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Meningiomas are the most common primary tumors of the central nervous system. Given
the fact that the majority of meningiomas are benign, the preoperative risk stratification
and treatment strategy decision-making highly rely on the conventional subjective
radiologic evaluation. However, this traditional diagnostic and treatment modality may
not be effective in patients with aggressive-growing tumors or symptomatic patients with
potential risk of recurrence after surgical resection or radiotherapy, as this passive “wait
and see” strategy could miss the optimal opportunity of intervention. Radiomics, a new
rising discipline, translates high-dimensional image information into abundant
mathematical data by multiple computational algorithms. It provides an objective and
quantitative approach to interpret the imaging data, rather than the subjective and
qualitative interpretation from relatively limited human visual observation. In fact, the
enormous amount of information generated by radiomics analyses provides radiological to
histopathological tumor information, which are visually imperceptible, and offers
technological basis to its applications amid diagnosis, treatment, and prognosis. Here,
we review the latest advancements of radiomics and its applications in the prediction of
the pathological grade, pathological subtype, recurrence possibility, and differential
diagnosis of meningiomas, and the potential and challenges in general clinical
applications. In this review, we highlight the generalization of shared radiomic features
among different studies and compare different performances of popular algorithms. At
last, we discuss several possible aspects of challenges and future directions in the
development of radiomic applications in meningiomas.

Keywords: meningioma, radiomics, medical imaging, diagnosis, deep learning
INTRODUCTION

Meningiomas are the most common primary central nervous system (CNS) tumors, composing up
to 36.4% of all CNS tumors, with an incidence of 7.86/100000 (1). The majority of meningiomas are
benign (2), while only 1% are malignant (1) but with increased morbidity and mortality rates (3).
According to the 2016 edition of the WHO classification of CNS tumors, meningiomas are
considered as heterogeneous tumors that can be divided into three grades and 15 different
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pathological subtypes (4). Moreover, meningiomas may present
also an intratumoral heterogeneity, such as different degrees of
growing patterns, vascularization, necrosis, infiltration, etc., in
the same tumor. The transformation from low-grade to high-
grade meningiomas is a rare event that can happen as
consequences of this intratumoral heterogeneity (5). These
intertumoral and intratumoral heterogeneities can explain the
different outcomes after resection of meningiomas. Thus, better
understanding of the actual biological behavior of these tumors
preoperatively could benefit the risk stratification and decision-
making process. For example, the “wait and see”modality with a
longer imaging follow-up period would be an ideal and cost-
effective option in small, stable and benign meningiomas (6). On
the other hand, early surgical resection should be recommended
in patients with meningiomas which are small in size, but active
in growing, or malignant in genotyping.

Nowadays, medical imaging plays a fundamental role in the
process of preoperative and differential diagnosis in the CNS
tumors such as meningiomas (7). Modern imaging technology,
as 3T MRI, provides sufficient high-quality information of the
lesions, such as post contrast T1-weighted images can highlight
enhancing regions within the tumor because of the leakage of
contrast agent from the intravascular lumen into the tumor
through a disrupted blood-brain barrier (8), or the integrated
use of fluid-attenuated inversion-recovery sequences and T2-
weighted images to delineate a more precise boundary between
edema and the solid tumor (9). Nevertheless, these data are
commonly reported by the radiologist in a descriptive,
qualitative, and subjective way. As a dural-based lesion,
meningiomas can be misdiagnosed, especially when the
radiologists are not familiar with the differential diagnosis of
other dural-based lesions. For example, the “dural tail sign” on
enhanced T1-weighted sequences, a characteristic imaging sign
often regarded as the representative of meningiomas (10), can
also be positive in other diseases including sarcoidosis (11),
lymphoma (12), metastases (13–15) and other lesions (16, 17).
Also, some imaging features, such as the peritumoral edema and
morphological irregularity of the meningioma, which may
suggest an aggressive pattern, have not been validated yet
(18, 19).

Recently, some promising progresses in the preoperative
diagnosis have emerged in the field of oncology, as well as in
meningiomas. In this scenario, radiomics analysis refers to
different methods that “decode” the quantitative features of
medical images across different types of tumors. The primary
intention of this technique is to identify, from radiological
images, several quantitative characteristics of the tumor, so
they can be used to improve the understanding of the
pathology and biology of the lesion. This data are also sought
to predict clinical outcomes, such as patients’ survival and
responses to therapy (7). The features commonly included in
this type of analysis are: volume, shape, intensity (MRI signal)
and other texture features, referring to pixel intensities, their
distribution pattern, and their interrelationships (20). Nowadays,
the radiomics analysis has been used for various types of cancer
including lung cancer (21–23) and prostate cancer (24–26). Yet,
Frontiers in Oncology | www.frontiersin.org 2
only few studies reported on radiomics analysis of meningiomas.
This analysis can help in preoperative diagnosis by adding new
information, such as the growth rate of an incidental
meningioma, guiding the differential diagnosis of tumors with
dural implantation, predicting tumors’ recurrence, and
subsequently tailoring the treatment strategies. In this study,
we discuss the latest application of radiomics analysis for
meningiomas and the potential clinical implications of its
integration in preoperative diagnosis.
OVERVIEW OF THE WORKFLOW
OF RADIOMICS

Generally, the procedure of radiomics can be divided into four
main steps (7, 27, 28): image acquisition, segmentation, feature
extraction, and statistical analysis/model (Figure 1), but each
step is somewhat different across various studies for different
purposes (29).

Image Acquisition
Image acquisition is the first step of the radiomics workflow,
including acquisition and reconstruction of the image data (29).
Acquiring image data refers to collecting raw data with full
annotations of multiple imaging parameters, such as repetition
time, echo time and field of view in the MRI images, tube voltage
and tube current in the CT images, etc., which can be extracted
from the image software (28). Image reconstruction is the
process of transforming the raw non-image-formative data into
the image format by various algorithms. Because the variations in
the imaging scanners, modalities, sequences, parameters, and
reconstruction algorithms are likely to impact on the results of
the final analysis, it is necessary to provide quantitative imaging
with error bars or standardizing the original image data to
improve the homogeneity (29).

Segmentation
The second step contains identification and segmentation of the
region of interest (ROI), either manually, automatically or semi-
automatically. In clinical settings, meningiomas are usually
manually delineated by experienced radiologists. Given the fact
that many other types of tumor do not have distinct borders and
their inside heterogeneity, the accompanying inter-user
variability is an inevitable issue. There are several strategies to
minimize the variability, the common one is the segmentation
tools (28). The rational choice of segmentation software and
double-check with vision manually can not only optimize the
result but also raise the efficiency of workflow, especially when a
radiologist handles hundreds of cases at the same time. Other
approaches such as application of an algorithm (30) or
segmenting a fixed-size ROI (31) also work in certain scenarios.

Feature Extraction
Feature extraction is to decode the high-dimension image data
and output them quantitatively (29). In the present, the patterns
of feature extraction can be simply classified into with or without
October 2020 | Volume 10 | Article 567736
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human orders (7). The conventional way needs specialized
algorithms under human instructions. While the newer mode
can nearly complete the rest of the whole task automatically and
independently from human aids, which is based on the deep
learning radiomics (DLR), such as convolutional neural
networks (CNNs). Moreover, the number of extracted features
within the CNNs is several orders of magnitude greater than the
conventional methods (7), but it is necessary to reduce the
feature dimensions to avoid overfitting (29). Besides, feature
extraction, selection, and classification can occur across different
layers in the same CNN (7).

Features in radiomics are divided into two groups, semantic
and agnostic. Semantic features indicate the radiology lexicons
which are commonly used to intuitively describe the lesion, such
as size, location, and shape. Conversely, agnostic features are
mathematically-extracted quantitative descriptors, which aim to
highlight the lesion heterogeneity (29). Agnostic features can be
subdivided into three categories, which are first-, second-, and
higher-order. First-order statistics depict the distribution of
values of individual voxels without any concerns of the spatial
relationships, mostly based on the histogram, such as skewness
and kurtosis. Second-order statistics describe statistical
interrelationships between voxels with similar (or dissimilar)
contrast values, termed as “texture” features. Higher-order
Frontiers in Oncology | www.frontiersin.org 3
statistical features are repetitive or nonrepetitive patterns
filtered through specific grids on the image, for example,
Laplacian transforms, Minkowski functionals, etc. (29).

Statistical Analysis/Modeling
In the final step, the selected features can be used for many
different analyses, and they are mostly incorporated into
predictive models to provide improved risk stratification (28).
Model construction is the process of developing integration of a
set of analysis methods, involving with clustering features and
assigning these features with different values according to the
predefined information content. Those analysis approaches
include artificial intelligence, machine learning, and statistical
methods. An ideal model can not only handle the extracted
features adequately, but also is able to accommodate sparse data,
for instance, genomic profiles (29). The more covariates it can
handle, the more specific meaning of a model can be.

However, it would be rather difficult for an inexperienced user
to make a choice among multiple algorithms for model building.
This situation promotes the implementations of multiple-
modelling methodology in a single study, although it may not
be necessary (32). The fundamental principle of selecting an
algorithm is the reproducibility of the whole process (32), which
could be enhanced by a set of measures: (I) evaluate the feature
FIGURE 1 | The general workflow of radiomics in meningiomas includes image acquisition, ROI segmentation, feature extraction and analysis.
October 2020 | Volume 10 | Article 567736
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reproducibility; (II) conduct the cross-correlation analysis; (III)
contain clinically significant variables (volume included); (IV)
warrant sufficient observation rates (at least 10–15 per feature);
(V) provide an external validation cohort; (VI) interpret
radiomic features of no physical (or biological) meaning with
prudency (33).
CURRENT APPLICATION OF RADIOMICS
IN MENINGIOMAS

Most studies using radiomic analysis in meningioma were based
on the MRI, ranging from a single to multiple imaging sequences.
Indeed, the MRI can provide a superior anatomical delineation
(e.g. spatial location) of the intracranial structures and
characterize the predominance of different physiopathological
processes, due to the different sensitivity of tumor physiology in
various MRI imaging sequences (8). In general, the application of
radiomics in meningioma can be roughly divided into two
aspects: grade prediction and other applications (Table 1). The
workflow of treating meningiomas may alter based on these
radiomic findings (Figure 2).

Predicting Pathological Grade
of Meningiomas
Tumor grade is a prerequisite to assess the necessity of a
subsequent treatment of meningiomas. Currently, this kind of
information, regarding the tumor grade, is available only after
histopathologic inspection on tumor samples deriving from
invasive biopsy or surgery (46). To achieve non-invasive
pathological grading, the burgeoning development of radiomics
has brought a new dawn in the preoperative grading prediction.

In the initial stages of radiomics analysis experimentation,
multiple studies have explored the feasibility of various radiomic
features in the prediction of pathological grade of meningiomas.
The results showed that both conventional radiomic features,
including the shape, histogram, texture, gray-level run length
matrix, wavelet transform, and other higher-order statistics (19,
34–38, 40), and the DLR features (39) could predict the tumor
grades. Yan et al. have identified two textural features based on
the run length matrix and two shape-based features significantly
related with the WHO grade II meningiomas; Similarly, in terms
of the low grade meningiomas (WHO grade I), one textural
feature based on run length matrix and one shape-based feature
were selected (35). Zhu et al. have utilized up to 39 novel DLR
features to distinguish high grade meningiomas (WHO grade II
or III) from low grade ones (39). More detailed information of
radiomic features applied in grade prediction and other aspects
are summarized in Table 2.

Notably, there are several common radiomic features across
different studies regardless of their nonidentical nomenclatures
(47). One radiomic feature is the sphericity, evaluating how a
tumor is morphologically similar to a sphere (19, 36, 39), or
spherical disproportion, rating the deviation of a lesion’s
morphology from a sphere of the similar volume (34, 40).
There were 5 studies explicitly demonstrating that high-grade
Frontiers in Oncology | www.frontiersin.org 4
meningiomas tend to have less sphericity than low grade
meningiomas, in another word, high-grade meningiomas show
more spherical disproportion than low grade ones (19, 34, 36, 39,
40). Moreover, one of these studies found that low sphericity was
also associated with local recurrence and less favorable overall
survival (19), which may imply that early intervention and
shortening observation are warranted in meningiomas of low
sphericity. The non-uniformity of the gray level or the run length
matrix is another important radiomic feature, which is sensitive
in reflecting the heterogeneity within the contoured area (34, 35,
38–40), such as the positive capsular enhancement,
indistinguishable tumoral border, and heterogeneous tumor
enhancement (46, 48). Because the fluctuance of parameters
from second or higher order statistics revealed irregular
changes in the gray pixels in aggressive meningiomas due to
the intratumoral nonuniform structure tissue (49). Furthermore,
it seems that diversified combinations of these features, such as a
combination of radiomic features from different feature
categories, multiple imaging sequences, heterogenous raw data
or combined with qualitative imaging features or clinical data,
could improve the performance of the classification models even
if those improvements may not always be significant (19, 34,
37, 39).

In addition to radiomic features, the algorithm used in
modeling is another critical factor affecting the performance of
prediction (50). Since there has been no standardized guidance of
algorithms selection yet, the selection usually depends on the
preference and experience of analysts (32). At present, the
classification methods presently applied for grade prediction
include the random forest (RF) (19, 34, 37, 40), logistic
regression (LR) (35, 36), naïve Bayes (NB) (35), support vector
machine (SVM) (35, 37, 38, 40), eXtreme gradient boosting
(XGBOOST) (37), multilayer perceptron (MLP) (37), and
linear discriminant analysis (LDA) (38, 39) (Table 3). Among
these various algorithms, numerically, the best performance of
prediction was achieved in a tree-based classification algorithm,
XGBOOST, which based on a combination of features derived
from multiple MRI sequences and yielded a high AUC of 0.97, a
sensitivity of 1.0 and a specificity of 0.97 (37). While the most
widely used algorithms are the RF and SVM, the RF is an
ensemble method that calculates multiple decision tree-based
classifiers containing several identically distributed random
independent vectors (37, 51), whereas the SVM is a non-linear
classifier that iteratively constructs a hyperplane or high-
dimensional feature space consisting of a series of hyperplanes
that separates different classes (52, 53). There have been two
studies comparing different performances of the RF and SVM,
Hamerla et al. have built four different classification models,
including the RF, XGBOOST, SVM, and MLP, based on same
radiomic features; Their results demonstrated both RF and SVM
had same AUC of 0.93 (37). However, in the study of Park et al.,
the SVM have shown to have a better predicting performance
with an AUC of 0.86 comparing to 0.84 in the RF (40). Whereas
it was contradictory in the prognosis prediction superiority
between the RF and SVM in a study of lung cancer (54).
Actually, the RF has a number of advantages, such as its totally
October 2020 | Volume 10 | Article 567736
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TABLE 1 | Summary of previous reported application of radiomics in meningiomas.
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non-parametric property, so that it can be used given the
existence of collinearities among features (55). Furthermore,
overfitting is less of a concern compared with other machine-
learning methods (51). Therefore, all these characteristics make
RF especially suitable for high-dimensional data analyses as
Frontiers in Oncology | www.frontiersin.org 7
radiomics, where it is impractical to strictly control all
features (56).

Besides, there was also a comparison study between the SVM
and LDA, in which Chen et al. had shown that a LDA-based
model displayed an AUC of 0.934 in predicting the WHO grade I
FIGURE 2 | The workflows of different treatment strategies of meningiomas without or with radiomic analysis.
TABLE 2 | Summary of most useful set of radiomic features applied in grade prediction and other aspects.

Type Application Morphology Histogram Texture Deep
learning

Grade High T1C_SD (34),
T1C_GeoFv (35), T1C_GeoW4 (35),
Roundness-of-FLAIR-shape (36)

T1C_HILAE (34),
T1C_LILAE (34), T1C/
ADC/FA_entropy (40)

T1C_RLN (34),
T1C_Horzl_RLNonUni (35),
T1C_S(2,2)SumOfSqs (35),
Cluster-shades-of-FLAIR/T1CE-
grey-level (36),
DWI-ADC-grey-level-variability
(36),
FLAIR/T1CE-grey-level-energy
(36),
T1C/ADC/FA_dissimilarity (40),
T1C/ADC/FA_RLN (40)

DLR from
CNN (39)

Low T1C_GeoW5b (35),
T1C_ Sphericity (19, 39)

T1C_WavEnHL_s-3 (35),
T1C_ LGLRE (39)

Differentiation AM and HPC (42) T1C_GLevNonU
MNG and CPG (44) T1C_Skewness,

T2_Skewness
T1C_GLCM-Contrast

Recurrence (43) T1C_GLCM_T1 maximum
probability,
T1C_GLCM_T1 cluster shade,
ADC_GLCM_ADC correlation

Brain invasion (45) T1C_original_shape_maximum 2D diameter slice,
T1C_original_shape_maximum 3D diameter

T2_lbp-3D-m2_glrlm_short run
high grey level emphasis
October 2020 | Volume 10 | Art
T1C_, contrast-enhanced T1-MRI; HILAE, High Intensity Large Area Emphasis; LILAE, Low Intensity Large Area Emphasis; SD, Spherical Disproportion; RLN, Run Length Non-uniformity;
Horzl_RLNonUni, run length nonuniformity”with q being 0°; S(2,2)SumOfSqs, “sum of squares”with q being 45° and d being 2; GeoFv, vertical Feret’s diameter; GeoW4, GeoU1/GeoUw;
GeoU1, the profile specific perimeter; GeoUw, the convex perimeter; DLR, deep learning features; CNN, convolutional neural networks; LGLRE, a sparse distribution of low gray-level
values; GlevNonU, the grey-level nonuniformity; AM, angiomatous meningioma; HPC, haemangiopericytoma; MNG, meningioma; CPG, craniopharyngioma; GLCM, Grey-level co-
occurrence matrix. For more explanations of these radiomic features please refer to each respective reference.
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meningiomas higher than that of 0.845 in a SVM-based model
(38). Both of them are regarded as the top pattern recognition
technology, functioning obeying to two different working
principles (57). Whereas in the non-linear attribute of the
SVM, the LDA is a linear classifier which means the shape of
the decision boundary of LDA is a straight line, or a plane
different from that of curved lines, or a surface in SVM (57).
Additionally, when comparing the classification algorithms, their
comparison also contained the selection method, and their
results indicated that the modeling algorithms may weigh
more than that used in feature selection processes in the aspect
of increasing the diagnostic performances (38). As for the LR and
NB, it is imperative to pay attention to their inherent limitations,
including the independence assumption to features of the LR and
the request for feature discretization in the NB (32). The novel
machine learning method, MLP, which had also been utilized in
modeling, though not the best, exhibited a predicting
performance of 0.88 (37). Moreover, another deep learning
method, convolutional neural network has been implemented
in the process of feature extraction; Instead of modeling, it
Frontiers in Oncology | www.frontiersin.org 8
provided a better predictive performance than the hand-crafted
features (39).
Other Applications in Meningiomas
Radiomics analysis has also shown to be predictive in other
aspects of meningiomas, like subtypes identification, differential
diagnosis, recurrence prediction and brain invasion. Niu et al.
have extracted 385 radiomic features from the T1C images of 241
patients and built a Fisher discriminant analysis model which
successfully distinguished subtypes of meningothelial, fibrous,
and transitional meningiomas yielding a perfect accuracy of
100% with an as high accuracy of the validation model as
94.2% (41). Another study also reported that there were
significant differences in various texture features derived from
the T1C, ADC, and FA parameters between the fibroblastic and
nonfibroblastic pathological subtypes, without establishing a
radiomic model (40).

Regarding the differential diagnosis, a study has constructed three
SVM classifiers based on texture features respectively derived from
the T2-FLAIR, DWI and enhanced T1WI sequences to compare
their capacities in differentiating malignant hemangiopericytomas
from angiomatous meningiomas. Their results indicated that the
enhanced T1WI-based classifier (AUC = 0.90) had significantly
better performance than the T2-FLAIR-based and DWI-based
classifiers (42). Specifically, a recent study has selected three
independent imaging predictors, including skewness, contrast on
the contrast-enhanced images, and skewness derived from the T2WI
to distinguish craniopharyngiomas and meningiomas, and the
binary logistic regression model built on the three integrated
radiomic features achieved an AUC of 0.776. Moreover, it was also
discovered that these texture features were significantly related with
the cystic alteration which was found as the only independent
diagnostic predictor in qualitative imaging features in their
research (44).

Regarding the relapse prediction, a study has extracted 99
radiomic features from the T2WI, DWI, and T1C and has filtered
the three most significant parameters as the T1 max probability,
T1 cluster shade, and ADC correlation in predicting the
recurrence of skull base meningiomas. The accuracy of
predicting recurrence in their binary decision tree model,
which was founded on these three features, was 0.90 higher
than that of the other model based on ADC values (43). Besides,
there was a study with a relatively large multi-institution sample
size, composed of 303 patients revealed that the low sphericity
was associated with not only the increased local recurrence but
also worse overall survival; The integrated RF model combining
radiomic, radiologic, and clinical features showed an AUC of
0.75 and 0.78 in predicting local recurrence and overall survival,
respectively (19).

More recently, a multicenter study has shown that radiomic
features have the potential of preoperatively predicting brain
invasion in meningioma (45). They have built a SVM model
derived from the T1C and T2 MRI sequences and yielded an
AUC of 0.819. What’s more, the clinicoradiomic model
integrating radiomic features and sex information exhibited the
best predictive performance (AUC=0.857).
TABLE 3 | Summary of commonly used algorithms along with their
performance metrics.

Algorithm Description Performance metrics

Random
forest

An ensemble method that calculates
multiple decision tree-based
classifiers containing several
identically distributed random
independent vectors.

AUC=0.93
Sensitivity=0.90
Specificity=0.97 (37)

Support
vector
machine

A non-linear classifier that iteratively
constructs a hyperplane or high-
dimensional feature space consisting
of a series of hyperplanes that
separates different classes.

AUC=0.93
Sensitivity=0.95
Specificity=0.94 (37)

eXtreme
gradient
boosting

A tree-based classification algorithm
where an ensemble of decision trees
is built.

AUC=0.97
Sensitivity=1.00
Specificity=0.97 (37)

Multilayer
perceptron

A feed-forward deep artificial neural
network.

AUC=0.88
Sensitivity=0.95
Specificity=0.87 (37)

Linear
discriminate
analysis

A linear classifier, consisting of the
shape of the decision boundary of
straight line in the first case and
straight line in second.

AUC=0.934
Accuracy= 0.756 (38)

Logistic
regression

A kind of multiple regression method
to analyze the
relationship between a binary
outcome or categorical
outcome and multiple influencing
factors.

AUC=0.85
Accuracy=0.89
Sensitivity=0.67
Specificity=0.94 (35)

Naive Bayes Acyclic directed graphs, in which
each node of the
graph represents a variable and each
arc is a direct
probabilistic relationship between the
variables.

AUC=0.91
Accuracy=0.89
Sensitivity=0.76
Specificity=0.92 (35)

Convolutional
neural
network

Deep learning networks comprising
hundreds of self-learning units had
advantages in quantifying the
prognostic features that could not be
manually defined.

AUC=0.811
Sensitivity=0.769
Specificity=0.898 (39)
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LIMITATIONS OF RADIOMICS ANALYSIS
FOR MENINGIOMAS

As radiomics is still in its initial phase of application in
meningiomas, there are still many drawbacks to overcome
in its whole process. Currently, most radiomics studies in
meningiomas were designed as unicentric and retrospective
studies which can lead to selection bias (19, 36–40, 42, 43, 58).
Another prominent issue is the lack of high-quality raw data,
which manifested mainly as the significant heterogeneity of
patient cohorts or imaging data and small sample sizes (28,
29). A wide variety in the overall staging of patients may be a
confounding factor since staging itself is usually of prognostic
significance (28). The heterogeneity of the original data can
introduce changes that may be not due to the underlying
biological effects (29). Small sample sizes can increase both
statistical error rates and the risk of overfitting (28). There is
not only a lack of original data, also an insufficient utilization, as
quite many studies only used a portion of the imaging data; For
example, in some study, only the enhancing sequences were
selected rather than all sequences of MRI (40), or features were
extracted from a series of consecutive slices instead of all
slices (39).

Beyond these limitations in designing and imaging
acquisition, there are some considerable problems in the rest of
the procedure, especially in the segmentation process (29). To
date, most meningiomas radiomics studies have based on
manual segmentation, which can lead to greater inter-observer
variations. Although the assistance of segmentation software or
DLR can reduce the difference, whether the timely update of
these assistive tools can be achieved is another challenge. Besides,
the time cost of manual delineation is also an important
consideration especially when an operator is facing hundreds
of patients simultaneously (7). The conventional manual feature
extraction relies on predefined algorithms designated for specific
imaging characteristics. As different extraction techniques and
software were chosen, different results of features were generated
which apparently could lead to bias in the results (7, 59). All
these changes can impact on the reproducibility of the features,
which unfortunately, directly determines the generalization of
the research conclusion (7, 28). Consequently, with the advanced
imaging modalities continuously emerging, the need of
autonomic learning algorithms with the capacity of handling
integrated multiparametric imaging data is increasingly urgent
(60). Likewise, at the final stage of the radiomics workflow, the
requirement for constantly improved models is also increasing.
Lots of studies have to face the problems from over-simple
correlation analyses, such as contradictory conclusions of similar
situations from different researchers or the risk of overfitting or
underfitting (7), the insufficient interpretation of the data, and the
lack of machine learning or other advanced statistical analysis
methods (38, 43).

Above all, all the variations in the aforementioned steps call
for the standardization or the guideline of the detailed
implementation procedure of the radiomics workflow in
different situations. In the meantime, the boundary of data
Frontiers in Oncology | www.frontiersin.org 9
sharing among different institutions is still vague, and it is
necessary to establish and improve relevant laws and regulations.
FUTURE PERSPECTIVES OF RADIOMICS
ANALYSIS FOR MENINGIOMA

As the capability and potential of radiomics are increasingly
revealed, many different aspects still merit future developments.

Curation of Big Data
The curation of big data plays a prerequisite role in the efficacy
and efficiency of radiomics. Generally, from a biopsychosocial
view, big data related to radiomics should not only include
imaging data but also involve demographics and social
networks. This seemingly insignificant information reflects the
compliance of meningioma patients under surveillance having a
prognostic value, which should be taken into consideration
during the model building, especially in meningiomas
suspicious of malignancy. Furthermore, radiomics has shown
its application in the prediction of genomics, proteomics or other
biology–omics. The integration of those different datasets also
places requirements of curation. Specifically, the annotations of
imaging data currently often do not use a standard lexicon, this
hinders efficient utilization of data (29). Also, given the fact that
the majority of present radiomics studies are retrospective,
prospectively collected imaging data is in urgent need. This
situation requires radiologists and clinicians to actively
participate in the beginning period of data gathering rather
than merely in later analysis.

DLR Analysis
DLR analysis has shown its powerful advantages compared to the
conventional radiomics demonstrating as automatic operation,
full exploitation of data, free of manual variance, low labor-
consuming, etc. However, there is still a range of gaps for the
DLR to overcome. The DLR eagers to embrace big datasets
equipped with millions of images for the requirement of training,
because the high-quality training data is directly related with
better performance of the DLR (61). The cost of the
computational infrastructure of the DLR is another bottleneck
that appeals to data scientists to contribute more efforts (62).
Interestingly, on one hand, scientists put great expectations on
the future of the DLR, on the other hand, they have not
completely understood how deep learning works yet, namely as
the fear of ‘black box’ (63). In a word, DLR is a double-edged
sword which enlightens us with its intelligence except for
careful trust.

Comprehensive Interdisciplinary
Cooperation
The development of radiomics owes to the devotion of both
clinical and technical investigators. This new discipline shows a
continuous progression, together with a mutual competition
between those two sides of the research. Indeed, conventionally
separated, these two aspects of research are used to analyze
October 2020 | Volume 10 | Article 567736
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problems from their own perspective, overcoming the benefits of
the other. This condition may explain the existence of simple
correlations between imaging features and clinical significance,
regardless of methodological disadvantages, or the pursuit of
novel methodology while neglecting the clinical significance (7).
Indeed, the thrive of radiomics does not only rely on balancing
the interdisciplinary contradiction, it also demands the
expansion of the collaboration, including the introduction of
data source, enhancement in data sharing, renewing,
and accessibility.
CONCLUSION

Radiomics analysis for meningiomas is a promising new area of
research based on the development of computational advances.
The current correlation is mainly between the imaging
phenotypes and meningioma grades. With overcoming
limitations in the process of the radiomics analysis, there will
Frontiers in Oncology | www.frontiersin.org 10
be a vast expansion of its applications in meningiomas, varying
from risk stratification, to precise diagnosis, prognosis,
and therapy.
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