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Introduction
Fungal and oomycete plant pathogens cause destructive diseases in crops and pose real eco-
nomic and food security threats [1]. These filamentous, eukaryotic organisms can also upset
natural ecosystems when they spread invasively [2]. The capability of plant immune systems to
detect and respond to pathogen effector proteins is a major determinant of disease susceptibil-
ity. Plant pathogen effector proteins that trigger host immunity are often encoded by condi-
tionally detrimental genes that are under strong and contrasting selective pressures [3,4].
Pathogen effectors evolved to play a positive role in virulence by enabling growth and repro-
duction on host plants [5,6]. Nonetheless, effectors can meet their match with host immune
receptors that recognize their presence, a result that ends badly for the pathogen. Such immu-
nity-triggering proteins are known as avirulence (Avr) effectors, encoded by Avr genes.

Escaping Host Immunity
When an Avr effector triggers a host immune receptor, the pathogen’s survival depends upon
generating variants that escape, suppress, or alter this recognition event in ways that allow the
pathogen to grow and reproduce. This can be accomplished by numerous means. Transposon
insertions or mutations to the DNA sequence encoding the Avr gene, or its complete loss, are
commonly encountered gain of virulence mechanisms. This is well demonstrated in a study on
the tomato leaf mold pathogen Cladosporium fulvum [7]. In fact, pathogen genomes have
evolved configurations that position Avr effector genes in repetitive [8], transposon-rich [9],
and teleomeric regions [10], or in dispensable segments [11], to aid mutation and recombina-
tion that results in gain of virulence. There are also ways to defeat immunity without loss or
alteration of the DNA sequence of the offending Avr gene. This can occur through acquisition
or evolution of an additional, epistatic effector that supresses the immune-triggering event
caused by the Avr effector. Such scenarios are well documented in oomycete and fungal plant
pathogens, for example, in the potato late blight pathogen Phytophthora infestans [12], the
wheat powdery mildew pathogen Blumeria graminis [13], the tomato wilt pathogen Fusarium
oxysporum [14], and the canola blackleg pathogen Leptosphaeria maculans [15]. This arms
race can go through repeated iterations and lead to difficulties in untangling the molecular
basis of host–pathogen compatibilities.

Beyond Mutation
Another way to escape immunity without changing the DNA sequence of the Avr gene is by
altering its expression. This could simply result from shifting the DNA mutation to the Avr
gene’s regulatory region or to an epistatic location in the genome that affects Avr gene
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transcription. Each of these mechanisms has been proposed to occur in the soybean root rot
pathogen Phytophthora sojae [8,16]. Changes to Avr gene expression states that are not depen-
dent on any DNA sequence alterations have also been postulated, based upon sequence-identi-
cal epialleles that differ in expression, as shown in Fig 1. The inheritance of Avr gene silencing
in P. sojae shows unusual strain-specific patterns, including transgenerational effects [17], a
phenomenon that is reminiscent of inter-nuclear silencing caused by ectopic expression of
transgenes in P. infestans [18]. Although epigenetic inheritance of Avr gene expression states is
controversial and difficult to prove conclusively, epigenetic switches that do not rely on DNA
sequence changes offer the most plausible explanation for observations of reversible changes in
virulence and Avr gene expression in clonally propagating cultures [19,20]. Virulence traits
that are epigenetically reversible could impart a survival advantage to the pathogen by provid-
ing a means of recycling or re-deploying valuable effectors that are conditionally detrimental,
in response to varying host immune capabilities [21,22]. Similar biological bet-hedging is
observed in other successful pathogens. For example, knowledge of transcriptional control of
antigenic variation in the malaria parasites (Plasmodium spp.) is comparatively far-advanced
and provides another perspective on how pathogens recruit epigenetic systems that generate
phenotypic variation in expression of immune-triggering effectors [23].

Fig 1. Avirulence (Avr) gene silencing in diploid oomycetes. A, Immunity-triggering effectors encoded by
Avr genes can spontaneously switch between active (Avr) and gene silenced (Avr*) expression states in
clonally propagating cultures. The Avr gene locus is depicted on a diploid chromosome pair.B, Sexual
crosses between expressing (Avr) and gene silenced (Avr*) alleles can result in varying outcomes and
unusual inheritance patterns for Avr gene expression in progeny. Progeny can differ qualitatively for Avr gene
expression. Epigenetic reprogramming and strain-specific epistatic loci likely play a role in determining the
result. The Avr gene locus is depicted on a diploid chromosome pair. C, Sexual crosses between expressing
(Avr) and gene silenced (Avr*) alleles can also result in quantitative variation for Avr gene expression in
progeny and incomplete penetrance of the avirulence trait when tested against host plants with the
corresponding resistance (R) gene. The conceptual illustrations in this figure are based upon observations of
Avr1a, Avr1c, and Avr3a expression and inheritance in the oomycete plant pathogen Phytophthora sojae
[8,17,19,27].

doi:10.1371/journal.ppat.1005631.g001
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A Big Role for Small RNA
Mechanistically, there is evidence that effector gene silencing in P. sojae and P. infestans is
intertwined with small RNA pathways. Characterization of small RNA molecules in Phy-
tophthora species show that the majority fall into two discrete size classes: approximately 21 nt
and 25 nt [24,25]. The two sizes of small RNA differentially target transposons and effector
gene families and associate with separate Argonaute proteins [26]. The Avr3a effector genes in
P. sojae and P. infestans are non-orthologous, but each are subject to silencing that is naturally
occurring and strain-specific [17,25]. In P. sojae, silencing of PsAvr3a has been linked to the
presence of 25 nt small RNA. Genetic crosses between PsAvr3a-silenced and non-silenced
strains can generate F1 hybrid progeny with unpredictable and variable levels of PsAvr3a gene
expression. Hybrids display strain-specific effects that likely result from epigenetic reprogram-
ming and from interplay of conventional and epigenetic variation between parental strains
[17,27].

The Challenges of Polyploidy
Gain of virulence mechanisms that rely on suppression of Avr triggered immunity or on epige-
netic reprogramming of Avr gene transcription have the benefit of preserving the sequence of
the Avr gene itself. For plant pathogens that are normally diploid or polyploid during their
infective stages, such as the oomycetes, these mechanisms may additionally be favored because
they can potentially offer an alternative to Avr gene dominance. Filamentous plant pathogens
commonly exist in haploid, diploid, polyploid, or dikaryotic nuclear states during their host-
infective stages. Sexual reproduction serves to re-assort alleles, but this could be limited by
availability of complementary mating types for heterothallic species. A diploid, polyploid, or
dikaryotic pathogen strain that possesses two or more functional copies of an Avr gene faces a
different and arguably more difficult challenge to escape host immunity compared to a haploid
organism possessing a single copy. This is because all copies of the Avr gene require gain of vir-
ulence changes. For example, consider a homozygous Avr gene in a diploid organism; a muta-
tion to one allele results in heterozygosity for the Avr locus. This outcome does not achieve any
phenotypic changes in virulence in the typical case of a dominant Avr gene. One way oomycete
plant pathogens have evolved to compensate is through high frequency gene conversion or loss
of heterozygosity [28–30]. Another adaptive solution is to regulate activity of the Avr gene
through operationally dominant epistatic or epigenetic mechanisms or through stochastic
switches. Studies of effector gene transcription in P. sojae and P. infestans offer evidence for
these hypotheses [19,27,31,32]. Plant pathogens with dikaryotic infective stages, such as the
cereal rusts, also have to counteract Avr gene dominance, so the oomycetes can be an instruc-
tive model in this instance. Certainly, it is intuitive that the ploidy status of the pathogen will
influence the genetic-adaptive mechanisms that are employed to overcome host immunity.
This could be especially pertinent in cases where gain of virulence relies on loss of function
changes to effector genes that can either contribute to virulence or trigger host immune sys-
tems, in a conditional manner.

Place Your Bets
The proposal that there are core sets of pathogen effectors that are indispensable and essential
to virulence has become a popular idea that has pervaded molecular plant pathology [33–35].
Part of the attraction of this hypothesis is that it could offer opportunities for development of
more durable plant resistance [1]. However, there is a need for perspective, because in host–
pathogen interactions, outcomes are conditional. A precept of plant pathology is the concept
of the disease triangle, which states that disease only occurs when host, pathogen, and
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environmental conditions are all permissive [36]. Extending this concept to effector biology is
reasonable and would predict that the set of core effectors required for successful infection and
reproduction is malleable and qualified by the host and environment. For effectors with the
potential to trigger host immunity, selective forces drive redundancy and diversity, as exempli-
fied by the RXLR (arginine-x-leucine-arginine) class of effectors in oomycetes [4,37]. Perhaps a
useful analogy for this interplay between pathogen effector and host immunity components is
a card game, in which some cards may have more face value than others, but ultimate success
depends upon the combination of cards in hand and those held by opponents.

Conclusion
The discovery of transcriptional and epigenetic variation of Avr gene expression in oomycetes
provides an additional layer of knowledge as to how plant pathogens can escape host immune
systems and adapt to changing selective pressures. The idea that epigenetic systems can enable
effector recycling has been recently considered [21,22]. The hypothesis that epigenetic control
of Avr gene expression is, in part, an adaptive response to n> 1 ploidy or nuclear states pro-
vides another rationale to explain the present set of observations. The prediction arising from
this hypothesis is that epigenetic reprogramming of Avr gene expression will continue to be
more frequently encountered as a gain of virulence mechanism in diploid, polyploid, and
dikaryotic species compared to plant pathogens that are haploid during host infection.
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