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Abstract

The Stroop effect is one of the most robust and well-studied phenomena in cognitive psy-
chology and cognitive neuroscience. However, little is known about the relationship be-
tween intrinsic brain activity and the individual differences of this effect. In the present study,
we explored this issue by examining whether resting-state functional magnetic resonance
imaging (rs-fMRI) signals could predict individual differences in the Stroop effect of healthy
individuals. A partial correlation analysis was calculated to examine the relationship be-
tween regional homogeneity (ReHo) and Stroop effect size, while controlling for age, sex,
and framewise displacement (FD). The results showed positive correlations in the left inferi-
or frontal gyrus (LIFG), the left insula, the ventral anterior cingulate cortex (vACC), and the
medial frontal gyrus (MFG), and negative correlation in the left precentral gyrus (LPG).
These results indicate the possible influences of the LIFG, the left insula, and the LPG on
the efficiency of cognitive control, and demonstrate that the key nodes of default mode net-
work (DMN) may be important in goal-directed behavior and/or mental effort during cogni-
tive control tasks.

Introduction

The ability to focus resources on goal-relevant information while filtering out or inhibiting ir-
relevant information is crucial for academic and career successes. However, there are large in-
dividual differences in this ability. For example, some people can control their game impulsion
when they are working, whereas others cannot suppress their craving, despite being aware of
the danger of losing their jobs. From the viewpoint of cognitive psychology, such variation re-
fers to the inter-individual differences in cognitive control, and a massive amount of evidence
suggests that this function is attributed to the purview of the frontal lobes [1-4]. One elegant
probe of the integrity and neural underpinnings of cognitive control is provided by the conflict
effect on interference tasks, such as the Stroop task [5].
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In a typical Stroop task, participants are required to name the font color of a given word
that spells a color name. The responses to incongruent stimuli (I, e.g., the word RED printed in
blue) are slower and less accurate in comparison to congruent stimuli (C, e.g., the word RED
printed in red). This decline in performance is termed the Stroop effect, which is thought to re-
flect the cost of recruitment of cognitive control resources necessary for resolving the interfer-
ence from conflicting stimulus information [6]. This effect has been applied in clinical
neuropsychology to explore specific cognitive and neural dysfunction in psychiatric patients
[4,7]. For example, individual differences in the Stroop effect have been demonstrated to pre-
dict future development of Alzheimer’s disease (AD) [8]. For the researchers in the basic cogni-
tive neuroscience, it offers the opportunity to study interference and attention control [6,7,9-
11]. Pursuing this approach, numerous neuroimaging studies have investigated the neural
basis of the conflict resolution process in Stroop tasks and have found that cognitive control is
linked to multiple brain regions associated with attention, response inhibition and motor con-
trol [12-16]. The most consistent activations have been observed in the dorsal anterior cortex
(dACC), the inferior frontal gyrus (IFG) and the response organization regions, including the
supplementary motor areas (SMA) and the pre-supplementary motor areas [12-16]. It has
been suggested that the LIFG appeared to be associated with the function of selection of seman-
tic knowledge among competing alternatives via biasing or gating relevant information for pos-
terior areas [17-19]. Most existing studies indicate that the dACC is involved in conflict
monitoring in the Stroop task [1,20-22]. The SMA and pre-SMA are associated with the selec-
tion and execution of responses [23, 24]

Though informative, the previous studies often ignored the importance of variability across
individuals. However, the data of individual differences may provide novel insights into the
neural substrates of the Stroop effect [25, 26]. In addition, when dealing with abnormal neural
and psychological processes in clinical settings, an understanding of such individual differences
can offer more information than the commonalities in function across individuals [27]. Re-
cently, some researchers have suggested that it is important for understanding brain function
to explore intrinsic brain activity which consumes more than 90% of the brain’s energy [28,29].
A huge number of positives have been attributed to functional activation paradigms. However,
from the brain energy metabolism perspective, the task-evoked activity may reveal only a small
fraction of the actual functional activity performed by our brain [28]. In addition, a sole focus
on task-evoked activity may ignore the alternative possibility that brain’s operations are mainly
intrinsic [28] and existing studies have shown that individual variability in behaviors can be
predicted from intrinsic activity [30-34]. For example, Wang et al. (2014) found that intrinsic
activity could predict subjects’ conflict adaption performance in a Flanker task. Furthermore,
as there is no task during image acquisition, studies may avoid concerns about differences in
experiment design and task strategy [35].

To date, only one study has examined intrinsic neural basis of individual variability in the
Stroop effect [31]. Nevertheless, this study used region of interest (ROI) analysis and the analy-
ses were limited a set of 31 predefined ROIs. Therefore, they may ignore some critical brain
areas. In addition, they took the average correlation within the network as the index of the sta-
tus of the network. Thus, it is sometimes difficult to reveal the regions whose properties within
the network are especially important to the performance of a particular cognitive task. There-
fore, the present study attempted to explore the intrinsic functional underpinnings of individu-
al differences in the Stroop effect at the whole brain level.

It has been suggested that the analysis of rs-fMRI signals is useful for elucidating the “intrin-
sic” functional architectures of human brain [28,35,36]. Regional homogeneity (ReHo) analysis
is a profitable method for investigating regional properties of the intrinsic brain dynamics at
the whole brain level [37]. It indexes the similarities between the time series of a given voxel
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and its nearest neighbors. Previous investigations have indicated that the ReHo has biological
relevance: the ReHo of large portion of the grey matter in the brain is very stable across time
and can naturally reflect the functional organization of the cortex [38], and individuals with
cognitive brain disorders show abnormal ReHo in the regions important to corresponding cog-
nitive processes [39-42]. Furthermore, several recent studies have demonstrated that ReHo-be-
havior correlation analysis can be useful to explore the neural basis of individual variations in
behavior [30,32-34]. For instance, Wang et al. [34] observed significant correlations between
the conflict adaption effect and the ReHo values in the left dorsolateral prefrontal cortex. Thus,
it appears that the regional properties of intrinsic brain dynamics can reliably reflect aspects of
cognitive function.

In the present study, we attempted to investigate the special brain regions which could pre-
dict individual differences in the Stroop effect using rs-fMRI. For the regional properties, brain
ReHo was calculated during resting state, which indexes the local synchronization within a
brain region [37]. We performed a correlation analysis between participants’ performance in
the Stroop task and their ReHo values to uncover potential core regions that could account for
individual variations in the Stroop effect. Researchers have suggested that ReHo variations can
reflect individual differences in cognition and behavior [43]. Moreover, it has been suggested
that resting state brain activity reflects task-evoked activity of brain network [44]. Therefore,
we predicted that the ReHo values of voxels in the regions subserving conflict resolution (e.g.,
the dACC, IFG, SMA and/or pre-SMA) may be significantly correlated with the Stroop effect.

Materials and Methods
Ethics Statement

Approval of the study was made by the Human Research Ethics Committee of the Southwest
University of China, and all participants provided written informed consent

Subjects

Forty-four healthy, right-handed college students (34 females; mean age = 18.9 years, SD = 0.8)
from Southwest University, China, were recruited for this study as paid participants. All of
them were Chinese native speakers and naive to the purposes of the experiment. All subjects
had normal or corrected-to-normal vision, without achromatopsia or color weakness. Firstly,
each subject underwent a brief resting- state scan during which they were required to relax
with their eyes closed. Each subject then performed a Stroop task outside the scanner. The data
of three subjects was excluded due to excessive head movement artifacts (which exceeded 2
mm in transition or 2 degrees in rotation).

Apparatus and Procedure

The experiment was carried out on a PC connected to a VGA color monitor, operating at a
frame rate of 85 Hz with a spatial resolution of 1,024 x 768 pixels. The stimuli were presented
using E-Prime Software (Psychology Software Tools, Inc. Pittsburgh, PA). RTs and error rates
were recorded by computer. The viewing distance was approximately 60 cm. Stimuli were the
standard Stroop color words, consisting of four Chinese characters “Hong” (red), “Huang”
(yellow), “Lan” (blue) and “Lv” (green). Each character was presented in one of the four colors
(i.e., red (255, 0, 0), yellow (255, 255, 0), green (0, 255, 0), blue (0, 0, 255); 16 stimuli altogeth-
er). The display background was always black.

Each trial started with a white fixation in the center of the screen for 300 ms. Next, the char-
acter printed in color was displayed for 1400 ms or until a response was made, which was
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followed by a black interval for 200~400 ms randomly. Then the next trial started. Subjects
were instructed to respond according to the printed color of the character by pressing the ‘D’
key with their left middle finger if the color word was printed in red, the ‘F’ key with the left
index finger if the color word was printed in green, the " key with the right index finger if the
color word was printed in yellow, and the ‘K’ key with the right middle finger if the color word
was printed in blue. A familiarization session was conducted to allow subjects to adapt the task,
which consisted of 24 trials of the same type as in the main experiment. In the main experi-
ment, 240 trials were presented in 2 blocks of 120 trials, with a mandatory 30-second break for
rest between two blocks. Each block consisted of 60 congruent trials and 60 incongruent trials,
which were presented randomly.

Behavioral data analysis

Firstly, we calculated mean RTs and accuracies for each condition(C, I); the calculation of
mean RTs excluded data from error trials and outlier trials (more than 2.5 standard deviations
[SDs] from the mean, calculated for each condition separately). Then, the mean RT (the aver-
age of I and C separately) and the Stroop effect (I minus C) were computed for each subject. Fi-
nally, the ratio of the Stroop effect over mean RT was computed to control for general response
latency differences, and we named this ratio as the Stroop effect coyrectea- The Stroop effect .o
rected Was thought to be capable of providing a more suitable behavioral index than the original
Stroop effect when a brain-behavior correlation analysis was conducted [45].

Image acquisition and analysis

Images were acquired with a Siemens (3.0 Tesla) scanner. An Echo-Planar imaging (EPI) se-
quence was used for data collection, and 240 T2-weighted images were recorded per run

(TR = 2000 ms; TE = 30 ms; flip angle = 90° FoV =200 x 200 mm?; matrix size = 64 x 64; 33
interleaved 3 mm-thick slices; in-plane resolution = 3.13 x 3.13 mm?; interslice skip = 0.6
mm). T1-weighted images were recorded with a total of 128 slices at a thickness of 1.33 mm
(TR = 2530 ms; TE = 3.39 ms; flip angle = 7% FoV = 256 x 256 mm?). During the resting state,
subjects were told to keep awake with their eyes open and as motionless as possible and not
concentrate on anything in particular.

Data preprocessing

SPM8 (Wellcome Department of Cognitive Neurology, London, UK, http://www fil.ion.ucl.ac.
uk/spm/spm8) was used to pre-process the functional images [46]. The first 5 images were dis-
carded to ameliorate the magnetization equilibrium and adapt subjects to the environment.
The remaining functional images were corrected for interleaved acquisition, and then realigned
to estimate and modify the six parameters for head movement. A mean functional image was
then obtained for each subject. To normalize functional images, each subject’s T1-weighted im-
ages were co-registered to the mean functional images and were subsequently segmented into
gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The parameters obtained
in segmentation were used to normalize each participant’s functional images onto the Montreal
Neurological Institute space in 3 x 3 x 3 mm® resolution.

To further exclude the residual effect of motion on the relationship between ReHo and
Stroop effect corrected> the mean framewise displacement (FD) proposed by Jenkinson was firstly
computed for 41 subjects separately. Subjects with excessive motion (more than 3 SDs from the
mean FD; mean FD: 0.056 + 0.021) were excluded as outliers. No subjects were excluded due to
extreme FD.
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ReHo analysis

Before ReHo calculation, through linear regression, the influences of linear trends were re-
moved from the normalized EPI images and then the low frequency drift and high-frequency
noise were also filtered out by a band-pass filter (0.01-0.08 Hz) [36,47]. In addition, nuisance
correction was conducted by regressing out 6 motion signals as well as whiter matter and cere-
brospinal fluid signals. Then, following Zang et al. [37], ReHo was performed on a voxel-by-
voxel basis by calculating Kendall’s coefficient of concordance [48] of the time series of a given
cluster of neighboring voxels. Here, cubic clusters of 27 voxels (corner connection) were used
and the ReHo value of every cubic cluster was assigned to the central voxel [37]. The ReHo im-
ages were then smoothed with a full width at half maximum (FWHM) of 6 x 6 x 6 mm”>. The
larger ReHo value for a given voxel, the higher local synchronization of rs-fMRI signals among
neighboring voxels was. All of these procedures were performed using the Resting-state fMRI
date analysis Toolkit (REST) and Data Processing Assistant for Resting-State fMRI (DPARSF)
software [37,49] (http://www.restfmri.net/forum/).

ReHo-Stroop effect correlation analysis

A partial correlation analysis was carried out in a voxel-wise manner to examine the relation-
ship between ReHo values and the Stroop effect corrected> While controlling for age, sex and FD.
In order to correct for multiple comparisons, Monte Carlo simulations were performed. The
parameters were as follows: individual voxel threshold probability = 0.01, 1,000 simulations, 2
sided, FWHM estimated by 6 mm FWHM, cluster connection radius = 5 mm (edge con-
nected), with a grey matter mask. These procedures were performed using the AlphaSim pro-
gram in the REST software. The AlphaSim correction was achieved by setting the cluster size
and individual voxel height threshold. For example, according to the simulations, the activation
clusters showing a corrected significant correlation (p < 0.05) between ReHo and the Stroop ef-
fect correctea Were extracted from statistic images with cluster size > 34 voxels and a voxelwise p
value of < 0.01.

Results
Behavioral performance

The discarded trials occupied 9.63% of the all trials (error trials: 7.32% and outlier trials:
2.31%). In order to testing whether there existed speed-accuracy trade-off, we performed a cor-
relation analysis between general RT and general accuracy rates. If there existed speed-accuracy
trade-off,subjects would produce faster response but make more errors. That is to say, if there
existed speed-accuracy trade-off, a significant positive correlation between general RT and gen-
eral accuracy rates would be observed. The correlation analysis revealed a significant negative
correlation (r = -0.372, p < 0.05) between general RT and general accuracy rates. This meant
that there was minimal trade-off between speed and accuracy rates.

The mean RTs and accuracies are shown in Fig 1. A paired-samples ¢-test revealed that re-
sponses were significantly faster in the congruent condition (668ms, SD = 49 ms) than in the
incongruent condition (763 ms, SD = 60 ms; #(40) = -17.9, p < 0.001; see Fig 1A). The accura-
cies were higher in the congruent condition (94.06%, SD = 3.69%) than in the incongruent con-
dition (91.30%, SD = 5.84%; #(40) = 3.44, p < 0.01; see Fig 1B). Thus, the results indicated a
significant Stroop effect. However, as shown in Fig 1C, there was a large amount of individual
variability in this effect.
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Fig 1. The behavioral results. Pane IA illustrates the mean RT as a function of congruency (C, I). It indicates a significant Stroop effect (I-C), with some
subjects exhibiting a larger Stroop effect than others. Pane IB illustrates that the mean accuracy rate as a function of congruency (C, I). Error bars represent
standard errors, respectively. N = 41. RT =response time. (*** P < 0.001; * * P <0.01). Pane IC represents individual differences related to Stroop effect
(ratio of Stroop effect over mean RT). Note: each circle represents a subject’s Stroop effect score.

doi:10.1371/journal.pone.0124405.g001

ReHo-Stroop effect correlation analysis

At a threshold of p < 0.05 (corrected), significant positive correlations between ReHo and the
Stroop effect correctea Were observed in the left IFG, the left insula, the ventral anterior cingulate
cortex (VACC) and medial frontal gyrus (MFG). Significant negative ReHo-Stroop effect ...
rected cOrrelations were observed in the left precentral gyrus (LPG) (Table 1 and Fig 2). We con-
ducted a partial correlation analysis between accuracy rates and ReHo values of the mentioned
brain regions above while controlling gender, age and FD. None significant correlation between
accuracy rates and ReHo values was found in the mentioned areas (for more information, see
S1 Text). There may be a celling effect in the accuracy rates, which made it difficult to find any
correlation in the present study.

Recent studies have suggested that the task conflict and information conflict exist in the
Stroop task [10]. Task conflict was defined as the latency difference between color words and
non-letter neutrals. Informational conflict was defined as the latency difference between incon-
gruent and congruent trials. Furthermore, these two types of conflicts are processed differently

Table 1. Brain regions which exhibit significant correlations between ReHo and Stroop effect.

Region BA Cluster size MNI coordinate (peak:xyz) r(peak)
VvACC 24/32 1863 9 33 -6 0.59
MFG 10/32 945 12 57 3 0.52
L insual 13 1134 -42 15 0 0.59
L PG 4/6 972 -51 -9 45 -0.59
L IFG 45 918 -57 21 12 0.55

Note: The threshold was p < 0.05 (corrected). IFG = Inferior Frontal Gyrus; PG = Precentral Gyrus; vVACC = Ventral Anterior Cingulate Cortex;
MFG = Medial Frontal Gyrus; L = left; ReHo = Regional Homogeneity; Stroop effect [RT (incongruent minus congruentymean RT»> MS].

doi:10.1371/journal.pone.0124405.1001
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Fig 2. Brain regions which exhibit significant correlations between ReHo and participants’ cognitive control efficiency [expressed as (I-C)/mean
RT] in the Stroop task. The numbers at the bottom of each image refer to the y-coordinates of the Montreal Neurological institute (MNI). The threshold was
set atp < 0.05 (corrected). Each scatter plot shows the correlation between the cognitive control efficiency and averaged ReHo in the corresponding region
with gender, age and FD controlled. x-axis, ReHo value; y-axis, Stroop effect. Each dot represents data from one participant.

doi:10.1371/journal.pone.0124405.9002
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[50,51]. In order to examine whether only one of these processes is correlated with the regions
found in the ReHo-behavior correlation analysis, a partial correlation analysis was conducted
between the Stroop congruent and Stroop incongruent (separately) RT and ReHo values of the
mentioned brain regions above while controlling gender, age and FD. None significant correla-
tion was found in the mentioned areas (For more information, see S2 Text).

Discussion

The present study adopted the ReHo approach to investigate the intrinsic functional underpin-
nings of individual differences in the Stroop effect .orrecteq at the whole brain level. Behavioral
results showed that there were individual differences in the Stroop effect .o rected- Further, the
individual differences could be predicted by functional homogeneity within the local region.
Unsurprisingly, the ReHo values of voxels in the regions subserving conflict resolution (the
LIFG, the left insula, and the LPG) were significantly correlated with the Stroop effect corrected-
Less expectedly, the significant correlations were observed in the regions (VACC and MFG) ex-
hibiting task-induced deactivations during goal-directed behaviors. To the best of our knowl-
edge, this is the first study to investigate the association between the individual differences in
the whole-brain intrinsic functional architecture and the Stroop effect orrected-

The ReHo in the LIFG was significantly correlated with the Stroop effect corrected» Which was
consistent with the results from task-based fMRI studies. For instance, the activation in the
LIFG has been reported as being greater in the incongruent trials than in the congruent trials
[52], indicatingj that the LIFG was involved in the conflict resolution. In addition, in the lesion
study by Hamilton and Martin [53], the patients with circumscribed LIFG lesions exhibited es-
pecially higher error rates in the incongruent condition compared to healthy individuals and
other frontal lobe lesion patients whose LIFGs were undamaged. These studies consistently
suggest that the LIFG is critical for cognitive control. Regarding the specific role of the LIFG in
the Stroop effect, it has been suggested that the LIFG facilitates the selection of semantic knowl-
edge among competing alternatives based on task demands via biasing or gating relevant infor-
mation from posterior areas (e.g., temporal lobe, occipital lobe) [17-19]. Together, it seems
that the LIFG contributes to resolving the Stroop interference effect through influencing the se-
mantic processing. However, other researchers have speculated that the LIFG may play an im-
portant role in response inhibition via its indirect connection to the motor system in the
response selection and execution phase [54]. Further elucidation of the role of the LIFG will re-
quire exploring the functional circuits associated with the LIFG by calculating the intrinsic
functional connectivity of LIFG.

The ReHo values in the left insula also had a significant correlation with the Stroop effect
size. This result suggests that the left insula plays an important role in facilitating conflict reso-
lution. A related study by Leung et al. [55] showed that the left insula was more active in the in-
congruent trials than in the congruent trials, indicating that the Stroop interference was linked
to increased activity in the insula. In another study, it has been found that the left insula was ac-
tivated in the Go/no go and stop-signal tasks, which require subjects to inhibit the prepotent
but inappropriate responses [56,57]. Furthermore, a structural MRI study found that the insula
thickness was positively correlated with impulsivity and impaired planning capacity [58].
Opverall, the evidence suggests that ReHo-behavior correlation in the left insula may reflect the
individual differences in inhibiting responses to the task-irrelevant information.

The correlation between the ReHo values in the PG and the Stroop effect correctea may be
due to its important role in the motor system. It is part of the primary motor cortex that is a
natural focus for the investigation of changes associated with motor skill acquisition [59]. Fur-
thermore, it has consistently been observed to be interconnected with the SMA [60-63], which
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have been considered to be involved in response selection and the execution of responses
[23,24], indicating the important position of the PG in the motor control circuits. A neuroim-
aging study found that along with a reduction in behavioral RT, the activity within the motor
cortex including the PG increased after a 4-2 mapping practice-related Stroop task [64]. Thus,
the involvement of the PG during the Stroop task may be related to motor skill learning of
task-relevant S-R mapping, which would affect the efficiency of response execution.

Less expectedly, ReHo values in the vACC and the MFG were significantly positively corre-
lated with the Stroop effect .orrecteq- The previous task-based studies found that the vACC is in-
volved in conflict resolution on some tasks [65-67]. Nevertheless, these studies always
employed the emotional interference task. Recently, some studies have showed that the vACC
and MFG are key nodes of the DMN [68-71], which has been associated with spontaneous
cognition [72]. In terms of cognitive control, the DMN facilitates the processing of internal
mental noise, which is an interference source in attention-demanding tasks [73]. Therefore, the
significant positive correlations between the Stroop effect and the ReHo values in the vACC
and the MFG may mean that the individuals with higher synchronization of spontaneous activ-
ity in the vACC and the MFG will suffer stronger interference from internal noise.

Intriguingly, there was no significant correlation between ReHo and the Stroop effect ;.
rected il the dACC that is most frequently associated with cognitive control [10]. Certain meth-
odological factors may have contributed to these negative results. First, the differences of
experimental materials may offer an explanation. In our study, the lexical control conditions
were employed. However, the most of studies that have found dACC activation in the Stroop
task have employed nonverbal conditions (e.g. Colored crosses or colored blocks), which have
different stimulus attributes and processing requirements, when compared with a verbal inter-
ference condition [13,74-77]. But lexical control conditions often do not produce increased
dACC activation [16]. Second, the proportion of congruence may affect the results. Some re-
searchers found that the dACC was selectively activated only on the incongruent trials during
high expectancy congruent blocks [12]. This result was attributed to the putative role of the
dACC in anticipating response conflict or brokering strategy shifts. However, in our design for-
mat, the proportion of the two experimental conditions was equal, thereby minimizing the ef-
fects of expectancies. Additional studies are needed to elucidate the role of the dACC.

Taken together, the ReHo index-Stroop effect correlation analysis suggests that the cogni-
tive control is linked to multiple brain regions associated with attention, response inhibition
and motor control. These findings are consistent with previous task-based fMRI studies [12-
16] but also extend imaging studies on cognitive control in important ways. Most of previous
task-based fMRI studies focus on the regions that are more active in the incongruent trials than
in the congruent trials, but our findings suggest that individuals’ behavioral performance in
cognitive tasks may be affected by the regions exhibiting task-induced deactivations during
goal-directed behaviors.

Notwithstanding its implications, there were several limitations in this study. First, the
Stroop effect is rather complicated, which has been identified to consist of multiple compo-
nents, such as task conflict and information conflict (semantic and response conflicts) [50].
Therefore, although the present results provide some insights for the individual differences of
this effect, the corresponding interpretations are not exclusive. In the future work, more atten-
tion should be paid on the spontaneous brain activtiy associated with these subcomponents of
the Stroop effect. Second, this study only focused on college-age group. The inclusion of other
age groups in the further work would help to clarify whether findings generalize to other
groups. Finally, numerous studies have found that the cognitive control were associated with
two relatively separate networks of multiple brain regions: the adaptive (frontoparietal) and
stable (cingulo-opercular) network [78-80] and these two networks obviously have good
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overlap with regions subserving conflict resolution. But the long-distance interregional connec-
tivity patterns within and across these two networks were not assessed and should be addressed
in future work.

Conclusion

In summary, we employed the ReHo method to investigate the intrinsic functional underpin-
nings of individual differences in Stroop effect at the whole brain level. Significant correlations
were observed between Stroop effect size and ReHo values in the LIFG, the left insula, the
vACC, the MFG and the LPG. The present findings indicate that: 1) multiple brain regions are
involved in the Stroop task; 2) the ReHo index of rs-fMRI signals could be used to predict indi-
viduals’ cognitive task performance; 3) the key nodes of DMN may be important in goal-direct-
ed behavior and/or mental effort during cognitive tasks. Finally, our findings have implications
in clinical settings by examining the brain’s intrinsic functional architecture in the identifica-
tion of biomarkers for AD, and in the assessment of AD.
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