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Abstract: Endophytic fungi are one of prolific sources of bioactive natural products with potential
application in biomedicine and agriculture. In our continuous search for antimicrobial secondary
metabolites from Fusarium oxysporum R1 associated with traditional Chinese medicinal plant Rumex
madaio Makino using one strain many compounds (OSMAC) strategy, two diastereomeric polyketides
neovasifuranones A (3) and B (4) were obtained from its solid rice medium together with N-(2-
phenylethyl)acetamide (1), 1-(3-hydroxy-2-methoxyphenyl)-ethanone (2) and 1,2-seco-trypacidin
(5). Their planar structures were unambiguously determined using 1D NMR and MS spectroscopy
techniques as well as comparison with the literature data. By a combination of the modified Mosher’s
reactions and chiroptical methods using time-dependent density functional theory-electronic circular
dichroism (TDDFT-ECD) and optical rotatory dispersion (ORD), the absolute configurations of
compounds 3 and 4 are firstly confirmed and, respectively, characterized as (4S,7S,8R), (4S,7S,8S).
Bioassay results indicate that these metabolites 1–5 exhibit weak inhibitory effect on Helicobacter pylori
159 with MIC values of ≥16 µg/mL. An in-depth discussion for enhancement of fungal metabolite
diversity is also proposed in this work.

Keywords: endophytic fungus; Fusarium oxysporum; secondary metabolite; absolute configuration;
chiroptical method; Mosher’s reaction

1. Introduction

The assignment of absolute configuration (AC) is one of the most challenging tasks in
the structure elucidation of chiral natural products. Application of Mosher’s method or
quantum mechanical calculation of chiroptical properties had proved to be practical and
reliable, including time-dependent density functional theory-electronic circular dichroism
(TDDFT-ECD) and optical rotatory dispersion (ORD) [1–4]. However, some difficulties
and uncertainties still exist in determining ACs of molecules with high conformational
flexibility using single method. Therefore, a combined application of these approaches is
necessary and has been shown to be valid in some cases, such as chenopodolans B and
D [5,6], sapinofuranones B and C [7] and ent-thailandolide B [8]. A growing number of
evidence indicates that the genus Fusarium is one rich source of secondary metabolites
with a wide variety of chemical structures and biological properties [9]. In our continuous
search for antimicrobial secondary metabolites from the endophytic strain F. oxysporum
R1 associated with traditional Chinese medicinal plant Rumex madaio Makino using one
strain many compounds (OSMAC) strategy [10,11], chemical study of the ethyl acetate
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extract of its rice medium resulted in the isolation of five known compounds including
N-(2-phenylethyl)acetamide (1), 1-(3-hydroxy-2-methoxyphenyl)-ethanone (2), neovasi-
furanones A (3) and B (4) and 1,2-seco-trypacidin (5) (Figure 1). Compounds 3 and 4 are
diastereomeric polyketides originally isolated from the phytopathogenic strain Neocosmo-
spora vasinfecta NHL2298 [12,13] and later found to be produced by the soil-derived strain
Penicillium sp. SYPF7381 [14] and the endophytic fungus Aspergillus japonicus CAM231
from Garcinia preussii [15]. However, their ACs are still unassigned. Herein the present
work highlights on assignment of ACs in 3 and 4 by a combined application of Mosher’s
method and quantum mechanical calculation of chiroptical (ECD and ORD) properties.
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2. Materials and Methods
2.1. General

The NMR spectra were determined on Bruker Avance DRX600 instruments (600 MHz
for 1H and 150.92 MHz for 13C NMR) (Bruker, Fällande, Switzerland). ESIMS were obtained
with an Agilent 6210 LC/TOF-MS spectrometer (Agilent Technologies, Santa Clara, CA,
USA). Optical rotation and CD spectra were performed on JASCO P-2000 polarimeter and
JASCO J-1500 spectrometer (JASCO, Fukuoka, Japan). UV and IR spectra were measured
through a Hitachi-UV-3000 spectrometer (Hitachi, Tokyo, Japan) and a Nexus 870 spec-
trometer (Thermo-Nicolet, Madison, WI, USA), respectively. Reverse phase HPLC was
carried out on an Essentia LC-16P apparatus (Essentia, San Diego, CA, USA) fitted with a
preparative HPLC column (Phenomenex Gemini-NX C18, 50 mm £ 21.2 mm, 5 mm) or a
semi-preparative column (Phenomenex Synergi Hydro-RP, 250 × 10 mm, 4 µm). Acetoni-
trile and H2O used in HPLC system were chromatographic grade, and all other chemicals
were analytical.

2.2. Biological Material

The endophytic fungal strain R1 was isolated from the healthy plant R. madaio Makino
collected off the coastal region of Putuo Island, China [16], and molecularly identified as F.
oxysporum according to its 18S rDNA gene sequence (GenBank accession No. MF376147)
and deposited at China General Microbiological Culture Collection Centre (CGMCC no.
17763) [11].

2.3. Fermentation, Extraction and Isolation

The strain R1 grown on potato dextrose agar (PDA) media was inoculated into 500 mL
Erlenmeyer flasks containing 200 mL potato dextrose broth (PDB) medium, and shaken
for 3 days at 200 rpm and 30 ◦C. The fermentation was performed in Erlenmeyer flasks
(50 × 1 L) with sterilized rice (160 g) and tap water (320 mL). After autoclaving at 121 ◦C
for 20 min, each flask was inoculated with 5% seed cultures and then incubated at room
temperature under static conditions for 30 days. The fermented rice of each flask was
extracted with 500 mL EtOAc by an ultrasonic instrument for 20 min, 3 times followed by
filtration using gauze. All filtrate was combined and evaporated under vacuum to dryness,
affording the crude extract (approximate 19 g). Then the extract was quickly separated
using HPLC on a preparative column to afford six fractions A-F, and further purified using
a semi-preparative column for subdivision [17]. Compound 1 (1.8 mg, tR = 7.2 min) and
compound 2 (1.8 mg, tR = 8.2 min) were obtained from fraction A with 30% CH3CN/H2O
with a flow rate of 3.0 mL/min at 210 nm. Compound 3 (23.4 mg, tR = 9.0 min) and
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compound 4 (8.2 mg, tR = 10.5 min) were isolated from fraction C with 40% CH3CN/H2O.
Compound 5 (4.6 mg, tR = 10.7 min) was purified from fraction D with 50% CH3CN/H2O.

2.4. Preparation of (R)- and (S)-MTPA Esters of Compounds 3 and 4

Compound 3 (1.2 mg, 4.26 µmol) was transferred into a NMR tube and dried under
vacuum. Pyridine-d5 (0.5 mL) and (S)-(-)-α-methoxy-α-(trifluoromethyl)phenylacetyl chlo-
ride (5 µL, 26.5 µmol) were added under a N2 gas stream, and the NMR tube was shaken
carefully to mix the sample and the MTPA chloride. The acylation was achieved at 20 ◦C for
36 h [18], suggesting that compound 3 was entirely transformed into the desired product
(R)-MTPA ester derivative 3a: 1H NMR (600 MHz, pyridine-d5) δH 5.902 (1H, d, H-5),
5.404 (1H, d, H-7), 1.322 (1H, m, H-8), 1.177 (1H, m, H-9a), 1.291 (1H, m, H-9b), 1.541 (3H, s,
H-14), 1.847 (3H, s, H-15), 1.167 (3H, d, H-16). In the same way, compound 3 was treated
with (R)–MTPA chloride in pyridine-d5 to give the expected (S)-MTPA ester derivative 3b:
1H NMR (600 MHz, pyridine-d5) δH 5.971 (1H, d, H-5), 5.849 (1H, d, H-7), 1.292 (1H, m,
H-8), 1.145 (1H, m, H-9a), 1.123 (1H, m, H-9b), 1.571 (3H, s, H-14), 1.875 (3H, s, H-15), 1.092
(3H, d, H-16), shown as Figures S12 and S13 and Table S1.

By the same method described above, compound 4 (0.5 mg, 1.77 µmol) was, respec-
tively, acylated using (S)- and (R)-(-)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride
(3 µL, 15.9 µmol), which resulted in products of (R)-MTPA ester 4a and (S)-MTPA ester 4b,
respectively. 4a: 1H NMR (600 MHz, pyridine-d5) δH 6.008 (1H, d, H-5), 4.057 (1H, d, H-7),
1.712 (1H, m, H-8), 1.272 (1H, m, H-9a), 1.269 (1H, m, H-9b), 1.988 (3H, s, H-14), 1.590 (3H,
s, H-15), 1.206 (3H, d, H-16). 4b: 1H NMR (600 MHz, pyridine-d5) δH 6.009 (1H, d, H-5),
4.058 (1H, d, H-7), 1.171 (1H, m, H-8), 1.271 (1H, m, H-9a), 1.268 (1H, m, H-9b), 1.989 (3H, s,
H-14), 1.590 (3H, s, H-15), 1.206 (3H, d, H-16), shown as Figures S14 and S15 and Table S2.

2.5. Computational Section for Compound 3

To determine the absolute configurations of C-4 and C-8 in 3, time-dependent density
functional theory (TDDFT) method as a useful tool was applied for theoretical calcula-
tions of ECD spectra [19,20]. The conformational searches were carried out using Spartan
software with the preliminary Merck Molecular Force Field (MMFF) in a 10.0 kcal mol−1

energy window [21]. All the obtained conformers were reoptimized at the B3LYP/6-31+G
(d, p) level with the IEFPCM solvent model for methanol, and eight, twenty, nineteen and
twenty conformers for 3-(4R, 8R), 3-(4R, 8S), 3-(4S, 8R) and 3-(4S, 8S) with a Boltzmann pop-
ulation above 1% were obtained, respectively, shown as Figures S16–S19. The vibrational
frequencies of these conformers were also calculated in the M06-2X/6-311++g (d, p) level,
demonstrating all conformers are true minima. Then, these conformers were subjected to
calculate the ECD spectra using the TDDFT method with the PBE0 functional and the def-
TZVP basis set in the same solvent model, and the rotatory strength for a total of 60 exited
states were considered. The Boltzmann-weighted ECD spectra from the ZPVE-corrected
M06-2X/6-311++g (d, p) energies were generated in GaussView 6.0.16 software, and the
results were represented in Figures S16–S19. All calculations were implemented in the
Gaussian 16 package [22].

2.6. Antimicrobial Assay

Antimicrobial activity was investigated according to the agar dilution method described
by Unemo and coworkers [23], ampicillin was used as a positive standard. Clinical strain H.
pylori 159 was obtained from biopsy sample of gastritis patient. Isolation and identification of
H. pylori 159 were used standard protocols on basis of colony appearance, Gram staining, and
positive reactions in the rapid urease test [24]. Additionally, 10% fetal calf serum (FCS) brain
heart infusion (BHI, Becton Dickinson, Sparks, NV, USA) broth or 5% FCS Columbia blood
agar (Oxoid, Basingstoke, UK), supplemented with Dent selective supplement (Oxoid), were
used for routinely culture of H. pylori strains. Incubation of strains were under microaerophilic
conditions (10% CO2, 85% N2, and 5% O2 and 90% relative humidity) using a double-gas CO2
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incubator (Binder, model CB160, Tuttlingen, Germany) at 37 ◦C for 48 to 72 h. Three replicates
were performed for every antimicrobial assay.

Anti-H. pylori activities were carried out according to broth microdilution assay [25].
H. pylori cultures in the exponential phase of growth were diluted ten times in BHI broth
and inoculated into each well containing 100 µL test compounds. The final concentration of
H. pylori was 5 × 105 to 1 × 106 CFU/mL. After incubated in a microaerophilic atmos-phere
at 37 ◦C for 3 days, the plates were examined visually. Antimicrobial activity testing of pure
compound followed Antimicrobial Susceptibility Testing Standards outlined by the Clinical
and Laboratory Standards Institute (CLSI) document M07-A7 (Clinical and Laboratory
Standards Institute 2008) against strain H. pylori 159. MIC value indicated the minimum
inhibitory concentration for each compound.

3. Results
3.1. Structure Elucidation

By careful comparison of the 1H and 13C NMR and ESI-MS spectral data with literature
(Table 1, Figures S1 and S2), the chemical structures of compounds 3 and 4 were, respectively,
identified as neovasifuranone A and neovasifuranone B [12–15], while compounds 1, 2
and 5 were, respectively, characterized as N-(2-phenylethyl)acetamide [26], 1-(3-hydroxy-2-
methoxyphenyl)-ethanone [27] and 1,2-seco-trypacidin [28].

Table 1. NMR spectral data for compounds 3 and 4 (1H, 600 MHz and 13C 150 MHz).

Position
Compound 3 (in DMSO-d6) Compound 4 (in CDCl3)

δC δH (in ppm, J in Hz) δC δH (in ppm, J in Hz)

1 189.6 190. 9
2 112.1 112.4
3 203.9 206.6
4 87.7 89.1
5 121.7 5.37 (1H, m) 123.2 5.42 (1H, s)
6 143.5 144.1
7 78.0 3.60 (1H, t, J = 4.2) 81.4 3.70 (1H, d, J = 6.9)

7-OH 8.31 (1H, s)
8 36.9 1.39 (1H, m) 37.5 1.50 (1H, m)
9 25.9 1.06 (1H, m) 26.4 1.05 (1H, m)

1.31 (1H, m) 1.31 (1H, m)
10 11.6 0.84 (3H, t, J = 7.2) 11.9 0.87 (3H, t, J = 7.5)
11 21.9 2.62 (1H, q, J = 7.2) 22.9 2.65 (2H, m)

2.67 (1H, q, J = 7.8)
12 10.5 1.16 (3H, t, J = 7.2) 10.9 1.24 (3H, t, J = 7.5)
13 50.5 4.01 (2H, s) 53.1 4.24 (2H, m)
14 24.0 1.37 (3H, s) 24.5 1.47 (3H, s)
15 13.6 1.60 (3H, d, J = 0.6) 13.5 1.64 (3H, d, J = 1.3)
16 13.7 0.71 (3H, d, J = 6.6) 14.3 0.84 (3H, d, J = 6.7)

The absolute configurations of compounds 3 and 4 were further confirmed by a com-
bination of modified Mosher’s reactions and calculated electronic circular dichroism (ECD)
and optical rotatory dispersion (ORD) analysis. Since the more abundant compound 3 pos-
sessed two readily acylable hydroxyl groups at C-7 and C-13, its (S)- and (R)-MTPA esters
(3a and 3b) were prepared as detailed elsewhere [29–31]. The chemical shift deviations
(∆δS–R, Figure 2) calculated from the 1H NMR spectral data of 3a and 3b indicated the
presence of a 7S-configuration. Obviously, the calculated ECD spectra for 3-(4S, 8R) and
3-(4S, 8S) are similar to their experimental ECD spectra (Figure 3). Furthermore, computed
ORD values for 3-(4S, 8R) and 3-(4S, 8S) under the 589.3 nm are, respectively, −163◦ and
−39◦, whereas the experimental ORD value for 3 is −140◦, which closely agrees with the
calculated ORD value of 3-(4S, 8R) [32,33]. Therefore, the absolute configuration of 3 is
unambiguously established as (4S, 7S, 8R).
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As far as compound 4 concerned, the Mosher’s reaction result has a similar trend with
compound 3. The chemical shift deviations (∆δS–R, Figure 4) calculated from the 1H NMR
spectral data of 4a and 4b indicated the presence of a 7S-configuration in 4. By comparison
of ECD spectrum of compounds 3 with that of 4 (Figure 5), they had very similar cotton
effects, which one valley at 202 nm and a peak at 306 nm were respectively shown in the
first negative and the positive cotton effect regions, and the other elliptical valley was
apparent at 267 nm in the negative cotton effect region [34]. Furthermore, the experimental
ORD value for 4 is −92◦, which is similar to that of its isomer 3-(4S, 8S), suggesting that
three chiral centers at C-4, C-7 and C-8 in 4 are S configurations. Accordingly, the absolute
configuration of 4 is undoubtedly characterized as (4S, 7S, 8S).
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3.2. Antimicrobial Activity

Antimicrobial tests were carried out on one of the most serious pathogenic bacteria
Helicobacter pylori 159. The results indicated that none of these compounds 1–5 had re-
markable inhibitory effect on H. pylori 159, which MIC values are no less than 16 µg/mL
(Table 2).

Table 2. In vitro anti-Helicobacter pylori effects of compounds 1-5.

Compound
MIC Value (µg/mL)

Helicobacter pylori 159

1 >16
2 >16
3 >16
4 >16
5 16

Ampicillin sodium 4

4. Discussion

To the best of our knowledge, more than 50% of the currently used drugs are chiral
compounds. The enantiomers of the same drug have the same physical and chemical
properties, but they exhibit differences in pharmacokinetics, pharmacodynamics and toxi-
city [35]. Owing to inherent structural and stereochemical complexity, fungal secondary
metabolites play a significant role in drug discovery and development processes. In this
study, the absolute configurations of two flexible molecules neovasifuranones A (3) and B
(4) from F. oxysporum R1 were firstly determined by a combination of Mosher’s reactions
and quantum mechanical calculation of chiroptical (ECD and ORD) properties. These
findings will assist in further analysis of structure-activity relationship of compounds 3
and 4.

Endophytic fungi are one of important sources of bioactive secondary metabolites
with potential application in biomedicine and agriculture [36,37]. Fusarium microorgan-
isms are ubiquitous in nature including terrestrial and marine environments and plants.
Genome sequencing and analysis indicate that these microbes possess a great number of
secondary metabolites biosynthetic gene clusters (BGCs), including polyketide synthetase,
non-ribosomal peptide synthetase and terpene synthetase [9]. However, most of these
cryptic BGCs are not expressed under conventional culture conditions, which result in
an unfavorable trend that the number of novel natural products from the genus Fusar-
ium has been decreasing in the past decade. Therefore, more efforts should be made to
awaken their silent BGCs to produce novel functional biomolecules using OSMAC strategy
and advanced interdisciplinary technology, such as genome mining, metabonomics, gene
heteroexpression and functional characterization [38,39].
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