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The well-organized contraction of each heartbeat is
enabled by an electrical wave traversing and exciting
the myocardium in a regular manner. Perturbations to
this wave, referred to as arrhythmias, can lead to lethal
fibrillation if not treated within minutes. One manner in
which arrhythmias originate is an ill-fated interaction of
the regular electrical signal controlling the heartbeat,
the sinus wave, with an ectopic stimulus. It is not fully
understood how and when ectopic waves are generated.
Based on mathematical models, we show that ectopic
beats can be characterized in terms of unstable eigen-
modes of the resting state.
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Cardiac arrhythmias are characterized by disturbances in
the regular electrical signal that controls contraction of
cardiac muscle. Arrhythmias decrease the ability of the
heart to pump blood, and may degenerate into the disor-
ganized, lethal electrical activity known as fibrillation.
Decades of research have thus been devoted to under-
standing arrhythmic origins. It is well established that a
fast (tachy)arrhythmia can be induced via the interaction
of the normal cardiac action potential with an additional
electrical stimulus [1–4]. Additional stimuli, arising inap-
propriately and without warning, are known as ectopic
foci. While a young, healthy person is likely to experience
about one ectopic beat per day [5], patients with compro-
mised cardiac function may have as many as two ectopic
beats per minute [6]. Despite the paramount importance
of ectopic activity in the generation and maintenance of
arrhythmias, its origins in cardiac disease have still not
been completely characterized [7–9].

To date, tremendous insight into the mechanisms of
arrhythmia has been afforded by mathematical models
of cardiac electrophysiology [10,11]. A striking example
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is the concept of the phase singularity, long known in
physics and mathematics, which underlies the induction
of reentrant arrhythmias as outlined above [12,13].
Similarly, eigenmode analysis of mathematical models
is commonly used in many fields of science and engin-
eering in order to assess the stability of a physical
state; we show here that such analysis is again appli-
cable to cardiac arrhythmogenesis [14–16], and is able
to explain the stochastic appearance of ectopic foci via
destabilization of the resting electrophysiological state.
Box 1.

The mathematical model under consideration can be
written on the form

vt ¼ dðvxx þ vyyÞ � I ðv; sÞ ð1Þ

and

st ¼ Fðv; sÞ; ð2Þ
where d is the electrical diffusion coefficient of the tissue, v
is the transmembrane potential, F represents the electro-
chemical processes underpinning each action potential
and s carries additional dynamical variables; a complete
presentation is given in the electronic supplementary
material. The system is equipped with an initial condition
(v0, s0) and with no-flux boundary conditions. We also
consider a set of perturbed initial conditions given by
ð�v0;�s0Þ, giving rise to the solution ð�v;�sÞ. We are interested
in analysing the behaviour of the difference between these
solutions as given by ðV ;SÞ ¼ ðv � �v; s � �sÞ: Up to linear
terms, the difference is governed by

Vt ¼ dðVxx þVyyÞ � IvV � IsS ð3Þ

and

St ¼ FvV þ FsS; ð4Þ
where Iv¼ @I(v0, s0)/@v, and Is¼

P
i@I(v0, s0)/@si; simi-

lar for Fv and Fs. This system can be discretized in space
on a computational grid and written in the form

u0 ¼ Au; ð5Þ
where u¼ u(t) is a vector containing grid values of V and
S, and A is the associated system matrix [17,18]. Suppose
that l is an eigenvalue of A and r is the associated eigen-
vector; then a solution of the system is given by eltr, and
thus a perturbation containing the eigenvector r is
unstable provided that the real part of l is positive [19].

Conduction of the cardiac action potential in tissue
can be described mathematically in the generic form
presented in box 1. The aim of this report is to analyse
how aberrant cardiac physiology, as may occur in post-
injury remodelling, may influence the likelihood of
generating an ectopic beat in simulated tissue. Con-
sidered are (i) the presence of electrically active,
coupled fibroblasts which may arise as result of fibrosis
[20] in the post-infarct heart, (ii) an increase in stretch-
activated currents that may follow tissue dilatation
associated with heart failure [21,22], and (iii) altered
baseline repolarization currents, as seen in cardiac
hypertrophy [23,24]. Alterations were incorporated
into select membrane models (presented in their
entirety in the electronic supplementary material).
First considered is the simple, internally consistent,
and computationally efficient cardiac action potential
model developed by Krogh-Madsen et al. [25]. The
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Figure 1. Evolution of stable and unstable perturbations in two-dimensional cardiac tissue incorporating fibroblasts. (a) The
electrophysiology of the tissue substrate is modelled by the Krogh-Madsen model. The shaded square shows the region incorpora-
ting fibroblasts (h ¼ 4, cf. the electronic supplementary material), as may be present during fibrotic remodelling. (b) Both stable
(at left) and unstable (at right) perturbations at t ¼ 0 ms. (c) Early evolution of the stable (at left, t ¼ 0.5 ms) and unstable
perturbations (at right, t ¼ 1 ms). (d) Further evolution of the stable (at left, t ¼ 1 ms) and unstable perturbations (at right,
t ¼ 50 ms). The latter has begun to grow in magnitude. (e) At t ¼ 2 ms, the stable perturbation (at left) has completely died
out, while by t ¼ 200 ms, the unstable perturbation has induced a full-blown activation in the tissue: an ectopic beat.
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atrial myocyte model of Maleckar et al. [26,27] is also
included in the analysis to consider a biophysically
based model grounded in human physiology.

All conditions (i–iii), as outlined above, result in a
qualitatively comparable destabilization of the resting
state of the tissue; analysis reveals that the dominant
eigenvalues of the linearized system increase, changing
sign from negative to positive. When an eigenvalue
J. R. Soc. Interface (2011)
has a positive real part, perturbation of the cells’ state
by the associated eigenvector will result in instability
(box 1). For the sake of brevity, representative disease
conditions (i) and (ii) are presented below, while results
following condition (iii) are presented in the electronic
supplementary material.

Figure 1 shows the transmembrane potential
following perturbation of a solution with eigenvectors
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Figure 2. Evolution of stable and unstable perturbations in two-dimensional cardiac tissue incorporating stretch-activated cur-
rents. (a) The electrophysiology of the tissue substrate is modelled by the Krogh-Madsen model. The shaded square shows the
region incorporating stretch-activated currents (gsac ¼ 0.5, cf. the electronic supplementary material), as may be present in
dilated tissues during heart failure. (b) Both stable (at left) and unstable (at right) perturbations at t ¼ 0 ms. (c) Early evolution
of the stable (at left, t ¼ 0.5 ms) and unstable perturbations (at right, t ¼ 50 ms). The latter has induced activity on the lateral
border of the region containing stretch-activated currents. (d) Further evolution of the stable (at left, t ¼ 1 ms) and
unstable perturbations (at right, t ¼ 100 ms). (e) At t ¼ 2 ms, the stable perturbation (at left) has completely died out, while
by t ¼ 200 ms, the unstable perturbation has induced a full-blown activation.
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of corresponding negative and positive eigenvalues.
A square region in the myocardial sheet includes
active, coupled fibroblasts. The solution is first per-
turbed by an eigenvector associated with a negative
J. R. Soc. Interface (2011)
eigenvalue (left column), and the perturbation
dies out rapidly (2 ms) after it is applied. However,
perturbation via a primary eigenvector (right
column) results in maintenance and growth of the
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perturbation. The final result is a full-blown activation:
an ectopic focus.

The influence of stretch-activated currents (condition
(i)) on the electrophysiological stability of myocardium is
also examined by their inclusion in a square region of a
myocardial sheet (figure 2). Accounting for the influence
of stretch-activated currents alters the electrophysiologi-
cal substrate; analysis reveals that the primary system
eigenvalues change sign from negative to positive. Both
stable (left column) and unstable (right column) pertur-
bations are applied; the latter induces activity on the
lateral border of the region containing stretch-activated
currents. Further evolution reveals that the unstable
perturbation has induced a propagating ectopic focus.

In the electronic supplementary material, we provide
more detailed results as to the effect of introducing per-
turbations. We observe that perturbing the solution
with an eigenvector associated with a positive eigen-
value results in increasing deviation between the
perturbed and original solutions. Similarly, pertur-
bation via an eigenvector associated with a negative
eigenvalue typically decays to zero. Moreover, decay
towards the unperturbed solution is slow when the
eigenvalue is marginally negative, and fast if the eigen-
value is much smaller than zero. These observations are
consistent with earlier computational results [18], where
we also show related analysis employing more simplified
models. Mathematical and numerical methods for com-
puting the stability steady-state solutions have been
developed [28] for a range of electrophysiological cell
models.

In summary, results confirm that if the real parts of
all eigenvalues are negative, as represents the typical
case in healthy tissue (see the electronic supplementary
material), then any small perturbation will decay locally
in time. However, if the real part of an eigenvalue is
positive, as occurs in disease states (i–iii), then a pertur-
bation via the associated eigenvector leads to blow-up of
the solution. We thus propose that unstable eigenmodes
are one source of ectopic beats and that such modes can
therefore drive arrhythmias.

This research was supported by a Centre of Excellence grant
from the Research Council of Norway to the Centre for
Biomedical Computing at Simula Research Laboratory.
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