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Abstract
In this paper, we have studied a fractional-order eco-epidemiological model incorporating fear, treatment, and hunting

cooperation effects to explore the memory effect in the ecological system through Caputo-type fractional-order derivative.

We have studied the behavior of different equilibrium points with the memory effect. The proposed system undergoes

through Hopf bifurcation with respect to the memory parameter as the bifurcation parameter. We perform numerical

simulations for different values of the memory parameter and some of model parameters. In the numerical results, it

appears that the system is exhibiting a stable behavior from a period or chaotic nature with the increase in the memory

effect. The system also exhibits two transcritical bifurcations with respect to the growth rate of the prey. At low values of

prey’s growth, all species go to extinction, at moderate values of prey’s growth, only preys (susceptible and infected) can

survive, and at higher values of prey’s growth, all species survive simultaneously. The paper ended with some

recommendations.

Keywords Eco-epidemic model � Fear effect � Hunting cooperation � Caputo fractional-order derivative � Transcritical

bifurcation � Hopf bifurcation

1 Introduction

In population dynamics, ecological interactions such as

competition, mutualism, and predation, play an essential

role. However, parasite infection also affects the size of

populations. Thus, prey–predator interactions should not

ignore this issue. There have been multiple field studies

demonstrating parasitic infections in prey and predators.

Parasites can reduce the ability of infected organisms to

survive and reproduce by affecting their internal mecha-

nisms. Therefore, we ought to be concerned about preda-

tor–prey systems in which both populations are infected.

An eco-epidemiological approach focuses on infectious

diseases in populations and communities. The step-by-step

process of analyzing a problem from a molecular, social,

and demographic perspective is considered eco-epidemi-

ology. A system’s dynamics are affected by infection in

any part of the population or both populations. In recent

years, infectious disease has emerged as a significant fac-

tor. Researchers are increasingly studying predator and

prey with infectious diseases.

In many studies, predator–prey models have been

investigated only with a disease in the prey. Hethcote et al.

(2004) presented a predator–prey model in which SIS

parasitic infection in prey led to higher rates of predation

on infected prey before predator predation. In Sinha et al.

(2010), authors explore prey–predator interactions in the

context of environmental toxicants and disease. According

to their study, the toxicants affect the population, while the

infected prey is much more vulnerable to the toxicants as

well as predators than sound prey. Shaikh et al. (2021)

investigates the dynamics of an eco-epidemic predator–

prey system in which disease is spread to prey species and

alternative food is provided to predators. Moustafa et al.
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(2020) analyzes a fractional-order eco-epidemiological

model with disease in the prey population and showed that

the order of fractional derivative stabilizes the coexistence

equilibrium. According to Meng et al. (2018), the predator

population can survive in a predator–prey system with prey

harvesting and disease spreading among prey species.

Recently, Sk et al. (2022) have studied a prey–predator

model that incorporated infection in prey in both deter-

ministic and stochastic environments, and found that high

levels of fear and low levels of refuge can eliminate the

disease from the system.

Some infectious diseases can influence the dynamics of

predator–prey systems when they enter either the predator

body or the prey body (Djilali and Ghanbari 2021) through

some pathogens. Pathogens include germs, viruses, fungi,

parasites, etc. The objects can spread by direct or indirect

contact with animals or some other way such as water and

air (Van Seventer and Hochberg 2017). If the infection is

not treated, it may be harmful. According to the Food and

Agriculture Organization of the United Nations (FAO)

(Romain et al. 2020), livestock accounts for ð40%Þ of the

total agricultural production in developed countries, and for

ð20%Þ in developing countries. The infection agencies may

directly infect the prey or the predator, or the predator may

become infected after consumption of the infected prey

(Andrew et al. 2016).

An important topic in ecological systems with epidemics

is the dynamic relationship between predators and their

prey. Eco-epidemiological models are investigated the

ecological system with infection (Mukherjee 2010; Chak-

raborty et al. 2011; Chattopadhyay et al. 2002, 1999). The

necessity of conserving wild animals has led many ecolo-

gists and eco-epidemiologists to become familiar with eco-

epidemiology. Eco-epidemiological models discuss the

prey–predator relationships when some of the species are

infected (Juneja and Agnihotri 2018). One of the main

objectives of the investigation of the eco-epidemic model is

to control the spreading of diseases when disease and

treatment both coexist simultaneously. Many studies have

been published on ecological and epidemiological models

with the disease either in prey (Meng et al. 2018; Mortoja

et al. 2018) or in predator (Rana et al. 2016; Juneja and

Agnihotri 2018) or in both prey and predator (Agnihotri

and Juneja 2015; Hsieh and Hsiao 2008) and reference

therein.

Several field survey data and experimental results on

terrestrial vertebrates showed that the fear of predators

would cause a substantial variability of prey density (Sar-

kar and Khajanchi 2020). In Mukherjee (2020); Zhang

et al. (2019), the authors have studied some of these types

of models in the presence of fear effect and competitor for

the prey in the predator–prey model with prey refuge.

Treatment of the infected prey populations restores the

prey to its previous situation; as a result, availability of

susceptible prey becomes plenty to the predator, and

dynamics of the system may be more complex compared to

other situations (Adnan Thirthar 2020).

There are ample information in the existing literature on

predator–prey interactions, which utilize the diversity of

functional responses of both prey and predator populations.

In the literature, direct assassinations of prey populations

by predator populations have been the focus. Several

studies have examined predator and prey behavior as well

as antipredator activities (Wang et al. 2016; Wang and Zou

2017). Wang et al. (2016) and Zanette et al. (2011) con-

structed mathematical models for the predator–prey system

by including the cost of fear for prey species due to

predators, where the cost of fear determines the birth rate

of prey species. They showed that the presence of predator-

defeating activities or a major cost of fear can eliminate

periodic behaviors, excluding the paradox of the enrich-

ment scenario. Moreover, they demonstrated that fear can

stabilize the system by eliminating population oscillations.

Additionally, oscillations emerge from either supercritical

or subcritical Hopf bifurcation under comparatively low

cost for fear (Wang et al. 2016). Therefore, the fear effect

can produce multi-stability in the predator–prey system.

Mondal et al. (2022) showed the existence of saddle-node

bifurcation, Hopf bifurcation, and Bogdanov–Takens

bifurcation in an imprecise predator–prey system with fear

effect and nonlinear harvesting of predators in an uncertain

environment.

The authors in Danane et al. (2021) studied a mathe-

matical model that described COVID-19 dynamics with the

effects of governmental action and individual risk aware-

ness to reduce the spread of infection effectively. In

addition, the authors showed that the infection converges

more quickly to its steady state when the fractional

derivative is used. Kumar et al. (2022) evaluated the

mathematical model of the COVID-19 epidemic using

Caputo–Fabrizio fractional derivatives. Boudaoui et al.

(2021) employed the Caputo–Fabrizio derivative to model

the novel Coronavirus disease COVID-19 and found that

fractional-order epidemic models provide more insight into

the disease. Using the Caputo operator, Gao and Baskonus

(2022) developed a modified epidemiological Susceptible-

Infected-Removed model. In their study, Tanriverdi et al.

(2021) examined the dynamics and mathematics of the

fractional-order atmosphere–soil–land plant carbon cycle

system involving the time-dependent variable of carbon

flux in the atmosphere. An experimental study on fractional

models of complex permittivity of conductor media with

relaxation is conducted by Ciancio et al. (2022). Zamir

et al. (2021) examined mathematical modeling of the

eradication of the COVID-19 infection with the help of

almost non-pharmaceutical interventions (NPIs). Danane
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et al. (2021) investigated the dynamics of a COVID-19

stochastic model with an isolation strategy using Lévy jump

perturbations incorporating toward all compartments of the

suggested model. Hama et al. (2022) examined the behavior

of a SEIS stochastic model which is performed by a Lévy

process. In the research articles (Danane et al. 2021; Kumar

et al. 2022; Boudaoui et al. 2021; Gao and Baskonus 2022;

Tanriverdi et al. 2021; Ciancio et al. 2022; Zamir et al.

2021; Danane et al. 2021; Hama et al. 2022), the epidemic

model with fractional-order derivatives mainly appears.

Moustafa et al. (2020) studied a fractional-order eco-epi-

demiological model with disease in the prey population. But

they have not considered any biological effects such as fear

and hunting cooperation. In Sk and Pal (2022), authors

studied a prey–predator model with infection in a prey

population. They have also considered the effects of fear,

refuge, and harvesting in their proposed model. But they did

not consider any treatment for infected individuals or

memory effect. In Moustafa et al. (2022), authors studied a

fractional-order prey–predator model with infection in

predator and prey harvesting. They did not consider the

effects of fear, cooperation, or any treatment on the infected

populations. Yousef et al. (2022) studied a fractional-order

eco-epidemiological model with fear and hunting cooper-

ation but they did not consider the effect of treatment.

Motivating from the above-said articles, we think that there

may be some research gap in the memory-dependent eco-

epidemic model with hunting cooperation, fear, and treat-

ment of infected prey simultaneously. To fill the research

gap in this paper, we have studied the combined effects of

fear and hunting cooperation. Furthermore, we include a

treatment term for infected prey and also we have analyzed

our model with memory effects.

To formulate the model, we assume that the total prey

population is composed of two compartments: One is the

class of the susceptible prey, and the other is the class of

the infected prey, their population density is denoted by

S(t) and I(t), respectively, and the density of predator

populations is denoted by y(t). We assume that only sus-

ceptible prey is capable of reproducing, the disease is

spread among the prey population only and the disease is

not genetically inherited. We also assume that infected

prey does not compete for the resource of being weak due

to disease infection. We consider that the predator eats only

the infected prey. Let the rate of incidence of disease

transmission be bSI and the treatment function
qI

rþ I
, in

which q[ 0 represents the maximum medical resource

supplied for treatment, while
1

r
[ 0 stands for the satura-

tion factor that measure the effect of the delay in treatment

for the infected individuals. Introducing the effect of

cooperation of predators are following functional form

ðpþ byÞy, where y is the predator density, p[ 0 is the

attack rate of the predator on the prey, and b� 0 describes

the predator cooperation in hunting (Mondal et al.

2022, 2022). Here, we consider the fear function in the

form gþ mð1 � gÞ
mþ y

, where m represents the fear level and

g 2 ½0; 1� represents the minimum cost of fear, which is

extensively described in Sarkar and Khajanchi (2020).

Based on all the above-described situations, the three-di-

mensional eco-epidemic model can be formulated as

follows:

dS

dt
¼ gþ mð1 � gÞ

mþ y

� �
rS� ðd þ bIÞSþ qI

rþ I

dI

dt
¼ bS� d� ðpþ byÞy� q

rþ I

� �
I

dy

dt
¼ cðpþ byÞI � m½ �y

:

8>>>>>>><
>>>>>>>:

ð1Þ

Table 1 A description of biological symbols along with their meanings and values

Parameter Environmental Interpretation Values

g Minimum cost of fear 0.0011

m Level of fear 0.12

r Intrinsic growth rate of prey 0.112

d Natural death rate of the susceptible prey 0.12

b Disease transmission rate 0.32

q Maximum medical resource supplied for treatment 0.9

1

r
Stands for the saturation factor that measure the effect of the delay in treatment for the infected individuals 1

0:8

d Death rate of the infected prey 0.12

p The attack rate of the predator on the infected prey 0.29

b Predator cooperation in hunting 0.26

c Efficiency with which predators convert consumed infected prey into new predators 0.34

m Natural death rate of the predator 0.39
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with initial conditions Sð0Þ[ 0; Ið0Þ� 0; yð0Þ� 0 and all

the model parameters are nonnegative and their biological

consequence are described in Table 1.

Fractional-order derivative is the generalization of inte-

ger-order derivative to an arbitrary order (Petráš 2011).

Ordinary derivatives are memoryless, i.e., they possess local

properties. As a fractional-order derivative, it has non-local

properties; namely, it carries not only the current circum-

stance but also its prior historical states (Al-Khaled and

Alquran 2014; Das 2008). In the last few years, a lot of

research articles have appeared in different scientific jour-

nals studying biological, inventory models, or physical

problems (Das et al. 2019; Pakhira et al. 2020). Fractal-

order differential equations have gained a lot of attention and

appreciation recently due to their ability to find accurate

descriptions of various nonlinear phenomena. In recent

years, dynamical system research has increasingly utilized

models based on fractal order (Li et al. 2015; Hegazi et al.

2013) and references therein. Biological systems carry

memory effects in searching for food, locating a safe place to

live, and finding a mate. The memory effect is included in

biological systems by using fractional-order derivatives and

in most cases, it has been observed that the memory effect

has a stabilization property. The fundamental results of

fractional derivative are given in Kilbas et al. (2006); Pod-

lubny (1998); El-Sayed (1996). The authors in Li et al.

(2015); Hegazi et al. (2013); El-Misiery and Ahmed (2006)

used fractional-order derivative to study the physical prob-

lems like earthquakes, network problems, Liu system, etc.

The reduction in the fractional-order model from the

integer-order model was logically developed through the

introduction of the kernel function in Saeedian et al.

(2017); Ghosh et al. (2021). Following the methodology

developed in Saeedian et al. (2017); Ghosh et al. (2021),

the system (1) easily can be reduced into a fractional-order

model in the following form:

D2
t SðtÞ ¼ gþ mð1 � gÞ

mþ y

� �
rS� ðd þ bIÞSþ qI

rþ I
;

D2
t IðtÞ ¼ bS� d� ðpþ byÞy� q

rþ I

� �
I;

D2
t yðtÞ ¼ cðpþ byÞI � m½ �y;

:

8>>>>><
>>>>>:

ð2Þ

with initial conditions Sð0Þ[ 0; Ið0Þ� 0; yð0Þ� 0,

0\�\1 is the order of fractional derivative, D�
t is the

Caputo type of fractional-order derivative (CFD), and t0 is

the initial time which is equal or greater than zero. Defi-

nation and properties of CFD with reduction of ODE into

FDE are described in Sect. 2.

This manuscript is organized as follows: Sect. 2 dis-

cusses the definition and some basic properties of CFD

with basic mathematical analysis such as the existence of

solutions and their positivity and bounds. Section 3 dis-

cusses equilibrium points and their stability. Section 4

summarizes numerical results with memory effects.

Finally, Sect. 5 concludes with some conclusions.

2 Definition and Some Basic Properties
of CFD with Basic Mathematical Analysis

Here, we shall describe some basic definition and proper-

ties of fractional derivative. The commonly use definitions

are the Riemann–Liouville (RL) and Caputo derivatives

which are given below:

1. RL definition of fractional derivative for any ðn� �Þ
time integrable and n times differentiable function g(t)

on ½t0; t� is defined as

RL
t0
D�

t gðtÞ ¼
1

Cðn� �Þ
d

dt

� �nZ t

t0

gðwÞ
ðt � wÞ��nþ1

dw;

where n� 1\�� n:

2. The CFD of order � with n� 1\�� n for the function

g 2 Cnð½t0;þ1Þ;R� is defined as Boukhouima et al.

(2017):

D�
t gðtÞ ¼

1

Cðn� �Þ

Z t

t0

gðnÞðwÞ
ðt � wÞ��nþ1

dw

where Cð:Þ is the Gamma function, t� t0 and n is a

positive integer. Particularly, when 0\�� 1, the above

defination modified as

D�
t gðtÞ ¼

1

Cð1 � �Þ

Z t

t0

g
0 ðwÞ

ðt � wÞ� dw:

3. In the above two cases, the memory is expressed in

terms of a singular kernel. Recently, Caputo–Fabrizio

fractional derivative is developed to replace the

singular kernel with a non-singular kernel, which is

given below:

CF
t0
D�

t gðtÞ ¼
1

ð1 � �Þ

Z t

t0

g
0 ðwÞ exp ��

t � w

1 � �

� �
dw

where t0\0 and 0\�� 1.

Again, any system with the differential equation in

the form

dx

dt
¼ gðxÞ

can be expressed in terms of the memory kernel

function in the following form:
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dx

dt
¼
Z

gðnÞKðn� tÞdn ð3Þ

the integration is consider over suitable domain ½t0; t�.
The function kðn� tÞ is the memory-dependent kernel

is used by different authors in Ghosh et al. (2021). For

memoryless system kðn� tÞ ¼ dðn� tÞ, where dð:Þ is

the Dirac delta function.

If we consider kðn� tÞ ¼ 1

Cð1 � �Þ ðn� tÞ��2
,

where 0\�� 1 the RHS of (3) can be expressed as

dxðtÞ
dt

¼ �0D
�ð��1Þ
t gðxðtÞÞ:

Operating Caputo-type functional derivative of order

(�� 1Þ on both sides, we get

c
0D

�
t ðxðtÞÞ ¼ gðxðtÞÞ

with initial xð0Þ ¼ X0. Using the above methodology

system (1) can be converted to the system (2).

In the following, we shall present some preliminary results

that are satisfied by Caputo-type differential equations,

which will be used to establish different analytical results

(Li et al. 2009; Choi et al. 2014).

Lemma 1 The linear fractional-order differential equation

of the form D�yðtÞ ¼ kyðtÞ has solution of the form yðtÞ ¼
yðt0ÞE�ðkðt � t0Þ�Þ where 0\�\1, E� is the Mittag-Leffler

function with parameter � in the domain ½t0; t�.

Lemma 2 The Caputo differential operator is linear, i.e.,

Dt
� kxðtÞ þ lyðtÞð Þ ¼ kD�xðtÞ þ lD�yðtÞ.

Lemma 3 For any real-valued continuous function x(t)

with t� t0, the inequality
1

2
D�x2ðtÞ�D�xðtÞ holds.

Lemma 4 For any real-valued function x(t) with t� t0,

real constant x� and 0\�\1 the inequality

D� xðtÞ � x� � x�ln
xðtÞ
x�

� �
� 1 � xðtÞ

x�

� �
D�xðtÞ

holds.

Lemma 5 For any real-valued function x(t) with t� t0,

two arbitrary real constant k, d and D�xðtÞ� kxðtÞ þ d the

following result holds:

xðtÞ� xðt0ÞE� kðt � t0Þ�ð Þ þ dðt � t0Þ�E�;� kðt � t0Þ�ð Þ; t� t0:

Lemma 6 For the system of m-dimensional linear frac-

tional-order differential equation D�xðtÞ ¼ BxðtÞ; 0\�� 1

with xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; :::; xlðtÞÞ and B ¼ ½bij�l�l is the

coefficient matrix with eigenvalues k1; k2; :::kl. The stability
of the above linear system about the trivial equilibrium

point can be verified using the following conditions:

The trivial equilibrium point of the system will be

(a) Locally asymptotically stable if jargðkjÞ[
�p
2
j for

j ¼ 1; 2; 3; ::l.

(b) Stable if jargðkjÞ�
�p
2
j and algebraic multiplicity

will be same as the geometric multiplicity for those kj for
which the sign of equality holds.

(c) Unstable if for at least one j, jargðkjÞ\
�p
2
j.

Let us denote mð�Þ ¼ �p
2
� min1� j� 1 argðkjÞ

� 	
then the

above system can be easily expressed as: (i) For

stable equilibrium point mð�Þ\0 and (ii) For unsta-

ble equilibrium point mð�Þ[ 0. Oscillatory or time steady

behavior is highly dependent on the memory parameter

when other parameters are fixed.

Here we shall present the existence uniqueness and

positivity boundedness conditions of solutions of the pro-

posed fractional-order prey–predator model (2).

2.1 Existence and Uniqueness

To prove the existence and uniqueness of the solutions, we

have adapted the same methodology which is described in

Ghosh et al. (2021); Wang et al. (2019). The existence and

uniqueness of the solutions of the fractional-order system

(2) are studied in the region !� ð0; T� where

! ¼ ðS; I; yÞ 2 R3;maxðjSj; jIj; jyjÞ � v
� 	

for some positive constant v.

Theorem 1 There exists a unique solution EðtÞ 2 ! of the

fractional-order prey–predator model (2) with initial con-

dition ðS0; I0; y0Þ 2 !, which is defined for all t� 0.

Proof To establish the above statement, we shall follow

the approach as used by the authors in Ghosh et al. (2021);

Boukhouima et al. (2017); Wang et al. (2019). For this

purpose, we consider two solutions E; ~E 2 ! and denote

the function WðEÞ ¼ ðW1ðEÞ;W2ðEÞ;W3ðEÞÞ such
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W1ðEÞ ¼ gþ mð1 � gÞ
mþ y

� �
rS� ðd þ bIÞSþ qI

rþ I
;

W2ðEÞ ¼ bS� d� ðpþ byÞy� q
rþ I

� �
I;

W2ðEÞ ¼ cðpþ byÞI � m½ �y:

8>>>>><
>>>>>:
Now, WðEÞ �Wð ~EÞ



 

 ¼ W1ðEÞ �W1ð ~EÞ
�� ��

þ W2ðEÞ �W2ð ~EÞ
�� ��þ W3ðEÞ �W3ð ~EÞ

�� ��
� grjS� ~Sj þ rð1 � gÞjS� ~Sj þ r

m
ð1 � gÞvjS� ~Sj

þ r

m
ð1 � gÞvjy� ~yj

þ djS� ~Sj þ bvjS� ~Sj þ bvjI � ~Ij

þ q
r
jI � ~Ij þ bvjS� ~Sj

þ bvjI � ~Ij þ djI � ~Ij þ pvjI � ~Ij
þ pvjy� ~yj þ pbvjI � ~Ij

þ pbv2jy� ~yj þ q
r
jI � ~Ij þ cpvjI � ~Ij

þ cpvjy� ~yj þ cbjI � ~Ij
þ cbv2jy� ~yj þ mjy� ~yj

� ðgr þ rð1 � gÞ þ r

m
ð1 � gÞvþ d þ 2bvÞjS� ~Sj

þ r

m
ð1 � gÞvþ pvþ pbv2 þ cpv

�

þcbv2 þ m
�
jy� ~yj

þ ð2bvþ 2
q
r
þ dþ pvþ pbvþ cpvþ cbÞjI � ~Ij

�KjE � ~Ej;
ð4Þ

where

Thus, W(E) satisfied the Lipschitz condition, and hence, the

proposed fractional-order system has a unique solution in

the domain !. h

2.2 Positivity and Boundedness of the Solutions

In this part, we shall establish the positiveness of the

solutions of (2). From (2), we have the following:

D�
t SðtÞjS¼0 ¼ rhoI

rþ I
� 0

D�
t IðtÞjI¼0 ¼ 0

D�
t yðtÞjy¼0 ¼ 0

:

8>>>><
>>>>:
Thus, by using lemmas 5 and 6 in Boukhouima et al.

(2017), one can demand that the solutions of (2) are non-

negative. In the next theorem, the boundedness of the

solutions of the fractional-order prey–predator model (2)

will be established.

Theorem 2 All solutions of the system (2) with initial

conditions in R3
þ are uniformly bounded and lie in the

domain ! ¼ ðS; I; yÞ 2 R3
þ; 0�MðtÞ� r

ds
þ �; �[ 0

n o
,

where M(t) is defined in the proof.

Proof To establish the boundedness of the proposed

fractional-order system, we used the method developed in

Li et al. (2017). For this purpose, consider the function

MðtÞ ¼ SðtÞ þ IðtÞ þ 1

c
yðtÞ then,

D�
tMðtÞ¼D�

t SðtÞþD�
t IðtÞþ

1

c
D�

t yðtÞ¼ gþmð1�gÞ
mþy

� �
rS

�dS�dI�m

c
y.

Thus, for any s[ 0,

D2
t MðtÞ þ sMðtÞ ¼ gþ mð1 � gÞ

mþ y

� �
rS� dS� dI

� m

c
yþ sSþ sI þ s

c
y

¼ gþ mð1 � gÞ
mþ y

� d þ s

� �
Sþ ðs� dÞI

þ 1

c
ðs� mÞy

Now, we choose s\min d; d;mf g, then,

K ¼ max
gr þ rð1 � gÞ þ r

m
ð1 � gÞvþ d þ 2bv;

r

m
ð1 � gÞvþ pvþ pbv2 þ cpvþ cbv2 þ m;

2bvþ 2
q
r
þ dþ pvþ pbvþ cpvþ cb

8><
>:

9>=
>;:
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D�
tMðtÞ þ sMðtÞ� r

d

By using results in lemma 5, we get,

0�MðtÞ�Mð0ÞE�ð�sðtÞ�Þ þ r

d
E�;�þ1ð�sðtÞ�Þ;

where the function E� is the one parameter Mittag-Leffler

function. By Lemma 5 and Corollary 6 in Choi et al.

(2014), one gets the following expression:

0�MðtÞ� r

ds
; as t ! 1:

Hence, for the fractional-order prey–predator system (4),

all its solutions that started in R3
þ are uniformly bounded in

the region

! ¼ ðS; I; yÞ 2 R3
þ;MðtÞ� r

ds
þ �; �[ 0

n o
:

h

3 Equilibrium Points and Stabilities

In this section, we shall identify the equilibrium points of

the proposed fractional-order system and investigate their

nature. The proposed fractional-order system (2) has the

following equilibrium points:

1. The species free equilibrium point E0ð0; 0; 0Þ, which

always exists.

2. The predator-free equilibrium point

E1

1

b
q

rþ I�
þ d

� � ; I�; 0

0
BB@

1
CCA, where I� is a root of the

following second degree polynomial:

a0I
2 þ a1I þ a2 ¼ 0 ð5Þ

where a0 ¼ bd; a1 ¼ dðbrþ d � rÞ; a2 ¼ �ðqþ rdÞ
ðr � dÞ. Depending on values of the model parameters

the polynomial (5) may have: (i) a unique positive root

if a1 [ 0; (ii) two positive roots if a1\0; a2 [ 0 with

a2
1 � 4a2 [ 0; and (iii) no positive root if

a1 [ 0; a2 [ 0.

3. The coexistence equilibrium point E�ðS�; I�; y�Þ, where

S� ¼ 1

b
mðm� cpI�Þ

bc2I�2
þ q
rþ I�

þ d2

� �
; y� ¼ m� cpI�

cbI�

and I� is a root of the following polynomial with fifth

degree:

a�0I
5 þ a�1I

4 þ a�2I
3 þ a�3I

2 þ a�4I þ a�5 ¼ 0; ð6Þ

where aj
� are

a�0 ¼� bdrbpc3ðm� 1Þ
a�1 ¼� c3pdrbðm� 1Þðb� rgÞ

� c2pðm� 1Þðdcdrb� bpmÞ
� c2drbðbm� rmð1 � gÞbcÞ

a�2 ¼� ðbc2½drþ q� � mcpÞðcpdðm� 1Þ þ bm

þ rgcpðm� 1Þ � rmbcð1 � gÞÞ
� bcpmðm� 1Þðm� rcpÞ þ rgdrbc2

a�3 ¼rgcpmðm� 1Þðm� rcpÞ þ rðgmþ mbcð1 � gÞÞ
ðbc2½drþ q� � mcpÞ � bcprðm� 1Þ
� mðcpdðm� 1Þ þ bmÞðm� rcpÞ

a�4 ¼rgrcpm2ðm� 1Þ þ rgm2ðm� rcpÞ
� rm2ðcpdðm� 1Þ þ bmÞ

a�5 ¼m3ð1 � dÞ þ bcmðrmðð1 � gÞÞmrþ bcpÞ:

To find the nature of equilibrium points, we have to find the

characteristic roots of the corresponding linear part. For

this purpose, we give the transformation about any char-

acteristic equilibrium point E�ðS�; I�; y�Þ in the form S ¼
S� þ u; I ¼ I� þ v and y ¼ y� þ w where 0\u; v;w\\1;

then, the model (2) reduce to the following form

D�
u
v
w

0
@

1
A ¼ L

u
v
w

0
@

1
A

where LðE�Þ ¼ lij

 �

; i; j ¼ 1; 2; 3 and l11 ¼ gþ mð1 � gÞ
mþ y�

� �

r � ðd þ bI�Þ; l12 ¼ �bS� þ qr

ðrþ I�Þ2
; l13 ¼ �rS�

mð1 � gÞ
ðmþ y�Þ2

 !
; l21 ¼ bI�; l22 ¼ bS� � d� ðp þ by�Þy��

qr

ðrþ I�Þ2
; l23 ¼ �ðpþ 2by�ÞI�; l31 ¼ 0; l32 ¼ cy�ðpþ

by�Þ; l33 ¼ cðpþ 2by�ÞI� � m:

In order to study the stability of the system, we use the

results of Lemma 1 � 6; which are established in Li et al.

(2009); Choi et al. (2014).

Theorem 3 The trivial equilibrium point E0ð0; 0; 0Þ of the
fractional-order model (2) is locally asymptotically

stable provided that d[ r.

Proof The characteristic matrix of the fractional-order

system is
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LðE0Þ ¼

r � d
q
r

0

0 � d� q
r

0

0 0 � m

0
BBB@

1
CCCA:

The associated eigenvalues of the LðE0Þ are a1 ¼ r �
d; a2 ¼ �d� q

r
and a3 ¼ �m. So, by using Matignon cri-

teria for stability of fractional-order differential equations

we have jargða2;3Þj ¼ p[
�p
2

and jargða1Þ ¼ p[
�p
2

,

provided that d[ r and 0\�\1. Hence, the trivial equi-

librium point E0 is local asymptotically stable if the natural

death rate of the susceptible prey is largest than the

intrinsic growth rate. h

Biologically the above result is highly significant

because if d\r then both the species will disappear from

the system. The analysis shows that the instability of the

trivial equilibrium point cannot be changed using the

memory effect. If the trivial equilibrium point becomes

unstable then the predator-free equilibrium point will

generate. In the next theorem, we shall investigate the

stability of this equilibrium point.

Another important result is that the system may expe-

rience the transcritical bifurcation at r ¼ d for the memo-

ryless system.

Theorem 4 The predator-free equilibrium point

E1ðS�; I�; 0Þ of the fractional-order model (2) is locally

asymptotically stable provided cpI�\m and r þ q
rþ I�

ð1 � r
rþ I�

Þ\d þ bI�.

Proof Here the characteristic matrix is

LðE1Þ

¼

r � ðd þ bI�Þ � bS� þ qr

ðrþ I�Þ2
� rS�ð1 � g

m
Þ

bI� bS� � d� qr

ðrþ I�Þ2
� pI�

0 0 cpI� � m

0
BBBBB@

1
CCCCCA

One of the eigenvalue LðE1Þ is a1 ¼ cpI� � m and other

two satisfies the following equation

a2 � b1aþ b2 ¼ 0 ð7Þ

where b1 ¼ r � ðd þ bI�Þ þ bS� � d� qr

ðrþ I�Þ2

 !

b2 ¼ ðr � ðd þ bI�ÞÞ bS� � d� qr

ðrþ I�Þ2

 !
� bI�

 

bS� � d� qr

ðrþ I�Þ2

 !
Þ: It is obvious that jargða1Þj ¼

p[
�p
2

provided that cpI�\m. On the other hand, other

two roots a2;3 have negative real part if roots of (7) have

negative real part, which will occur if b1\0; b2 [ 0 and so,

jargða2;3Þj[
�p
2

. h

Finally, stability of interior equilibrium point

E�ðS�; I�; y�Þ is investigated. The characteristic equation

corresponding to the Jacobian matrix LðE�Þ is given by:

a3 þ R1a
2 þ R2aþ R3 ¼ 0 ð8Þ

where R1 ¼ �ðl11 þ l22 þ l33Þ;R2 ¼ l11ðl22 þ l33Þ þ l22l33

�l23l32 � l12l21;R3 ¼ l11l23l32 þ l12l21l33 � l11l22l33

�l13l21l32.

The local stability of the E� depends on values of R1;R2

and R3. Using Routh–Hurwitz criterion, the sign of real

part of the equations can be easily determine (Ahmed et al.

2006). The equation (8) has all negative real roots if

R1 [ 0, R2 [ 0, R3 [ 0 and R1R2 [R3 then mð�Þ\0 but if

R1R2 �R3 then the stability–instability can be easily con-

trolled using the memory effect. Using the results as stated

in Ahmed et al. (2006)

Theorem 5 The local stability of persistence equilibrium

point E� is determined if one of the following is hold:

1. QðR1;R2;R3Þ[ 0, R1 [ , R3 [ 0 and R1R2 [R3.

2. QðR1;R2;R3Þ\0;R1 [ ;R2 [ 0 and R1R2 ¼ R3.

where 0\�\1 and QðR1;R2;R3Þ is the discriminant of (8)

which as follows:

QðR1;R2;R3Þ ¼ 18R1R2R3 þ ðR1R2Þ2 � 4R3R
3
1 � 4R3

2 � 27R2
3:

ð9Þ

Next, we shall investigate the existence of Hopf bifur-

cation of the fractional-order system considering the

memory parameter (�) as the bifurcation parameter. It is

obvious that if the conditions stated in Theorem 5 are not

satisfied then the system losses stability through the gen-

eration of periodic solutions. Since if Ri [ 0; i ¼ 1; 2; 3 and

R1R2 � R3\0 then roots of the equation (8) have negative

real part and two will be complex conjugate with positive

real part. In this situation suppose the roots are k1 ¼ �a1

and k2;3 ¼ a2 	 b2 with a1;2; b2 [ 0 then m1ð�Þ\0 and

m2;3ð�Þ ¼
p�
2
� argðk2;3Þ ¼

p�
2
� tan�1ðb2=a2Þ. From the

expression m2;3 one can obtain a fixed value �½H� ¼
2

p
tan�1ðb2=a2Þ such that m2;3ð�Þ\ ¼ [ 0 accordingly as

�\ ¼ [ �½H�. Thus the system will experiences Hopf

bifurcation when it crosses the critical value � ¼ �½H� as the

transversality condition
dðm2;3ð�ÞÞ

d�
j�¼�½H� ¼

p
2
6¼ 0 is
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satisfied. These discussions can be summarized in terms of

the following theorem:

Theorem 6 Interior equilibrium point of the system (2)will

experience Hopf bifurcation for R1 [ 0, R2 [ 0, R3 [ 0

and R1R2 [R3 when the memory parameter ð�Þ will cross
the critical value � ¼ �½H�.

4 Numerical Simulation

In this section, we shall numerically verify the effect of

memory parameter ð�Þ and other model parameters on the

model dynamics. For this purpose, we have taken the

model parameters as shown in Table 1 and different values

of 0\�� 1. To study the dynamics of the ordinary dif-

ferential equation model, we have drawn a complete

bifurcation diagram considering r as the bifurcation dia-

gram (see Fig. 1). It is clear from the figure that the system

experiences transcritical bifurcation two times, one for

generation of planer equilibrium point E1 and another for

generation of E� equilibrium point through stability

exchange of E0, E1, respectively. The full phase portrait

corresponding to Fig. 1 is presented in Fig. 2. It is clear

from Fig. 2a for lower values of rðr\0:128Þ all the species

go to extinction. Due to the extinction of all species, this

situation is harmful to the ecological system. Now,

increasing the value of r (0:128\r\0:585), we observe

that one stable predator-free equilibrium point arises and

E0 exchange its stability (see Fig. 2b). The situation is also

harmful biologically since only prey survives. Again,

increasing the value of rðr[ 0:585Þ, the stable interior

equilibrium point E� generates with E1 exchange its sta-

bility (see Fig. 2c). All the species in the ecosystem survive

simultaneously in this situation, which is biologically sig-

nificant. For these values of the parameters, the memory

effect will not affect the stability of the equilibrium points

only the time of reaching time to the equilibrium point will

increase. To find the periodic solutions of the system, we

enhance the prey birth rate as well as the maximum med-

ical resource to r ¼ 0:72 and q ¼ 1:9; then, we observed

that the interior equilibrium point becomes an unsta-

ble spiral (stable limit cycle) from stable spiral (see Fig 3).

To study the memory effect, we have drawn phase

portraits for different values of memory parameter � (see

Fig 3e). Figure 3e shows the limit cycle becomes smaller

with the decrease of �. We have verified that the system

losses the periodicity and becomes stable for �\0:88 (see

Fig. 4). Thus, the memory effect is stabilizing the system

when the system is showing unstable behavior. Now, we

increased the maximum medical resource q to 2.9 form 1.9

and we observed that the system gives two periodic solu-

tions (see Fig. 5). Now, we introduce the memory effect by

changing the parameter �. Figure 5e shows, firstly, the two

limit cycle collide on a single limit cycle with the decrease

of �, and the limit cycle becomes smaller, and finally, the

system becomes stable for �\0:7 (see Fig. 6). Thus, the

memory effect stabilizes the system. Again, we increased

the maximum medical resource q to 3.9 from 2.9 and found

that the system displayed chaotic behavior (see Fig. 7).

Now, we introduce the memory effect changing the

parameter �, and the system goes to stable mode from the

earlier process but here system is stable for very low values

of � (see Fig. 8). Based on the above discussion, a low

memory effect will stabilize a system when it shows a

periodic solution, but a strong memory effect will stabilize

a system when it displays two periods or chaos. Biologi-

cally this result is highly sensitive because the system with

chaotic behavior (extinction of species) can be stabilized
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Fig. 1 Complete bifurcation diagram with respect to r and other

parameters are given in Table 1

Fig. 2 Full phase portrait of the considered system for different value of r and other parameters are given in Table 1
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Fig. 3 Time series and phase portrait for r ¼ 0:72, q ¼ 1:9 and other parameters are given in Table 1
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Fig. 5 Time series and phase portrait for r ¼ 0:72;q ¼ 3:9 other parameters are given in Table 1
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Fig. 7 Time series and phase portrait for r ¼ 0:72;q ¼ 3:9 other parameters are given in Table 1
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by introducing a high memory effect, i.e., previous mem-

ory of the species.

5 Conclusions

In our study, we examined the effect of fear, treatment, and

cooperation on assessing an eco-epidemiological model

with memory dependence. We have studied the existence,

positivity, and boundedness of the solutions of the frac-

tional-order system. The ordinary system experiences

transcritical bifurcation considering the prey birth rate as

the bifurcation parameter. Transcritical bifurcation is not

directly affected by the memory effect. In the presence of

the memory effect, the fractional-order system undergoes

Hopf bifurcation. The ordinary system exhibits chaotic,

period-doubling, or periodic solutions, and memory effects

can stabilize these solutions. The numerical results of the

simulation show that if the equilibrium point is an unsta-

ble node or saddle, the memory effect cannot change its

behavior. However, the memory effect can stabilize the

system when it is an unstable spiral (including limit cycles

or chaotic behavior). The oscillatory behavior (like one or

two periodic or chaotic) can be changed to a stable spiral,

increasing the memory effect. Fear of predators, hunting

cooperation, and treatment of infected prey with memory

effects all play a crucial role in preserving biodiversity.
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