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Abstract

We theoretically study the dynamics of two interacting microbial species in the chemostat.

These species are competitors for a common resource, as well as mutualists due to cross-

feeding. In line with previous studies (Assaneo, et al., 2013; Holland, et al., 2010; Iwata,

et al., 2011), we demonstrate that this system has a rich repertoire of dynamical behavior,

including bistability. Standard Lotka-Volterra equations are not capable to describe this par-

ticular system, as these account for only one type of interaction (mutualistic or competitive).

We show here that the different steady state solutions can be well captured by an extended

Lotka-Volterra model, which better describe the density-dependent interaction (mutualism

at low density and competition at high density). This two-variable model provides a more

intuitive description of the dynamical behavior than the chemostat equations.

Introduction

Microorganisms form complex communities whose members compete for nutrients, cross-

feed metabolites, parasitize each other and engage in a variety of other interactions. The recent

advance of sequencing technology has greatly increased our knowledge of microbial commu-

nity composition and in particular its change over time [4, 5]. Numerous studies have explored

interactions within microbial communities and between hosts and their microorganisms [6–

9], thereby showing that microorganisms compete with and parasitize each other, cross-feed

and engage in all the other ecological interaction types known from macro-ecology (i.e. mutu-

alism, commensalism, amensalism, competition and exploitation). These data sets form the

basis for the development and parameterization of community models [10, 11], which in turn

serve to deepen our understanding of community structure and dynamics (e.g. [12, 13]) and

allow predicting the community response to perturbations such as change in diet [14] and

pathogens [15].
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The Lotka-Volterra equation is a classical way to model competition between species [16,

17] that has been generalized to multiple species engaging in all types of ecological interactions

[18, 19]. Thanks to its ease of parameterization and well-established mathematical properties,

as the interactions are modeled via linear functions in the growth rates, this generalized Lotka-

Volterra (gLV) equation is frequently employed to model microbial communities [15, 20, 21].

Its simplicity enabled the formulation of a number of criteria to test for the stability of the

coexistence equilibrium, where all species survive together [12, 22]. However, the gLV model

provides a greatly simplified view on microbial communities, since it ignores the interaction

mechanism, e.g. in the case of cross-feeding, the kinetics of the metabolite(s) that is/are

exchanged between the species. In addition, it assumes that microbial community dynamics

can be described by considering only pair-wise interactions and that effects of interacting spe-

cies can be added (“additivity assumption”). The total fitness of a species is then the sum of the

individual fitness with the fitness influences of the species it interacts with [23].

While recent experiments demonstrated that community dynamics can be predicted to a

certain extent from pair-wise interactions [6, 24], the additivity assumption and the neglect

of the interaction mechanism are serious limitations of the gLV. Recently, Momeni and col-

leagues have shown that some interaction mechanisms involving cross-feeding break the

assumption of the gLV that the explicit modeling of interaction mediators can be neglected.

For different interactions they compare numerically the mechanistic models, alternative pair-

wise models and LV models. They show that, depending on the interaction mechanism, pair-

wise models may fail [23]. Furthermore, there is experimental evidence where pair-wise

interaction strengths do not add up in co-culture [25], while also theoretically the importance

of higher order interactions, where there are multiple mediators, has been shown [26]. It is

therefore still unclear to what extent the additivity assumption holds in microbial communities

and in which conditions the gLV formalism is applicable.

Here, we want to address an interesting case, namely the simultaneous presence of a mutual-

istic and a competitive relationship between two species. Such a situation occurs when bacteria

cross-feed essential co-factors, but in parallel compete for the main carbon source which can

happen for instance in human gut microbiota (e.g. [27, 28]). If several species compete for a sin-

gle nutrient, the competitive exclusion principle predicts that only a single species will survive

in the long term [29]. In general, coexistence of species at steady state is only possible when the

number of competing species is smaller than the number of different nutrients they compete

for [30]. This principle inspired Hutchinson’s paradox of the plankton [31], which refers to the

surprisingly large diversity of plankton species supported by a small number of nutrients. Sev-

eral solutions to this paradox have been proposed. One suggested solution is to allow the species

to coexist dynamically, e.g. in an oscillatory or chaotic state [32, 33]. The presence of spatial het-

erogeneity also permits the co-existence of several competing species (e.g. [34]). In addition, the

competitive exclusion principle breaks down when including other types of interactions, such

as mutualism [27] or cross-feeding [35]. Thus, even in a well-mixed environment, we expect to

find scenarios where two competing and mutually cross-feeding species survive.

The LV equations are often employed to model pair-wise interactions [16, 36, 37]. How-

ever, it is challenging to model the presence of several interactions between two species with

the LV formalism, since only the combined interaction strength can be represented. Our goal

here is therefore to extend the LV equations in such a manner that the simultaneous occur-

rence of competition and mutualism can be accurately modeled.

To extend the LV model, we turn to chemostat equations [38–41], which describe species

interactions while taking the interaction mechanism into account. Chemostat equations are

based on controlled cultures of microorganisms, which allow measuring growth, metabolite

consumption and production kinetics. In its simplest form, a chemostat is a well-stirred
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growth vessel with a continuous inflow of fresh medium and outflow of cell culture medium,

such that the culture volume is kept constant. The chemostat is frequently employed to study

ecological interactions such as competition [38]. In contrast to LV models, chemostat models

explicitly take into account nutrient concentrations and can therefore capture more complex

relationships, including the combination of mutualism and competition, thereby breaking the

additivity assumption. Here, we show that the chemostat equations, which are relatively com-

plex (five variables and nonlinear growth functions), can be simplified to a set of two extended

LV equations. Every term has a simple, intuitive interpretation. The extended LV differs from

the regular LV equations by including growth rates that are quadratic functions of the species

abundances. We show that this reduced set of equations provides a good approximation of

all steady-state solutions, and correctly captures the occurrence of bistability in a competitive-

mutualistic system, as described previously [1, 42–44]. Moreover, as this reduced model is

two-dimensional, we can illustrate its dynamics in the phase plane. This paper is organized in

the following way. We start by introducing the chemostat system of two species that interact in

a mutualistic and competitive manner and study its dynamical behavior. Next, we introduce

the reduced model, a two-dimensional extended LV system. With this simplified model, we

then analyze the dynamics in more detail, describe the conditions for bistability and discuss

how well the extended LV captures the dynamics in the original chemostat system. We expect

that a multispecies version of our extended model will better capture the dynamics of micro-

bial communities than the generalized Lotka-Volterra model [4, 15, 20] as it allows to repre-

sent more complex dynamical behavior.

Methods

We numerically simulate ordinary differential equations using python (Python Software Foun-

dation. Python Language Reference, version 2.7. Available at http://www.python.org). More

specifically, we use the integrate function of the package scipy [45].

In order to calculate a steady state over a range of parameters we use a Newton-Raphson

method. This is an iterative method to find the optimal solution for the root of a set of equa-

tions, using the jacobian, see for example [46].

Results

Bistability in the chemostat system

The system we focus on consists of two microbial species (X1 and X2), which are competitors

for a shared compound, the main carbon source S0 (Fig 1(a)). Additionally, they are also

Fig 1. Schemes of the two-species system for the chemostat model (a) and the simplified model (b). Microbial

species are represented by variables X (blue), nutrients by S (red), arrows represent the consumption or production of

a nutrient by a species. In this system X1 and X2 compete for the consumption of S0 and they are mutualistic due to the

cross-feeding through nutrients S1 and S2. Self-inhibition in the simplified system is determined via the parameter bii
for species Xi (i = 1, 2), bij (i 6¼ j) quantifies the strength of mutualism and ci the strength of competition, di is the death

rate.

https://doi.org/10.1371/journal.pone.0197462.g001
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mutualists via cross-feeding of nutrients S1 and S2 (e.g. short-chain fatty acids such as formate

and acetate). Without any such mutualism, the competition for the substrate S0 would lead to

the extinction of one of the species, in agreement with the competitive exclusion principle.

However, thanks to the mutualistic interaction, it is in principle possible that both species sur-

vive. In this model, an additional inflow of these cross-feeding nutrients is assumed, as this

allows a species to survive without the other.

This system of bacteria (Xi, i = 1, 2) and nutrients (Si, i = 0, 1, 2) can be modeled by a set of

differential Eq (1) that are commonly used for the chemostat [38]:

dX1

dt
¼ ðf1ðS0; S2Þ � FÞX1;

dX2

dt
¼ ðf2ðS0; S1Þ � FÞX2;

dS0

dt
¼ Fð~S0 � S0Þ þ n01f1X1 þ n02f2X2;

dS1

dt
¼ Fð~S1 � S1Þ þ n11f1X1 þ n12f2X2;

dS2

dt
¼ Fð~S2 � S2Þ þ n21f1X1 þ n22f2X2;

ð1Þ

where the meaning of the variables and parameters can be found in Table 1. Here, the parame-

ters ν are defined positive for production, and negative for consumption of nutrients.

The chemostat consists of a growth chamber with a continuous inflow and outflow. Thus,

the flow rate F of fresh culture media and the input concentration of nutrients ~Si (i = 0, 1, 2)

are tunable experimental parameters. The growth rates fi (i = 1, 2) and the production and

consumption constants ν are specific for every microbial species. We make the following

assumptions:

• The death rate of the species is negligible in comparison with the flow rate.

• The production and consumption (determined by ν) of nutrients are proportional to the

growth of the species.

• Growth rates are given by Eq (2), consisting of μ, the maximal growth rate, and Monod

terms S
KþS, with K the half saturation constant:

f1ðS0; S2Þ ¼ m1

S0

K10 þ S0

S2

K12 þ S2

;

f2ðS0; S1Þ ¼ m2

S0

K20 þ S0

S1

K21 þ S1

:

ð2Þ

These functions were introduced by Monod [47] and increase monotonically from zero to

one with S. The Monod functions imply a strict dependence on both nutrients [27], such

that a species requires both nutrients to grow.

This system has been described before, using different models, in [1–3], where bistability

was observed as well. To assess how frequent bistability can occur, we performed 10.000 simu-

lations using random parameter values. We find bistability in less than 0.1% of the cases. How-

ever, if we require the system to have a high inflow of S0, as well as a relatively low inflow of S1
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and S2, then we find that two distinct stable states are more frequently found (6% percent of

the cases) (see S1 Text for more details). These operating conditions are more likely to lead to

bistability as larger S0 ensures the species to grow, thus producing more of S1 and S2, which

again further promotes their growth. In other words, a high inflow of S0, combined with a low

inflow of the nutrients S1 and S2 strengthens the positive feedback that exists between X1 and

X2. Therefore, in this work, we assume such a high inflow of S0, combined with a low inflow of

S1 and S2 (~S1 and ~S2 are small, but non-zero). This approach allows us to illustrate the widest

range of the possible dynamics in this chemostat system, as in the absence of inflow of S1 and

S2 a species can not survive by itself.

In what follows, we shortly summarize how the chemostat system behaves for different val-

ues of the growth rates μ, using the parameter set (3), unless mentioned otherwise.

� ¼ 2;

μ ¼ m1 m2½ � ¼ 1600 1600½ �;

~S ¼ ~S0
~S1

~S2

� �
¼ 50 1 1½ �;

K ¼
K10 K12

K20 K21

" #

¼
200 200

200 200

" #

;

ν ¼

n01 n02

n11 n12

n21 n22

2

6
6
6
4

3

7
7
7
5
¼

� 1 � 1

0:2 � 0:1

� 0:1 0:2

2

6
6
6
4

3

7
7
7
5
:

ð3Þ

Varying the growth rates μ of the species, we find various regions of qualitatively different

behavior (Fig 2). For low growth rates μ all species die out, regardless of the initial densities

(Fig 2(a)). When both growth rates are increased, bistability exists, where the species coexist or

die out, depending on the initial densities (Fig 2(b)). If the growth rates are not balanced, then

it is also possible that one species survives or dies out, whereas the other one always survives,

albeit with a different final density (Fig 2(c)). Finally, if both growth rates are large, then both

species survive for all initial values (Fig 2(d)). In the next section, we introduce an extended

LV-like model, with which we show and interpret the occurrence of these different types of

behavior.

Table 1. Definition of the variables and parameters of the chemostat system Eq (1) and of the growth rates Eq (2).

Quantity Symbol Dimensions

Bacterial population density X number
volume

Nutrient concentration S mass
volume

Inflow of a nutrient ~S mass
volume

Growth rate of the bacteria f 1

time

Flow rate F 1

time

Production (consumption) constant ν mass
number

Maximal growth rate μ 1

time

Half-saturation constant K mass
volume

https://doi.org/10.1371/journal.pone.0197462.t001
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Derivation of an extended Lotka-Volterra model

The consumption and production of compounds is explicitly modeled in the chemostat equa-

tions, making it a quantitative model that can be related to the actual experimental system.

However, this also increases the complexity of the system. Our goal here is to reduce the che-

mostat model to a model of only two equations with reduced complexity, allowing for a quali-

tative dynamical analysis, while retaining a physical interpretation of each term in the model.

This model reduction consists of the following critical steps:

1. Elimination of the nutrient variables, which is possible since linear relations between S and

X exist for t � 1

F
. This means, however, that the transient dynamics of the system is no lon-

ger accurately captured in the reduced system.

2. Simplification of the growth rates using a Taylor approximation when K� S. It is always

possible to find a parameter set for which the system has the same steady states that obeys

this condition.

3. Elimination of higher order terms that are not critical for the qualitative dynamics.

For a more detailed discussion of this derivation and the corresponding approximations,

see S2 Text. We obtain the following two equations:

dX1

dt
¼ r1ða1 � b11X1 þ b12X2 � c1X2

2
Þ � d

� �
X1;

dX2

dt
¼ r2ða2 � b22X2 þ b21X1 � c2X2

1
Þ � d

� �
X2;

ð4Þ

Fig 2. Time simulations for different values of the growth rates μ illustrate the different behavioral regimes of the

system. For each panel 10 simulations are shown using initial densities varied between 0 and 20. (a) Extinction of the

species X1 and X2 for all initial densities (μ = [800, 800]). (b) Bistability: depending on the initial densities the species

will either survive (state 1) or become extinct (state 2) (μ = [1600, 1600]). (c) Bistability: There are two final states

possible: coexistence of the species, X1 6¼ 0 and X2 6¼ 0 (state 1) or extinction of species X2 (state 2) (μ = [2400, 1200]).

(d) Survival of X1 and X2 for all initial densities (μ = [2400, 2400]).

https://doi.org/10.1371/journal.pone.0197462.g002
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where the relations of the new parameters with the chemostat parameters are listed here:

d ¼ F;

r1 ¼
m1

K01K21

; r2 ¼
m2

K02K12

;

a1 ¼
~S0

~S2; a2 ¼
~S0

~S1;

b11 ¼ � n21
~S0 � n01

~S2; b22 ¼ � n12
~S0 � n02

~S1;

b12 ¼ þn22
~S0 þ n02

~S2; b21 ¼ þn11
~S0 þ n01

~S1;

c1 ¼ � n22n02; c2 ¼ � n11n01:

ð5Þ

Here it can also be observed that if there is no external inflow of the cross-feeding nutrients

Si (~Si ¼ 0, i = 1, 2) this would limit the dynamic possibilities as ai would be zero and the species

would not be able to survive without their partner. The values corresponding to the parameter

set (3) that was used in Fig 2 are now:

d ¼ F ¼ 2;

r ¼ r1 r2½ � ¼ 0:027 0:027½ �;

a ¼ a1 a2½ � ¼ 50 50½ �;

b ¼
b11 b12

b21 b22

" #

¼
5 10

10 5

" #

;

c ¼ c1 c2½ � ¼ 0:2 0:2½ �:

ð6Þ

It is possible to renormalize the equations by dividing by the growth rates r to reduce the

amount of parameters to 9. We choose not to do this to keep a clear connection with the che-

mostat equations. The concentration of input nutrients is modeled via the parameters a. The

parameters b quantify the linear interactions in the growth term, either due to self-limitation

(carrying capacity), or due to the beneficial effect of the other species (mutualism). The qua-

dratic term in the growth rates, c, describes the competition between the species. This term is

negligible for small densities of the competing species, but becomes more important when the

densities increase. Finally, the parameter d characterizes the flow rate. In relation to the LV

equations, d can also be seen as a death rate. The interactions can be represented in a simple

scheme as in Fig 1(b). Our model distinguishes itself from the classical LV equations in that

the growth rates are quadratic functions of the species densities. We will show that this addi-

tional nonlinearity allows for the bistable behavior of the system.

Bistability in the extended Lotka-Volterra model

In order to analyze the steady state solutions in the extended Lotka-Volterra model (4), we

study the nullclines in the phase plane. The nullclines of the system are defined by
dXi
dt ¼ 0

(i = 1, 2), and these are either parabolae, determined by ai � biiXi þ bijXj � ciX2
j ¼ 0 when the

species are alive (Xi > 0), or the X1- and/or X2-axis when the species are dead (Xi = 0). At the

intersection of these nullclines, steady state solutions are found (see Fig 3), which we have

given the following names:
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• E: extinction of both species.

• L1: survival of species X1, extinction of species X2.

• L2: survival of species X2, extinction of species X1.

• L12: survival of both species.

Different situations are illustrated in Fig 3. If the parabola do not intersect, which happens

for small growth rates, there is no state where both species can survive (Fig 3(a)). As a result

both species become extinct (E) or only one species survives (L1 or L2). However, if the growth

rates of one or both species are increased, a stable state L12 is created in a saddle-node bifurca-

tion (SN, see S1 Fig). This leads to bistability between E and L12 (Fig 3(b)), or between Li (i = 1,

2) and L12 when r1 6¼ r2 (Fig 3(c)). In each case, the boundary between the two basins

of attractions is defined by the unstable manifold of the saddle point. When increasing the

growth rates even further, the solutions E or Li (i = 1, 2) lose their stability in a transcritical

bifurcation (T, S1 Fig), such that only one stable fixed point remains, being L12 (Fig 3(d)).

In order to find criteria for bistability, we analyze the phase space depicted in Fig 3(b) in

more detail. A zoom of this situation is shown in Fig 4. When the densities of X1 and X2 are

both very low (region (1)), the linear and quadratic terms in the growth rates are negligible,

such that the dynamics is governed by ri ai − d, which is negative here. Both species become

extinct in this region because the species’ growth cannot compensate for the outflow. There-

fore, ri ai − d< 0 is a first condition for bistability to occur. If only one of the species fullfils

this condition, then the other one will always survive and the bistability is such as in Fig 3(c). If

ri ai − d is too negative, then the nullclines will no longer intersect, leading to monostability of

E (Fig 3(a)). Note that in the situation that there is no inflow of the cross-feeding nutrients

Fig 3. Phase plane (X1, X2) with nullclines for Eq (4) for increasing growth rates: r = [0.02, 0.02] (a), [0.027, 0.027]

(b), [0.05, 0.02] (c), [0.05, 0.05](d). Different steady state configurations are found at the intersections of the

nullclines: both species become extinct E, both species survive L12, only one species survives L1, L2. Stable solutions are

indicated by the solid circle, while unstable saddle solutions are shown by the open circle.

https://doi.org/10.1371/journal.pone.0197462.g003
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(~Si ¼ 0, for i = 1, 2), then ai = 0 so that the first condition is always fulfilled. Therefore the sys-

tem will be bistable for low flow rates, or both species go extinct for higher flow rates.

More generally, for small densities of the species the nullclines can be approximated by lin-

ear functions, hence ri(ai − bii Xi + bij Xj) − d = 0, these are the blue dashed lines in Fig 4. As

the nullclines need to intersect for bistability, the slope of
dX2

dt ¼ 0 (
b21

b22
) needs to be larger than

the slope of
dX1

dt ¼ 0 (
b11

b12
). Using these linear approximations, we obtain the constraint b21 b12 >

b11 b22 as a second condition for bistability. In other words, this means that mutualism needs

to be stronger than self-inhibition. In region (2) of Fig 4 the mutualism between the two spe-

cies is dominant, leading to a positive growth for both species. However, in region (5) the qua-

dratic terms become larger as the species densities are higher. Hence the growth is negative

here due to the competition. The fixed point L12 is thus the result of a delicate balance between

mutualism and competition. In regions (3) and (4) one density (e.g. X1) is large and the other

smaller (e.g. X2), so that
dX1

dt < 0 due to self-inhibition and
dX2

dt > 0 due to mutualism. This will

lead to either extinction or coexistence of the species, depending on the initial densities, as

respectively indicated by the blue and red region in Fig 4.

In conclusion, there exist two necessary (but not sufficient) conditions for bistability:

1. r1 a1 − d< 0 and/or r2 a2 − d< 0

2. b21 b12 > b11 b22

Looking at the significance of these parameters in chemostat (Eq (5)), these conditions

become:

1.
m1

K01K21

~S0
~S2 � F < 0 and/or

m2

K02K12

~S0
~S1 � F < 0

2. ν11 ν22 > ν12 ν21

Fig 4. Zoom of Fig 3(b), using the same notation. The blue dashed lines are the linear approximations of the

nullclines and need to intersect in order to have bistability. The regions (1)-(5) are discussed in the text. The blue and

red areas correspond to the basins of attraction of each steady state.

https://doi.org/10.1371/journal.pone.0197462.g004
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Where we used ~Si �
~S0, for i = 1, 2, to obtain the second condition. The first condition

means that the flow rate F needs to sufficiently large. The second condition means that the

production of the cross-feeding nutrients needs to compensate for their consumption.

Comparing the chemostat model with the extended Lotka-Volterra model

Next, we performed a bifurcation analysis to study how the stability of the fixed points changes

as a function of the parameters (Fig 5). We did this for the chemostat Eq (1), as well as for its

corresponding extended Lotka-Volterra model (4). The results for changing values of the

growth rates are shown in Fig 5(a) for the chemostat model and in Fig 5(b) for the extended

Lotka-Volterra model. Similarly, the influence of the experimental parameters F and ~S0 are

shown in Fig 5(c) and 5(d).

When changing the growth rates, the resulting behavior is very similar in both models (Fig

5(a) and 5(b)). There is extinction of one or both species for low growth rates (R1,R2,R3), cor-

responding to the situation illustrated in Fig 3(a). A slightly larger growth rate causes bistabil-

ity (R4, R5 or R6), such as in Fig 3(b) and 3(c). Finally, when the growth rates are sufficiently

large both species will always coexist (R7, Fig 3(d)).

Changing the experimental flow rates F and ~S0 also reveals similar steady state dynamics of

both models (Fig 5(a) and 5(b)). However, in the extended Lotka-Volterra model species are

more likely to survive for higher values of ~S0, as can be seen by the increased area of regions

R2 and R7. Similarly, this is also highlighted by the smaller size of regions R1 and R4. This

Fig 5. Different dynamical regimes for the mutualist-competitive system exist, depending on the values of the

parameters. We define these regimes as follows: R1: Extinction. R2: Competitive exclusion, only species X1 survives.

R3: Competitive exclusion, only species X2 survives. R4: bistability between extinction and coexistence. R5: bistability

between survival of X1 and coexistence. R6: bistability between survival of X2 and coexistence. R7: coexistence of X1

and X2. (a) Influence of the growth rates μ in the chemostat system (b) Influence of the growth rates μ in the extended

LV model (c) Influence of the flow rate F and the inflow ~S0 in the chemostat for μ = [1600, 800]. (d) Influence of the

flow rate F and the inflow ~S0 in the extended LV model for r = [0.04, 0.02].

https://doi.org/10.1371/journal.pone.0197462.g005
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discrepancy between the chemostat and the extended LV model is mainly explained by the

neglection of the higher order terms in the simplification. Thus, when quantitative results are

required, including these terms would lead to a better correspondence between both models.

In general, the flow rate F needs to be low in comparison to the inflow ~S0 in order to allow for

survival of the species. Bistability will not occur if the flow rate is too low or the inflow ~S0 too

high.

Although both models show very similar behavior of their steady-state solutions, the

extended Lotka-Volterra is highly simplified and therefore has its limitations. The agreement

between the chemostat equations and the extended Lotka-Volterra model is lost when the

parabola intersect more than twice (see S2 Fig). Although two stable fixed points of coexistence

are predicted by the intersecting parabolic nullclines, we did not observe this behavior in the

chemostat equations. This type of behavior can occur when the maximum of
dX1

dt ¼ 0 is situated

below and to the right of the maximum of
dX2

dt ¼ 0. Using the values of the maxima of parabola

we find that this does not happen when the following conditions are satisfied:

b21

2c2

>

b2
12

4c1

�
d
r1

� a1

� �

b11

;

b12

2c1

>

b2
21

4c2

�
d
r2

� a2

� �

b22

:

ð7Þ

A physical interpretation of these conditions is not straightforward. However, one can see

that the parameters for self-inhibition b11 and b22 should be sufficiently large to balance the

parameters for the mutualistic strength b12 and b21.

Discussion

In this theoretical study we discussed the dynamics of two interacting microbial species in the

chemostat. Both species compete for a common resource, while also being mutualists through

cross-feeding. Regions of bistable behavior were found in this five-dimensional chemostat sys-

tem through random parameter selection. In order to gain more insight into the origin of the

bistability, we derived an extended Lotka-Volterra (LV) model. As this model is two-dimen-

sional, it allowed us to study the system dynamics in the phase plane using nullclines. Our

model differs from the classical LV system in that it has a quadratic term modeling the compe-

tition, while the typical linear term describes the mutualistic interaction. All parameters in our

model have a clear relation to the original chemostat parameters, such as the inflow of nutri-

ents and outflow of biomass.

We showed that the steady state solutions are qualitatively very similar in both models,

such that our model can be effectively used to study such steady-state dynamics. We do

not expect temporal dynamics to be accurately captured by this system as it is only a good

approximation of the chemostat system after some initial transient time. Using the extended

LV system, we analyzed various regions of bistable behavior and its dependence on system

parameters. While neglecting higher order terms led to larger regions in parameter space

where both species survive, we found good qualitative agreement between both models. We

showed that bistability occurs when the mutual dependence on the cross-feeding nutrients is

sufficiently high, which is the case when the system has a low inflow of the cross-feeding nutri-

ents and a relatively high inflow of S0. For small microbial densities, one or both species will be

washed out if one or both growth rates are not sufficient to compensate for the flow rate.
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However, for larger densities, the growth rate is increased due to mutualism until the densities

reach a point where competition limits the growth and the two species can coexist. This creates

bistability between one state that has insufficient growth rate and another state where there is a

balance between mutualism and competition.

The existence of bistability in such systems has been shown before using different models

[1–3]. On the one hand bistability was analyzed more generally using a phase plane analysis [2,

3], while on the other hand chemostat models were also used where mutualism was incorpo-

rated in a general function in the species equations [1]. Our approach distinguishes itself from

these studies in that we simplify chemostat equations to a two-variable model in which all

parameters retain a clear relation to the original chemostat parameters. The advantage of such

simplified model is that the dynamics of the system can be analyzed and visualized in the

phase plane. For example, by analyzing how the shape of nullclines depend on the different

competitive and mutualistic interaction parameters, the existence of bistability can be easily

found. Interpreting the existence of bistability in the set of five chemostat equations is consid-

erably more challenging and less intuitive as its description is often limited to numerical

simulations.

Our findings are not only limited to chemostat systems, but are expected to be relevant

for any system with competition and mutualism. For example, plants release carbon that

allows the development of microbes in the rizosphere [48]. These microbes can interact with

each other in many different ways, such as through mutualism [7]. Two mutualistic species

that both grow on the released carbon could be described by our extended LV model. Fur-

thermore, this model could likely be generalized to model the behavior of more than two

interacting microbes. How such generalized systems allow for the coexistence of multiple

stable states is a question for future research. We believe that such extensions of the general-

ized LV equations are an important step towards developing microbial community models

that are both more flexible and realistic. Additional realism could be introduced by consider-

ing growth not to be proportional to nutrient production, and examining how this would

alter the derived extended LV equations. Finally, it is interesting to ask why cooperation

exists within microbes despite the risks of free-riders. Certainly in the field of game theory,

the influence of cheating behavior of individuals in a cooperating population has been widely

studied [49–51]. A model like the extended LV could be another approach to predicting

whether a population can survive in the presence of cheating. Cheaters would grow selfishly

without producing the cross-feeding nutrients, resulting in lower values for the mutualistic

parameters b12 and b21 and shifted nullclines, making it less likely for the species to coexist.

In the phase plane (Fig 3) it seems that the overall population has a larger benefit by coexist-

ing than by cheating, as the steady state concentration of coexistence is higher in all cases. It

would be interesting to further explore how cheating behavior affects the dynamics of this

system.

Supporting information

S1 Fig. Bifurcation diagram showing the density of the fixed points X1, X2 for increasing

growth rates of the species r, keeping r1 = r2. Notation is as in Fig 3. A saddle-node bifurca-

tion is indicated by SN and a transcritical bifurcation by T. Stable (unstable) solutions are plot-

ted in a solid blue (dashed red) line.
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S2 Fig. Illustration of a situation where the similarity between chemostat equations and

the toy model breaks down. The parabola intersect more than twice, so that two different
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stable fixed points exist where the species coexist. Parameters: b11 = b22 = 2, r = [0.023, 0.023].

(EPS)

S1 Text. Random parameter simulations shows how frequent the system behaves bistable.

(PDF)

S2 Text. Derivation of the extended Lotka-Volterra equations.

(PDF)

S3 Text. Python script that creates time traces and a phase diagram for the extended LV

and the chemostat model. This script shows how the extended LV and the chemostat model

can be simulated using Python code.

(PY)
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