distribution and�1.5 power law. Near C = C *, we

found minimal deviation from power law (k = 1).

(C) We found minimal change in rules zmin near k = 1.

(D) For the realistic model, avalanche size distributions exhibited high probability for large avalanches when inhibition was

small (blue) and approximate power law distributions for stronger inhibition.

(E) Near the onset of the oscillatory phase, we found the smallest deviation from power law (k near 1).

(F) Change in rules zmin was minimal near k = 1.
more specific, considering our model work (both models, Figures 2, 3, and 4), it is clear that, for a wide

range of parameters (C or I) around criticality, a decrease in 2 does not happen unless the parameters

have been tuned toward criticality—tuning C toward C* (Figure 2) or tuning I toward the value that corre-

sponds to the onset of oscillations (Figures 3 and 4). However, for a given observed decrease in zmin, we

cannot make precise conclusions about how much closer to criticality the system has shifted. This is not

possible considering the quantitative differences in the shape of the zmin versus C and zmin versus I curves

and how they depend on the details of analysis parameters (e.g., block size). The stronger conclusions that

can be made are about (1) the direction of change and (2) about the relative size of changes within one sys-

tem. For example, our methods could be used to ascertain which kinds of pharmacological manipulations

result in a bigger shift away or toward criticality in a single systemwith consistent measurement tools. This is

an important value of our approach—measuring relative changes in proximity to criticality.
Limitations of Study

One limitation of our approach is that it currently requires binary data (Figures 1, 2, and 3) or binarization of

continuous data (Figures 4 and 5). Although spike data are well suited to a binary approach, it would be useful

for future work to generalize the approach to continuous data, which ismore common in experiments. However,

we emphasize that our results based on binarization of continuous data from our realistic model (Figure 4) were

qualitatively consistent with our results based on spikes. This suggests that the binarization of continuous data

provides a useful strategy for studying scale-change symmetry of dynamical rules.

Another limitation of our approach is that we have based our assessment of scale-change symmetry zmin on

one step of renormalization. Renormalization group theory, in contrast, emphasizes that many steps of re-

normalization may be required before true scale-invariance is found. Each step of renormalization is

thought to remove irrelevant details that could corrupt scale-invariance. This fact may contribute to why

our scale change measure zmin is not very close to zero even when our simple model is at criticality. How-

ever, the fact that we do find a prominent minimum in zmin near criticality indicates that we can detect the

scale-change symmetry in spite of only performing one step of renormalization. This is important, because,

when working with real data from finite systems, it is not plausible to domany steps of coarse graining espe-

cially with a large block size.
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We also note that there are some trivial types of scale-change symmetry that we are not interested in and

have not highlighted in our results above. For instance, for a completely saturated system—all neurons

firing at every time step—the dynamics and rules would be identical upon coarse graining. The coarse level

would still be completely saturated. Likewise, a completely silent network would also exhibit such trivial

scale-invariance. These trivial types of invariance are not the subject of our work, but should be noted

for completeness.

Our initial application of our approach to experimental data provided interesting results.We showed that scale-

invariance of the rules governing cortical network dynamics increased during the transition from unconscious-

ness to consciousness. This finding is in line with other recent work that suggests that the anesthetized cortex

deviates from critical dynamics and approaches criticality as it wakes up (Bellay et al., 2015; Fagerholm et al.,

2016; Scott et al., 2014). A recent coarse-graining study of experimental data obtained in hippocampus also re-

vealed interesting scaling, in line with the scale-change symmetry we report here (Meshulam et al., 2018). Our

finding raises interesting questions about the functional consequences of scale-invariant rules. What does it

mean that local interactions, say among cortical columns, are governed by the same rules as larger-scale inter-

actions, say among cortical regions?We expect that our approachwill be useful for future studies of these ques-

tions and how the dynamical rules governing brain dynamics differ across scales and brain states.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods and three figures and can be found with this

article online at https://doi.org/10.1016/j.isci.2019.01.009.
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Buzsáki, G., Kaila, K., and Raichle, M. (2007).
Inhibition and brain work. Neuron 56, 771–783.

Clawson, W.P., Wright, N.C., Wessel, R., and
Shew, W.L. (2017). Adaptation towards scale-free
dynamics improves cortical stimulus
discrimination at the cost of reduced detection.
PLoS Comput. Biol. 13, e1005574.

di Santo, S., Villegas, P., Burioni, R., and Muñoz,
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Figure S1.  Accuracy of estimating rules 𝝓. (Related to Figure 2 in main text.)  To test the 

accuracy of estimation of 𝝓𝒏 we took network activity data for 𝟏𝟏𝟒 timesteps after 𝟏𝟏𝟐 

transient timesteps at coupling strength 𝟏.𝟏𝟏 < 𝑪 < 𝟏.𝟑𝟏. We compared the activation 

probability estimated from the simulation 𝝓𝒏
𝒔𝒔𝒔 to analytically calculated 𝝓𝒏

𝒕𝒕 = 𝟏 −

(𝟏 − 𝑪)𝒏(𝟏 − 𝒑) at each 𝑪 value. Our accuracy is better than 𝟐% for all 𝝓𝒏 in the range 

𝟏.𝟏𝟏 < 𝑪 < 𝟏.𝟑𝟏 except 𝝓𝟏 where the accuracy is around 𝟐% for 𝑪 > 𝟏.𝟑. All calculations 

done for network size, 𝑳 × 𝑳 = 𝟒𝟏𝟏× 𝟒𝟏𝟏 and 𝒑 = 𝟏.𝟏𝟏𝟏.  

  



 

 

 Figure S2. Dependency of rule-change 𝜻𝒔𝒔𝒏 on simulation timesteps. (Related to Figure 2 

in the main text.) Shown are 𝜻𝒔𝒔𝒏 values calculated using data from simulations with 

varying numbers of timesteps at coupling strengths, 𝑪 = 𝟏.𝟏 (yellow), 𝑪 = 𝟏.𝟏𝟏 (green), 

𝑪 = 𝟏.𝟏𝟏 (cyan). When the network activity is too low, the estimation of a consistent 𝜻𝒔𝒔𝒏 

require data from increased simulation timesteps. All calculations done for network 

size, 𝑳 × 𝑳 = 𝟒𝟏𝟏 × 𝟒𝟏𝟏, 𝒓 = 𝟖 𝒂𝒏𝒂 𝒑 = 𝟏.𝟏𝟏𝟏.  

 

  



 

 

Figure S3. Alternative estimation of 𝜻𝒔𝒔𝒏 by excluding 𝝓𝟏. (Related to Figures 2-5 in the 

main text.) Shown is the change in dynamical rules 𝜻𝒔𝒔𝒏 based on excluding 𝝓𝟏.  r = 4 

(blue); r = 8 (green); r = 16 (red).  All calculations done for network size, 𝑳 × 𝑳 = 𝟒𝟏𝟏×

𝟒𝟏𝟏, 𝒓 = 𝟖 𝒂𝒏𝒂 𝒑 = 𝟏.𝟏𝟏𝟏.  A major contribution to 𝜻𝒔𝒔𝒏 comes from the difference in 𝝓𝟏 

when the network activity is transformed from observational length scale 𝒃 to 𝒃 + 𝟏. The 

main reason behind this are the cases when the transformation scheme probabilistically 

transforms a partially active block of nodes to an inactive node at one timestep and at 

next timestep partially active block of nodes do changes only slightly but is transformed 

to an active node. Even with the 5 activation probabilities 𝝓𝒏 for 𝒏 = 𝟏,𝟐,𝟑,𝟒,𝟏 , 𝜻𝒔𝒔𝒏 still 

minimize at C near critical point 𝑪∗. 

 

 

  



Transparent methods 

Experiments 

Animal experiments were performed in accordance with the National Institutes of Health 

guidelines for animal research and were approved by the Institutional Animal Care and Use 

Committees of the RIKEN Wako Research Center (Japan).The following methods for obtaining 

the experimental data in Fig. 5 have been reported in previous publications as described 

previously (Akemann et al., 2012, 2010; Scott et al., 2014). We describe them again here. In 

utero electroporation was performed on the mouse (day E15) with the pCAG-VSFP Butterfly 1.2 

plasmid. This resulted in expression of the voltage indicator Butterfly 1.2 in pyramidal cells in 

cortical layers 2/3 of one hemisphere. For imaging, the skull was thinned and a head-post 

implanted 2-6 months following electroporation. Three days following head-post implantation the 

imaging measurements reported here were performed. The mouse was first anesthetized 

(pentobarbital 0.9 g/kg i.p.), then head-fixed, and imaged with a dual emission wide-field 

epifluorescence microscope (halogen excitation). The voltage imaging signal was the ratio of 

mKate2 to mCitrine fluorescence, taken after offset subtraction and equalization of heartbeat-

related modulation of fluorescence. Between consecutive 1 min imaging periods were 1 min 

pauses. Preprocessing of voltage signals included baseline normalization by the average over 

the duration of each recording, spatial and temporal smoothing, and high-pass filtering at 0.5 

Hz. 

Avalanche size distributions and κ calculation 

The following methods for defining avalanches and computing κ (Figure 6) have been reported 

in previous publications (Fagerholm et al., 2016; Scott et al., 2014; Tagliazucchi et al., 2012).  

First, avalanches were defined as spatiotemporally contiguous clusters of active pixels. Clusters 

of active pixels were identified in each frame, based on the detection of connected pixels in a 

coactive first neighbors graph. Avalanches were then defined as starting with the activation of a 



previously inactive cluster, continuing while 1 contiguous cluster was active in the next time 

point. Avalanche size probability density distributions (Figure 6a, d) were calculated by counting 

the number of avalanches in each size bin and normalizing by the total number of avalanches 

and bin size.  Avalanche size probability distributions were compared with a power law with 

exponent -1.5 using a measure called κ, first developed in our previous work (Shew et al., 

2009). First, the measured distribution is recast as a cumulative density function (CDF), called 

F(β), which specifies the fraction of measured cluster sizes s < β.  Then a reference CDF is 

created corresponding to a perfect -1.5 power law, called FNA(β) 

𝐹𝑁𝑁(𝛽) = �1 −  �𝑙 𝐿⁄ �
−1
�1 −  �𝑙 𝛽⁄ � 

for l < s < L, where l is the smallest avalanche size considered and L is the largest.  A 

nonparametric measure, κ, is defined to quantify the difference between the measured 

avalanche size CDF, F(β), and the theoretical reference CDF, FNA(β), as  

κ = 1 +
1
𝑚
��𝐹𝑁𝑁(𝛽𝑘)−  𝐹(𝛽𝑘)�
𝑚

𝑘=1

  

where βk are m = 10 avalanche sizes logarithmically spaced between l and L.  When computing 

κ, avalanches below a minimum size, 𝑥𝑚𝑚𝑚, were excluded. The rationale for this is that some 

measurement noise is inevitable and likely to be uncorrelated across pixels, resulting in some 

small “noise cascades.” 
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