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ABSTRACT Predicting the usefulness of crosses in terms of expected genetic gain and genetic diversity is
of interest to secure performance in the progeny and to maintain long-term genetic gain in plant breeding.
A wide range of crossing schemes are possible including large biparental crosses, backcrosses, four-way
crosses, and synthetic populations. In silico progeny simulations together with genome-based prediction of
quantitative traits can be used to guide mating decisions. However, the large number of multi-parental
combinations can hinder the use of simulations in practice. Analytical solutions have been proposed re-
cently to predict the distribution of a quantitative trait in the progeny of biparental crosses using information
of recombination frequency and linkage disequilibrium between loci. Here, we extend this approach to
obtain the progeny distribution of more complex crosses including two to four parents. Considering agro-
nomic traits and parental genome contribution as jointly multivariate normally distributed traits, the useful-
ness criterion parental contribution (UCPC) enables to (i) evaluate the expected genetic gain for agronomic
traits, and at the same time (i) evaluate parental genome contributions to the selected fraction of progeny.
We validate and illustrate UCPC in the context of multiple allele introgression from a donor into one or
several elite recipients in maize (Zea mays L.). Recommendations regarding the interest of two-way, three-
way, and backcrosses were derived depending on the donor performance. We believe that the computa-
tionally efficient UCPC approach can be useful for mate selection and allocation in many plant and animal
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breeding contexts.

Allocation of resources is a key factor of success in plant and animal
breeding. Ateach selection cycle, breeders are facing the choice of crosses
to generate the genetic variation on which selection will act at the next
generation. In case of limited genetic variation for targeted traits, the
introduction of favorable alleles from donors to elite material is necessary
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to ensure long term genetic gain. Several approaches have been pro-
posed to introgress superior quantitative trait locus (QTL) alleles
from a donor into a recipient. In case of a single desirable allele, it
can be accomplished using molecular assisted introgression (Visscher
et al. 1996; Frisch et al. 1999). In case of multiple desirable alleles, gene
pyramiding strategies have been proposed (Hospital and Charcosset
1997; Charmet et al. 1999; Servin et al. 2004). More recently, Han
et al. (2017) proposed the predicted cross value (PCV) to select at each
generation crosses that maximize the likelihood of pyramiding desir-
able alleles in their progeny. For quantitative traits implying numer-
ous QTL with small individual effects, genomic selection has been
proposed to fasten the introgression of exotic alleles into elite
germplasm (Bernardo 2009) and to harness polygenic variation
from genetic resources (Gorjanc et al. 2016) using two-way crosses
or backcrosses. However, plant breeders are not only considering
biparental crosses such as two-way crosses or backcrosses but also
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multi-parental crosses including three-way crosses, four-way crosses
or synthetic populations (Gallais 1990; Schopp et al. 2017). Crosses
implying several parental lines are highly interesting for breeders to
exploit at best the genetic diversity underlying one or several traits.
Beyond fastening the introgression of genetic resources into elite
germplasm, genomic selection could be used to predict the interest
of a multi-parental cross involving one or several donors and recip-
ients. Among possible crosses, the identification of those that secure
the performance in progeny and maximize the genome contribu-
tion of donors to the selected progeny is essential for increasing or
maintaining genetic gain and diversity of an elite population.

The interest of a cross for a given quantitative trait can be defined
using the usefulness criterion (Schnell and Utz 1975) that is de-
termined by its expected genetic mean () and genetic gain (iho):
UC = w+i h o, where o is the progeny genetic standard deviation.
The selection intensity (i) depends on the selection pressure and the
selection accuracy (h) can be assumed to be one when selecting on
genotypic effects (Zhong and Jannink 2007). While w can be easily
predicted for different crossing schemes by the weighted average of
parental values, the difficulty to have a good prediction of progeny
variance (0%) hindered the use of UC in favor of simpler criteria (for
a recent review on different criteria, see Mohammadi et al. 2015).
Bernardo et al. (2006) suggested to predict the progeny variance of
a given population using genotypic data of its progenitors and quan-
titative trait loci (QTL) effect estimates, assuming unlinked QTL.
Zhong and Jannink (2007) extended this concept to linked loci. With
the availability of high-density genotyping, it has been proposed to
predict the progeny variance using in silico simulations of progeny
and genome-wide marker effects (Iwata et al. 2013; Bernardo 2014;
Lian et al. 2015; Mohammadi et al. 2015). However, the geometrically
increasing number of cross combinations possible for n parents makes
the testing of all crosses computationally intensive. For instance, with
only n = 50 potential parents, a total of C} = @ = 1,225 genet-
ically different two-way crosses can be formed. This number increases
by a factor of n when crossing all the possible two-way crosses to the
n different parents, so that nCj = 61,250 three-way crosses and
backcrosses are possible. Recently, Lehermeier et al. (2017b) de-
rived algebraic formulas to predict for a single trait the genetic
variance of doubled haploid (DH) or recombinant inbred line
(RIL) progeny derived from two-way crosses, using information
of recombination frequency and linkage disequilibrium in paren-
tal lines. These algebraic formulas have not been extended so far
to multi-parental crosses, hindering the prediction of the interest
of such crosses.

While the expected genetic gain (UC) is a meaningful measure of the
interest of a cross for breeding, it does not account for the parental
genome contributions to the selected fraction of progeny that determine
the genetic diversity in the next generation. Parental genome contribu-
tion to unselected progeny has been studied for several years and is of
specific interest in breeding for donor introduction and to manage long
term genetic gain and inbreeding rate (Hill 1993; Bijma 2000; Woolliams
et al. 2015). Hill (1993) derived the variance of the non-recurrent parent
genome contribution to heterozygous backcross individuals in cattle.
Wang and Bernardo (2000) formulated the variance of parental ge-
nome contribution to F2 and backcross plant progeny considering a
finite number of loci. Frisch and Melchinger (2007) extended this
approach to a continuous integration over loci and showed that a
normal distribution approximated well parental genome contribution
obtained from computer simulations. Also empirical data on pairs of
human full-sibs confirmed that parental genome contributions, i.e.,
additive relationship, can be considered as normally distributed
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around the expected value of 0.5 (Visscher et al. 2006; Visscher 2009).
All these studies considered the parental genome contribution distribu-
tion in unselected progeny. However, to control parental contribution
during polygenic traits introgression, it is of interest to predict parental
genome contribution after selection for quantitative traits.

In this study, we develop a multivariate approach called usefulness
criterion parental contribution (UCPC) to evaluate the interest of a
multi-parental cross implying a donor line and one or several elite
recipients based on the expected genetic gain (UC) and the diversity
(parental contributions, PC) in the selected progeny. We extend here
the rational given by Lehermeier et al. (2017b) for two important
aspects. We address the prediction of progeny variance for multi-
parental crosses implying two to four parents and we consider the
parental contribution as an additional quantitative trait. The orig-
inality of this approach is that it uses derivations of the prediction
of progeny variance in multi-parental crosses implying up to four
parents to jointly predict (i) the performance of the next generation
using the usefulness criterion and (ii) the parental contributions to
the selected fraction of progeny, which to our knowledge has not
been investigated so far. We illustrate the use of UCPC in the
context of external genetic resources introgression into elite mate-
rial considering the specific case of a unique donor that is crossed
to one or several elite recipients. We address the type of multi-
parental cross that should be preferred among two-way crosses,
three-way crosses or backcrosses in order to maximize genetic gain
while introgressing donor alleles in the elite population within one
selection cycle.

MATERIALS AND METHODS

Application example: breeding context

We assumed a generic plant breeding population of fully homozygote
inbred lines genotyped for biallelic single nucleotide polymorphism
(SNP) markers with known positions. We considered a quantitative
agronomic trait (e.g., grain yield) implying p QTL with known
additive effects and with positions sampled among the SNP marker
positions. Further, we considered that the breeding population is an
elite population that should be enriched with several alleles from a
donor without a priori knowledge on major QTL to be introgressed.
We assumed a donor line (D) has been identified and should be
crossed with lines from the elite population (e.g., E; and E,) in
order to obtain high-performing progeny that combine donor fa-
vorable alleles in a performing elite background. This donor line
can vary in its performance level and its diversity relative to the elite
population.

In this context, we aimed at evaluating the interest of two-way
crosses (i.e., D x E; and D x E,), backcrosses (i.e., (D x E;) x E;
and (D x E;) x E,) or three-way crosses (i.e. (D x E;) x E, and
(D x E;) x Ej) based on (i) the mean performance of the selected
progeny and (ii) the average genome contribution of the donor to the
selected progeny. Considering different donor characteristics, i.e.,
originality and performance level, we compared the interest of the
multi-parental crosses listed above in order to derive guidelines for
the use of the donor D. As a benchmark, we also evaluated the interest
of different elite multi-parental crosses.

Usefulness Criterion Parental Contribution

In order to predict the progeny distribution of a given cross in terms of
expected genetic gain and genetic diversity, we considered the agro-
nomic trait and the parental genome contribution as jointly multivariate
normally distributed traits. This enabled us to (i) evaluate the genetic
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Figure 1 lllustration of Usefulness Criterion Parental Contribution (UCPC) for a two-way cross between P; and P,. UCPC combines (A) the concept
of usefulness criterion for an agronomic trait normally distributed (N(u1, o1)) and (B) P1 genome contribution considered as a normally distributed
quantitative trait (N(uc, o¢)) in a multivariate approach (C). UCPC enables to predict the expected progeny performance for the trait (UCt) and P,

genome contribution to the selected fraction of progeny (uge/)

and P, performances.

gain of the selected progeny for the agronomic trait, and to
(ii) evaluate the contribution of each parental line to this selected
progeny. An illustration of the concept of UCPC s given in Figure 1. In
the following sections we present in more detail the theory underlying
UCPC in the general case of a four-way cross.

Multi-parental crosses and genetic model: To cover diverse types of
crosses, we consider a general multi-parental cross implying four
fully homozygous parents (P, P, P; and Py, Figure 2). Note that for
this general presentation of the theory, parents can be lines from the
elite population and/or considered as external donors. This four-
way cross implies two initial crosses giving generations Ffl)and Fl(z),
respectively (Figure 2). A second cross between Fll)and Fﬁz) yields
the generation F1' standing for pseudo F1. Two-way crosses, three-
way crosses and backcrosses can be seen as specific cases of four-way
crosses depending on the number of parents considered as visualized
in Figure 2.

Assuming known genotypes at p QTL underlying the quantitative
trait considered and biallelic markers at QTL positions, x; denotes the
p-dimensional genotype vector of parent i, with the j* element coded as
1 or -1 for the genotypes AA or aa at locus j. Assuming biallelic QTL
effects, a classical way to define the parental genotypes matrix would be
a (4 x p)-dimensional matrix (x; x, %3 x4). Addressing parental
specific effects and following the identical by descent (IBD) genome
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) that depends on the covariance o1 ¢ mainly driven by the difference between P,

contribution of parents to progeny requires to consider parental specific
alleles. Thus, we extend the definition of parental genotypes to a multi-
allelic coding:

X1 #, 0 0p 0

X5 0p x 0, 0p
X = ’ = ’ ’ 2 ’ 5
Parental X; Op Op x3 Op

X4 0, 0p 0p x4

with Xpgrentar @ (4% 4p) dimensional matrix defining the genotype of
the four parents at the 4p parental alleles at QTL, X; the 4p-dimensional
vector defining the genotype of parent i and 0, a p-dimensional vector
of zeros.

We first concentrate on doubled haploid (DH) lines derived
from the F1 generation (DH-1), and then extend our work to DH
lines generated after more selfing generations from the F1 and
to recombinant inbred lines (RILs) at different selfing generations,
i.e., partially heterozygous progeny. Absence of selection is as-
sumed while deriving the progeny from generation F1'. In case
of DH-1, we denote the (N x 4p)-dimensional genotyping matrix of
N progeny derived from a four-way cross (Figure 2) in a multi-allelic
context as:

XProgeny = (Xl Progeny X Progeny X3 Progeny Xy Progeny):
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Figure 2 lllustration of four-way crosses (left) and derived crossing
schemes (right). In the general case of four-way crosses, nomenclature
is defined for recombinant inbred lines (RILs) after k generations of
selfing (RIL-k) from pseudo F1 generation (F1') and doubled haploid
lines (DH) derived from the RIL generation k-1 (DH-k, for k > 1). RIL-1
corresponds to the pseudo F2 generation and RIL o = DH .

where for instance X progeny isa (N x p)-dimensional matrix of prog-
eny genotypes at QTL coded -1 or 1 for alleles inherited from parent
P; and 0 otherwise.

The multi-parental coding enables to consider By =
(B By Bz Brs) 2 4p-dimensional vector of known parental
specific additive effects for the agronomic trait. Thus, Xprogen, Br is
the vector of progeny breeding values of the agronomic trait. As
we assumed additive effects, the breeding value equals the genetic
value. Assuming no parental specific effects for the agronomic
trait, as in the application example considered, B reduces to
B =(By By By By)» where B, is the vector of known QTL effects
in the elite and donor populations. Furthermore, the multi-parental
coding considered enables to define the effects to follow IBD parental
contributions either genome-wide (namely C, ) or considering only
the favorable alleles (namely C(+), B(4))- In this study, we focused
on the first parent (P;) genome IBD contributions, but a general-
ization to every parent is straightforward. In the following, B is a
4p-dimensional vector defined to follow P; genome-wide contribu-
tion and B, a 4p-dimensional vector defined to follow P genome
contribution at favorable alleles. In the general case of four-way

%(x{ 01; OI; 01;)' :’% X, and B¢, is identical to B ex-
cept that if P; has the unfavorable allele at QTL g € [1, p], the cor-
responding element of ﬂc( 4+ is null. Thus, Xprogeny B¢ represents the
proportion of alleles in the progeny that are inherited from P; in-
dependently of the allele effect and Xprogeny BC( +) Tepresents the
proportion of alleles in the progeny that are inherited from P,
and favorable. In the specific case of two-way crosses (i.e., P} = P,
and P; = P4 s0 x; 7x2 and x4 = x3), P; genome-wide contribution

is defined by B, —— (x, x, 05 0p)".

crosses B =

Prediction of progeny mean and progeny variance: In this section we
consider a generic quantitative trait defined by the 4p-dimensional
vector of parent specific additive effects B = (B B; B3 Bi)'- The
vector 3 can be replaced by B, B¢ or By without loss of gener-
ality. In order to evaluate the performance of a four-way cross, we
derive its expected progeny mean and variance. The expected prog-
eny mean can be derived as the mean of all four parents’ breeding
values:
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1 ’
Iu’Progeny = Z 1y Xparental ﬁ (1)

The progeny variance can be derived as:

= Var(XProgeny ﬂ) = Blvar(XPrageny)B = ﬂ, B, (2)

2
Oprg geny

where X is the (4p x 4p)-dimensional covariance matrix between pa-
rental alleles at QTL in progeny. The diagonal elements X;; (j € [1,4p])
are equal to the variance of parental alleles in progeny. Note that off-
diagonal elements X (j # I € [1,4p]) correspond to the disequilib-
rium covariance between two parental alleles j and [ at different QTL
(i.e., different physical positions) or at the same QTL. The linkage
disequilibrium parameter in the progeny between parental alleles Dj
can be derived from the linkage disequilibrium parameter among the
four parental lines and the recombination frequency between parental
alleles in progeny (Table 1, see File S1 for derivation). In the specific
case considered, i.e., doubled haploid lines derived from generation
F1 (DH-1), this leads to the covariance entry:

% = 4Dy = (1 —2c§l‘))<q>2-l+ (1 —2&1))@”) 3)

j ] jl b )

where @y = D},Z + D3 is the sum of the disequilibrium parameter
between parental alleles j and [ in pairs of parents implied in the first
crosses and @, = D}z4 + D}f’ + Djzl4 + Djzf is the sum of disequilib-
rium parameter between parental alleles j and I in pairs of parents
indirectly implied in the second cross. Djll2 denotes the linkage disequi-
librium between parental alleles j and [ in the pa1r of parental lines P,
and P, which can be computed as D},Z = [(X1 X0) (X, — Xz)}
c(l) is the recombination frequency between parental alleles j and )
in the parental lines obtained from the absolute genetic distance dj in
Morgan as c;l ) = %(1 e 241) (Haldane 1919). When j and ! refer to
parental alleles at the same QTL, it holds d;; = c(l ) — 0. This formula
given in [Equation 3] can be applied analogously in every case pre-
sented in Figure 2: three-way crosses, backcrosses and two-way crosses.
See File S1 for a detailed derivation of the covariance in DH-1 progeny
[Equation 3] and File S2 for an extension to DH progeny derived after
selfing generations and to recombinant inbred lines at different selfing
generations.

Indirect response to selection for parental contributions: We aim at
predicting the full multivariate progeny distribution (mean, variance
and pairwise covariances) for the agronomic trait, P; genome-wide
contribution (C) and P; contribution at favorable alleles (C(+)).
Therefore, we consider all three traits in the (4p x 3)-dimensional
multi-trait effect matrix (Br B¢ Bc(y))- Similarly as for one trait, the
mean performance (MT ) and mean genome-wide contribution of
Py in progeny before selection (,LL(C ) are derived as the mean of all
four parents’ breeding values for each trait [Equation 1]. As expected,
,uéo ) = 0.25 for four-way, three-way and backcrosses and ,ug) =0.5
for two-way crosses. Progeny variances for all three traits are estimated
using Equation 2 and pairwise covariances in progeny are estimated as:

or.c=Br ZBc=BcZBr, (4a)

Br ZBc(+) = Bcy) ZBr (4b)

or, C(+) =

Progeny means and (co)-variances before selection can be used to
estimate the expected response to selection on multiple traits. For
this purpose, we used the Usefulness Criterion (Schnell and Utz
1975) in a multi-trait approach as illustrated in Figure 1. Assuming
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Table 1 Overview of genotypic covariance between loci j and I for different populations derived from the F1’ generation based on the

disequilibrium parameter in pairs of parental lines

Population Genotypic variance-covariance > j
DH generation k 2 (1- 2c )(1)2/ (1- 2(:},“ + cj(/kfn)“ - 2c.(,1>)CI>U,
k
RIL generation k P (1- 2le —(0.5(1 *ZC(,U)) VD2 + (1 - )(1 - 20 )<I)”

“Doubled haploid (DH) lines derived after k-1 generations of selfing (k € N*, k = 1 for DH lines derived directly from F1')
Recombinant Inbred Lines (RIL) after k generations of selfing (k € N*, k = 1 for pseudo F2 generation)

by = 912 + D34 and @y = Djﬂ/4 + D/113 + DJZ/A + Dfﬁ

2c 1.t
o fmcﬂ, (1-05t(1-2¢]"))

an intra-family selection of the progeny with the highest values
for the agronomic trait with a selection intensity i and a selec-
tion accuracy of one (Figure 1A), the expected mean performance
after selection ,u(T " is defined as the usefulness criterion of
the cross:

ucr = up? = u +i or ()

The correlated response to selection on Py genome w1de contribution
(Mc ) and P; contribution at favorable alleles (p,c ) are (Falconer
and Mackay 1996):

M(Cfez) _ M(Cg) L 0TC (62)
or
and
) _ (0) | .OT.C)
Ko = R i or (6b)

The contribution of P; at unfavorable alleles after selection can be
derived as:

(sety _ (0) ITC(=) (0 (0) . IT,(C-C(+)
Fo-) = Me(-) + 1 or =Hc T Hew +i or
=l - M(Csfiz) (6c)

Figure 1C illustrates, in the case of a two-way cross (P1 x P,), the
indirect response to selection on P; genome-wide contribution (,LL(C )
depending on the covariance oy ¢ that is mainly driven by the differ-
ence of performance between P; and P,.

Simulation experiments

We performed two simulation experiments. The aim of the simulation
experiment 1 was the validation of the presented formulas for the
moments of the distribution of progeny from four-way crosses. In
simulation experiment 2, we investigated different crossing schemes
(two-way, three-way and backcrosses) in terms of genetic gain and
donor contribution.

Genetic material: We considered 57 Iodent inbred lines from the
Amaizing Dent panel (Rio et al. 2019). Iodent defines a heterotic group
that has been derived 50 to 70 years ago and that is commonly used in
maize breeding (Troyer 1999; Van Inghelandt et al. 2012). In the fol-
lowing we refer to these lines as elite lines. Elite lines were genotyped
with the Illumina MaizeSNP50 BeadChip (Ganal et al. 2011). After
quality control and imputation, 40,478 high quality biallelic SNPs were
retained. The genetic map was obtained by predicting genetic positions
from physical positions (Jiao et al. 2017) using a spline-smoothing
interpolating procedure described in Bauer et al. (2013) and the con-
sensus dent genetic map in Giraud ef al. (2014). We considered a
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quantitative agronomic trait (e.g., grain yield) implying p = 500 QTL
with known biallelic effects 8, sampled from N(0,,0.0021I,,).

Simulation experiment 1: validation of UCPC: In order to validate
the derivations for progeny (co)-variances and UCPC method in case of
four-way crosses for DH and RIL progeny for selfing generations
k € [1,6] (Table 1), we randomly generated 100 four-way crosses out
of the 57 elite lines. For each cross, a set of 500 QTL was randomly
sampled among the 40,478 SNP markers across the genome to generate
the agronomic trait. We also considered the first parent (i.e., P;)
contributions: genome-wide (C) and at favorable alleles (C(+)). On
one hand, we used algebraic formulas to predict the mean and
(co)-variances for trait and contributions before selection within
each cross (derivation). On the other hand, 50,000 DH or RIL prog-
eny genotypes were simulated per cross at every selfing generation
and the empirical mean and (co)-variances before selection were
estimated (in silico). For in silico simulations, crossover positions
were determined using recombination rates obtained with Hal-
dane’s function (Haldane 1919). The correlated response to selec-
tion on P; contributions after selecting the 5% upper fraction of
progeny for the agronomic trait were either predicted using UCPC
(derivation) or estimated after a threshold selection (in silico). The
correspondence between predictors was assessed by the squared
linear correlation and the mean squared difference between pre-
dicted (derivation) and empirical (in silico) values.

Simulation experiment 2: evaluation of different multi-parental
crossing schemes between donor and elite lines: We used UCPC to
address the question of the best crossing scheme between a given genetic
resource (donor Py, Figure 2), and elite lines. We identified the crossing
scheme that maximized the short term expected genetic gain and eval-
uated donor genome contributions to the selected fraction of progeny.
For this, we set up a simulation study where, at each iteration, an elite
population of 25 lines was randomly sampled out of the 57 elite lines.
Further, 500 QTL were sampled among monomorphic and polymor-
phic markers in the elite population in order to conserve the frequency
of monomorphic loci observed on 40,478 SNPs in the entire elite pop-
ulation. At each iteration, 100 intra-elite two-way crosses, backcrosses,
and three-way crosses were randomly sampled as benchmark. Their
progeny mean (u;) and progeny standard deviation (o) for the
agronomic trait were predicted by Equation 1 and 2, respectively.
Within each iteration, 216 donor genotypes were constructed to
cover a wide spectrum of donors in terms of performance and originality
compared to the elite population. We defined three tuning parameters
that reflect the proportions of six classes of QTL (Dudley 1984) defined
by the polymorphism between the donor and the elite population
(Table 2). All possible combinations of the three tuning parameters
varying from 0 to 1 with steps of 0.2 were considered. For instance,
among the favorable QTL in the elite population (classes I and J,
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Table 2 Classes of quantitative trait loci (QTL) and tuning
parameters considered for simulating the donors. The favorable
allele at QTL is denoted (+) and the unfavorable is denoted (-). A
polymorphic QTL in the elite population is denoted (+/-)

QTL Elite Single Tuning
classes Population Donor parameters
| + + 1/(1+J) @
J + -
K - + K/(K+L) b
L - -
M +/- + M/(M+N) ¢
N +/- -
a

proportion of monomorphic favorable QTL in the elite population where the
donor had the favorable allele.
proportion of monomorphic unfavorable QTL in the elite population where the
donor had the favorable allele.

Cpropor‘tion of polymorphic QTL in the elite population where the donor had
the favorable allele.

Table 2), in the donor genome these QTL were randomly assigned to
be favorable or unfavorable with probability I/(I+]) or J/(I+]), re-
spectively. This was done similarly for all classes in Table 2. For each
donor, we considered the simulated agronomic trait together with
the donor genome contributions genome-wide (C) and at favorable
alleles (C(+)). We defined the genetic gap with the elite population
as the difference between donor and mean elite genetic values. The
originality of the donor was defined as its mean pairwise modified
Rogers distance (MRD) with elite lines.

For all possible 25 two-way crosses, 600 three-way crosses and
25 backcrosses between every donor and the elite population we
predicted the progeny mean (u) and the progeny standard deviation
(o) of each trait (Equation 1 and Equation 2) and the covariances
between agronomic trait and contributions (o ¢, Equation 4a and
or,c(+)> Equation 4b). We defined the post-selection mean for the
agronomic trait using Equation 5 with selection intensity i corre-
sponding to a selection pressure of 5%. For comparison between
iterations, we subsequently standardized the UC for the agronomic
trait based on the elite population by UCr = (p,(Tsel) — Wpiite)/ O Elites
where g, is the mean and o g, the genetic standard deviation of the
elite population. After selection on the agronomic trait, the correlated
response on donor contributions was estimated using Equation 6 a-c.
Finally, for each type of cross (two-way, three-way and backcrosses)
and each donor, we identified the cross that maximized the expected
genetic gain for the agronomic trait (UCr).

Data availability

Simulations were based on genotypic maize data and genetic map
deposited in File S4 at figshare. All simulations have been realized using
R coding language (R Core Team 2017). Supplemental material avail-
able at Figshare: https://doi.org/10.25387/g3.7405892.

RESULTS

Simulation experiment 1: validation of UCPC

Predictions from the analytical derivations (Equation 1, 2, 4a, 4b, 5, 6a,
6b) showed a high correspondence with empirical results from in silico
simulations for the 100 DH-1 families (DH lines after F1’, Figure 2).
The predicted progeny variance from derivations and from in silico
simulations (Figure 3A-C) as well as the covariances between the ag-
ronomic trait and parent contributions (Figure 3D-E) showed squared
correlations above 0.96. Predicted and simulated post-selection mean of
the agronomic trait as well as predicted and simulated post-selection
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parental genome contributions showed correlations above 0.9 (Figure
3F-H) (R? = 1.000 for Trait, R? = 0.900 for C and R? = 0.946 for C(+)).
Validations for RIL and DH progeny derived from more selfing
generations are presented in File S2.

Simulation experiment 2

Intra-elite multi-parental crosses: a benchmark: Considering only
the elite population generated at each iteration, the mean average
performance over 20 iterations was figy, = 0.067 = 1.009 and the
mean elite standard deviation was o g, = 0.748 * 0.107. We observed
(Table 3) that intra-elite three-way crosses generated more prog-
eny standard deviation (o) (0.576 * 0.034) than two-way crosses
(0.510 * 0.026) and backcrosses (0.442 * 0.022). In terms of prog-
eny mean (uy), differences were not significant between types of
crosses. The gain in o1 yielded a higher usefulness criterion (UCr yeqn)
with three-way crosses (1.599 e £ 0.317) than two-way crosses
(1.461 ogre = 0.268). On the contrary, when only considering the
best cross in terms of gain for the agronomic trait (UCr pes), two-way
crosses led to a higher UC (3.115 oy = 0.362) than three-way
crosses (2.876 o gize + 0.420) or backcrosses (2.804 ogjize + 0.377).

Donor genome contribution in multi-parental crosses: For each
simulated donor, we identified the two-way cross, three-way cross
and backcross that maximized the UC for the agronomic trait (UCr).
Those crosses are denoted as best crosses in the following. We ana-
lyzed the relationship between donor contributions to the selected
progeny of the best crosses and the genetic gap between the donor
and the mean elite population (Figure 4). The genome-wide contribu-
tion, the contribution at favorable alleles, and the contribution at un-
favorable alleles are shown in Figures 4A, 4B and 4C, respectively. For
a given donor, the genome-wide donor contribution after selection was
higher in the best two-way crosses than in the best three-way crosses or
backcrosses. For illustrative purposes, we differentiated five cases from
the worst donor carrying only unfavorable alleles at QTL (case 0) to
the best donor carrying favorable alleles at all QTL (case 4). Starting
from case 0, the selection tended to eliminate most of the donor
genome in progeny until a lower bound (Figure 4A, 27.1% for the best
two-way cross, 6.7% for the best three-way cross and 6.3% for the best
backcross). Very badly performing donors (case 1; genetic gap
= —5),i.e, carrying favorable alleles at maximum 180 QTL, had little
chance to pass their favorable alleles to the selected progeny (Figure
4B, ,LL(S(ZQ> = 4.5% in the best two-way cross, /VL(CTQ) = 1.9% in the best
three-way cross and ,LL(CSEQ = 1.7% in the best backcross). When the
performance of the donor increased (case 2; —5 < genetic gap =5),
a higher portion of the donor genome was retained in the selected
progeny (Figure 4B). With an increased number of favorable alleles
(case 2), genome-wide donor contribution increased linearly with the
genetic gap due to both, the selection of favorable alleles from the
donor (Figure 4B) and the linkage drag with unfavorable alleles (Figure
4C). This linear trend continued until the donor had mainly favorable
alleles (case 3;5 < genetic gap). In case 3, we observed a linear increase
of donor contribution at favorable alleles (Figure 4B). A correlated
decrease of donor contribution at unfavorable alleles was observed at
a nearly constant genome-wide contribution. Finally, in case 4, the
genome-wide contribution was equal to an upper bound limit (Figure
4A, 72.6% for the best two-way cross, 42.9% for the best three-way
cross and 43.5% for the best backcross).

Comparison of genetic gain among multi-parental crossing schemes:
When the donor outperformed the elite population, the best two-way
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cross was more likely yielding a higher genetic gain than the best three-
way cross or backcross (Figure 5A). On the contrary, when the donor
underperformed the elite population, the best three-way cross and
backcross yielded a higher genetic gain than the best two-way cross.
The higher progeny standard deviation (or) in the best two-way cross
compared to the best three-way cross or backcross (Figure 5B) did not
compensate the loss in progeny mean () (Figure 5C) in the best two-
way cross. We observed that the type of cross maximizing the UCr (i.e.,
two-way cross, three-way cross or backcross) depended only on
the performance of the donor, whatever the mean genetic distance
with the elite population (results not shown). A similar comparison
between three-way crosses and backcrosses showed that the best back-
cross yielded similar u (Figure 5B) but lower o1 than the best three-
way cross (Figure 5C), especially when the donor had a genetic value
close to the best elite lines. This resulted in a slightly higher expected
genetic gain in three-way crosses compared to backcrosses (Figure 5A).

DISCUSSION

Usefulness criterion for quantitative traits in multi-
parental crosses

Accurate predictors of progeny variance accounting for the map position
ofloci and linkage phase of alleles in parents have been recently derived
for biparental crosses (Lehermeier et al. 2017b; Osthushenrich et al.
2017). Nonetheless, breeders might use multi-parental crosses imply-
ing more than two parents to combine best alleles segregating in the
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breeding population. Therefore, we extended derivations given by
Lehermeier et al. (2017b) for two-way crosses to four-way crosses by
accounting for linkage disequilibrium between pairs of parental lines.
We validated the derived genetic variance of RIL and DH progeny of
four-way crosses by simulations (Figure 3, File S2). As expected, the
formula for four-way crosses reduces to the one given by Lehermeier
et al. (2017b) in case of two-way crosses (File S1). The results from our
simulations showed that, considering elite material only, three-way
crosses generate on average more variance than two-way crosses or
backcrosses, resulting in higher genetic gain (Table 3). Nevertheless,
the best possible cross (i.e., maximizing the expected genetic gain) was
a two-way cross for most iterations (90%). This can be explained by
the fact that crossing the two best elite lines generates more genetic
gain than crossing them to a third less performant elite line, despite
a potential gain in progeny variance. Notice that we considered only
one polygenic agronomic trait but three-way crosses can be more
advantageous for bringing complementary alleles for several traits.
Under the formulated assumptions and with available marker effects
(see discussion below), the general formula to predict mean and var-
iance of four-way cross progeny makes it possible to identify the
multi-parental cross that maximizes a given multi-trait selection ob-
jective (see discussion below) without requiring computationally in-
tensive in silico simulations of progeny. The generalization to several
generations of selfing for RIL progeny enables in addition to differ-
entiate crosses releasing differently the variance in time (File S2). The
presented formula for four-way crosses can also be applied to crosses
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Table 3 Intra-Elite crosses predicted progeny mean (u;), progeny standard deviation (or) and resulting expected genetic gain UCr with
a selection pressure of 5%, once averaged over all crosses (UCr jq,) and for the best cross identified (UCr ). For all parameters the mean

(= SD) over 20 iterations is given

M7 aT UCT mean UCrt pest
Two-way 0.086 (= 1.016) 0.510 (= 0.026) 1.461 (£ 0.268) 3.115 (= 0.362)
Three-way 0.049 (= 1.040) 0.576 (= 0.034) 1.599 (= 0.317) 2.876 (£ 0.420)
Backcross 0.058 (= 1.042) 0.442 (= 0.022) 1.232 (= 0.247) 2.804 (x 0.377)

of two heterozygous parents by considering its phased genotypes
as four separate parents. Doing so, our approach can be adapted for
heterozygous plant varieties that are common in perennial species
and for crosses with hybrids, as well as for animal breeding where
the prediction of Mendelian sampling variance can be very useful for
mating decisions (Bonk et al. 2016).

Parental contributions in multi-parental crosses

under selection

Frisch and Melchinger (2007) derived the expected variance of parental
contribution before selection in fully homozygote progeny accounting
for linkage disequilibrium between loci assuming a biparental cross and
considering only polymorphic loci. In this study, we proposed an orig-
inal way to follow parental genome contribution to the selected fraction
of progeny in multi-parental crosses, namely UCPC. It is grounded in
a normal approximation of the probability mass function of parental
contribution (Hill 1993; Frisch and Melchinger 2007) and progeny
variance derivations. In the specific case of DH lines derived from
two-way crosses or backcrosses and considering one chromosome
of 100cM, our prediction of parental genome contribution variance
converged to the one of Frisch and Melchinger (2007) when increasing
the number of loci (File S3). However, the previous literature did not
combine parental contributions with quantitative traits. Our original
multivariate UCPC approach enables to predict the covariance between
parental genome contributions and traits of economic interest. Based
on multivariate selection theory, UCPC predicts the expected realized
parental genome contribution after selection on traits of interest.
It allows to follow parental genome contribution inheritance over
generations and provides the likelihood of reaching a specific level
of parental contribution while prescreening the most performing
lines. Such information can guide breeders and researchers to deter-
mine the minimal number of progeny to derive from a cross between
a donor and one or several elite lines so that the expected donor
contribution after selection can reach a targeted value.

Predicted genome-wide donor contribution to progeny after se-
lection was bounded to a minimum in case of the worst donor and
a maximum in case of the best donor. In line with the predicted
distribution of parental genome contribution before selection obtained
in maize by Frisch and Melchinger (2007), these results show that in
one selection cycle with a reasonable selection intensity (e.g., 5%) it is
unlikely to get completely rid of unfavorable parental alleles. Parental
genome contribution was bounded in selected progeny due to the low
probability of combining all alleles from a single parent. Note that
UCPC also allows to follow the contribution of parents to progeny
performance by defining a vector of effects based on parental perfor-
mance marker effects. For instance, considering (B, 01; 0;, 01;)' en-
ables to follow the first parent contribution to progeny performance.

Recommendations for donor by elites crosses

Using UCPC, we addressed the question of polygenic trait introgression
from an inbred donor to inbred elite recipients with a focus on common
plant breeding crossing schemes: two-way, three-way and backcrosses.
We assumed that the objective was to derive in one selection cycle an
inbred progeny that combined donor favorable alleles in a performing
elite background. Such progeny can be used as parental lines for new
crosses in order to quickly introgress new favorable alleles in a breeding
program. Such a short term vision of genetic resource integration can
be complementary to a longer term pre-breeding approach using
exotic material (Bernardo 2009; Gorjanc et al. 2016; Yu et al. 2016).
As expected, donors underperforming the elite population (inferior
donor) yielded a higher genetic gain when complemented by two elite
lines in three-way crosses or by twice an elite line in backcrosses rather
than by a single elite line in two-way crosses. In this case, there is an
advantage of crossing schemes involving, on average before selection,
only one fourth of the donor genome instead of half of the donor
genome as it would be the case for a two-way cross. On the contrary,
two-way crosses were more adapted to donors outperforming the elite
population. If the donor showed a similar performance level as the
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Figure 4 Donor contribution to the selected progeny of the best two-way cross (Donor*Elite), the best three-way cross ((Donor*Elite1)*Elite2) and

the best backcross ((Donor*Elite1)*Elite1), depending on the genetic gap between donor line and the elite population. Each data point corre-
sponds to the progeny of the best cross and is colored depending on the type of cross. (A) Donor genome-wide contribution after selection ,uge,),
(B) donor genome contribution at favorable alleles after selection M((,fa)) and (C) donor genome contribution at unfavorable alleles after selection
,u(csfi)). Numbers (0, 1, 2, 3, 4) correspond to illustrative cases based on genetic gap referred in the text. lllustrative cases 0 and 4 correspond to the
worst and best donor respectively. lllustrative cases 1, 2, 3 are delimited by genetic gap values -5, 5 as represented by the vertical dashed lines.
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elite lines, no general rule could be drawn. In such a case, we rec-
ommend to identify the best crossing scheme by predicting every
potential cross using the UCPC approach. As expected under a
lower dilution of donor alleles into elite alleles in two-way crosses
compared to three-way crosses or backcrosses, the predicted ge-
nome-wide donor contribution to selected progeny was higher in
the best two-way cross than in the best three-way cross or the best
backcross (Figure 4A).

We observed for a polygenic trait that, despite a lower competition
between donor and elite favorable alleles, backcrosses were not signif-
icantly superior to three-way crosses for maintaining higher donor
contribution at favorable alleles (Figure 4B). In addition, backcrosses
generated less progeny variance (Figure 5C) but similar progeny mean
than three-way crosses, resulting in a lower genetic gain (Figure 5A).
This observation depends on the elite population considered. For in-
stance, it might not hold if one unique elite line highly outperforms all
other lines. More generally, while backcrosses only combine donor
alleles with alleles of one elite parent, three-way crosses combine donor
alleles with alleles of two complementary elite lines and are thus closer
to material generated at the same time using two-way crosses in routine
breeding. For these reasons, we suggest that three-way crosses should
be preferred over backcrosses for polygenic trait introgression in elite
germplasm. Our results support a posteriori the crossing strategy
adopted in the Germplasm Enhancement of Maize project (GEM,
e.g., Goodman 2000). In GEM, maize exotic material has been intro-
gressed into maize elite private lines using three-way crosses imply-
ing two different private partners. With the possibility to efficiently
predict the progeny distribution of three-way crosses (UCPC), the
best crossing partners can be identified to meet the targeted out-
come in short time which allows to fully profit of the advantages of
three-way crosses.

Multivariate selection for agronomic traits and

parental contributions

We observed that badly performing donors hadlittle chance to pass their
favorable alleles to progeny selected for their agronomic trait perfor-
mance. This is a consequence of the negative covariance between the
performance for the trait and donor contribution in case of an inferior
donor (Figure 1C). To prevent this loss of original alleles, we could
account for such tension in the multivariate context, for instance by
applying a truncation on donor contribution before selecting for the
trait using the truncated multivariate normal theory (Horrace 2005)
or vice versa. Otherwise, selection on donor contribution and the
agronomic trait can be applied jointly by building a selection index,
which is promising to balance short term genetic gain and long term
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genetic diversity (i.e., selection on donor contribution) according to
specific pre-breeding strategies.

More generally, the multivariate context provides the opportunity
to deal with several quantitative traits on which selection is directly or
indirectly applied. Further traits for which genome-wide estimated
marker effects or QTL effects are available can be considered. For
external genetic resource utilization, it enables to introgress second-
ary traits such as polygenic tolerances to biotic or abiotic stresses (e.g.,
drought tolerance), while agronomic flaws (e.g., plant lodging) can
be counter-selected using threshold selection. Recently it has been
shown by Akdemir et al. (2018) how the improvement of multiple
traits can be addressed with multi-objective optimized breeding
strategies.

Practical implementation of UCPC in breeding

In practice, marker effects estimated with whole-genome regres-
sion models can be used in lieu of QTL effects that are unknown.
Such effects should be estimated on a proper training population
mixing both elite lines and original genetic resources. Marker
effects can be estimated using Bayesian Ridge Regression as sug-
gested in Lehermeier et al. (2017a; b) to derive an unbiased esti-
mator of progeny variance (PMV: posterior mean variance). In our
simulation study, we considered only biallelic QTL effects. As we
formulated a multi-allelic model, population-specific additive ef-
fects could be considered straightforwardly. Considering that the
donor might have a different origin than the elite lines (e.g., other
heterotic group in hybrid crops), it might be of interest to use parental
specific effects estimated by e.g., multivariate QTL mapping (Giraud
et al. 2014) or genome-wide prediction models (Lehermeier et al.
2015). UCPC relies on individual marker effects but the computa-
tion of the variance in the progeny accounts for collinearity among
markers, i.e., considers haplotype transmission. We therefore expect
that inaccuracies in marker effects estimates will affect UCPC to a
limited extent, but this warrant specific investigations as suggested
by Miiller et al. (2018).

Our approach is totally generic and can deal with any information on
the position and the effect of QTL. However, main assumptions should
be discussed at this point. We assumed known true genetic positions
of QTL and no interference during crossover formation to derive
recombination frequencies (Haldane 1919). In practice, the precision
of recombination frequency estimates is a function of the available
mapping information and the frequency of interference. Further-
more, recombination frequency might vary among the same species
(Bauer et al. 2013) impairing the accuracy of variance prediction.
To limit this risk we suggest to use a multi-parental consensus map
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(e.g., Giraud et al. 2014). The effect of genetic map inaccuracies on
progeny co-variances prediction requires further investigations.
Furthermore, derivations assumed no selection before develop-
ing progeny. However, selecting progeny from which to derive DH
lines is likely in practice. This can involve voluntary molecular
prescreening for disease resistance (e.g., during selfing generations)
or practical limitations (e.g., originating from low DH induction
rates). If the genetic correlation between those traits and the traits
considered within UCPC is null, the derived progeny distribution
and UC for the four-way crosses will still hold.

The derived formula for progeny mean and variance holds for
mono- and oligo-genic traits, whereas the usefulness criterion un-
derlying UCPC uses normal distribution properties. When consider-
ing traits involving a sufficient number of underlying QTL, as it is the
case for most agronomic traits and parental genome contributions,
this assumption of normality is likely guaranteed by the central limit
theorem. If only a limited number of known major QTL should be
introgressed from a donor, an allele pyramiding strategy will be more
suitable (Hospital and Charcosset 1997; Charmet et al. 1999; Servin
et al. 2004). Furthermore, the predicted cross value (PCV) as recently
suggested by Han et al. (2017) can be applied in this context and could
be extended to multi-parental crosses considering our derivation of
progeny variance.

We presented an IBD definition of parental genome contribu-
tions using a multi-allelic approach. The multi-allelic coding yields
covariance matrices that are four times larger compared to using a
biallelic coding. In practice, to obtain a less computationally intensive
solution, the genotyping matrix can be reduced to a bi-allelic coding
which yields an identity by state (IBS) parental genome contribu-
tion that informs on the sequence similarity between one parent and
progeny (see File S3). However, in such a case parental contributions
do not sum up to one and it cannot be accounted for multi-allelic (i.e.,
haplotypic) effects. For biparental crosses (i.e., two-way and back-
crosses), an IBS approach (File S3) considering only polymorphic
markers homogeneously covering the genome can be used as an
approximation of the IBD contribution.

Future research directions

UCPC is opening several future research directions. We illustrated the
use of UCPC for a simple donor introgression problem but it can be
extended to more complex problematics commonplace in breeding. For
instance, UCPC can be applied to evaluate the interest of introgressing
several donors, e.g., evaluate the interest of combining alleles from two
donors (D and D,) with elites (E; and E;) in (D; x E;) x (D) x E)
or (D; x D,) x (E; x E).

Mating design optimizations, i.e., finding an optimized list of crosses
to realize each year, accounting for a compromise between short and
long term genetic gain have been investigated using two-way crosses
and parental means as predictor of the expected gain and the inbreed-
ing rate in the next generation (De Beukelaer et al. 2017; Gorjanc et al.
2018). Applying UCPC within the context of mating design optimiza-
tion would enable to account for parental complementarity through
the use of progeny variation, i.e., within cross variance, as proposed
by Shepherd and Kinghorn (1998), Akdemir and Sanchez (2016) and
Miiller et al. (2018). Furthermore, UCPC would enable to use parental
contribution to the selected fraction of progeny to predict the realized
inbreeding in the next generation. We conjecture that considering
the realized parental genome contribution together with the usefulness
criterion in UCPC is promising for mating design optimization to
manage short and long term genetic gain in breeding programs. Future
research will also be needed to investigate the use of multi-parental
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crosses in mating design optimizations. Hereby, UCPC that efficiently
predicts the progeny distribution of crosses with up to four parents
will represent a good starting point for further research.

Conclusions

We developed, validated and illustrated the usefulness crite-
rion parental contribution (UCPC) that evaluates the interest of
multi-parental crosses based on the expected genetic gain (UC) and
the parental contributions (PC) in the next generation. UCPC allows
to (i) predict the progeny variance of four-way crosses accounting for
linkage disequilibrium and to (ii) follow all parental genome contri-
butions to the selected progeny to evaluate the interest of a cross
regarding an objective that is a function of the expected performance
and the diversity in the selected progeny. Illustration of the use of
UCPC in the context of polygenic trait introgression from a donor to
elite recipients enabled to draw some major recommendations. As
expected, three-way crosses and backcrosses were more adapted to
donors underperforming the elite population (inferior donor) while
two-way crosses were more adapted to donors outperforming the elite
population. We also suggested that three-way crosses should be pre-
ferred over backcrosses for polygenic traits introgression. Further-
more, we highlighted the importance of a compromise between
UC and PC in case of an inferior donor.
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