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Abstract
Secure aggregation is an essential component of modern distributed applications and data

mining platforms. Aggregated statistical results are typically adopted in constructing a data

cube for data analysis at multiple abstraction levels in data warehouse platforms. Generat-

ing different types of statistical results efficiently at the same time (or referred to as enabling

multi-functional support) is a fundamental requirement in practice. However, most of the

existing schemes support a very limited number of statistics. Securely obtaining typical sta-

tistical results simultaneously in the distribution system, without recovering the original data,

is still an open problem. In this paper, we present SEDAR, which is a SEcure Data Aggrega-

tion scheme under the Range segmentation model. Range segmentation model is pro-

posed to reduce the communication cost by capturing the data characteristics, and different

range uses different aggregation strategy. For raw data in the dominant range, SEDAR

encodes them into well defined vectors to provide value-preservation and order-preserva-

tion, and thus provides the basis for multi-functional aggregation. A homomorphic encryp-

tion scheme is used to achieve data privacy. We also present two enhanced versions. The

first one is a Random based SEDAR (REDAR), and the second is a Compression based

SEDAR (CEDAR). Both of them can significantly reduce communication cost with the trade-

off lower security and lower accuracy, respectively. Experimental evaluations, based on six

different scenes of real data, show that all of them have an excellent performance on cost

and accuracy.

Introduction
Enormous amounts of rich diverse information are constantly generated in modern large dis-
tributed systems, which are also called big data. Such large-scale big data sources create exciting
opportunities for service quality monitoring, novelty discovery, or attack detection, etc.
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However, directly transmitting them to a single node and processing using centralized algo-
rithms are difficult. Distributed aggregation is an efficient way to minimize consumption of
energy and bandwidth.

Typical distributed application scenarios can be easy to found big internet firms, such as
Google and Bing. Click log data of these service providers is distributed on thousands of servers
around the world, which is usually up to megabytes per minute. In these distributed big data
scenarios, 90% of regular analytics jobs issue queries against different type of aggregated values,
instead of requiring the raw log data records. To efficient generate these aggregated results, per-
formance metrics is generated locally from log data, and then a distributed aggregation can be
adopted [1].

As another example, consider the WSNs application scenarios. In these applications, nodes
are often equipped with a battery as the energy unit, which means the energy capacities are lim-
ited. Meanwhile, such WSNs are envisioned to be spread out over a large geographical area,
and the total number of the nodes is huge, so the battery change is impossible. How to save the
overall energy resources and extend the lifetime of the networks is essential. Distributed aggre-
gation is also a popular research topic in this area [2].

Enabling multi-functional support is a fundamental requirement in practice. Here, multi-
functional support means to provide as many statistical results as possible. Typical aggregation
functions include count, summation, mean, median, maximum, minimum, variance, mode,
etc. These statistical results are typically adopted in constructing a data cube for data analysis at
multiple abstraction levels in data warehouse platforms [3], In order to improve the perfor-
mance of data mining, it is a basic requirement to keep data feature (i.e. statistics) as much as
possible in data cubes, which means that enabling multi-functional support is necessary for
corresponding distributed aggregation schemes. System wide properties generated from data
aggregation, can also be used as input parameters for other distributed applications and algo-
rithms, or utilized for decision making directly. For example, setting the fan-out of gossip pro-
tocol [4] in peer-to-peer applications, or achieving load balancing in content delivery networks
[5] need aggregation results as their parameters or inputs.

Serval distributed aggregation schemes [6–8] have been put forward. Security is a basic
requirement for most applications. Serval secure distributed aggregation schemes [2, 9–13]
have likewise existed. However, most of them can only achieve a very limited type of statistics,
and even combine several existed schemes still can’t respond to the request. In fact, efficient
obtaining global-related statistical results, such as median and mode, in a distributed manner,
even without considering security problem, is still a challenge [3].

In RCDA [14], a homomorphic encryption algorithm is used to provide end-to-end confi-
dentiality, and simple concatenation all sensing data without any information compression
method to enable recoverability of all sensing data. Although the scheme can achieve arbitrary
method support, the communication cost is too heavy to be applied to large scale networks.
Based on RCDA, EERCDA [13] uses a differential data transfer method to reduce the communi-
cation cost, in which the difference data rather than raw data from the sensor node are transmit-
ted to the cluster head. However, the total transmission overhead still too heavy for most time.

To the best of our knowledge, securely obtaining typical statistical results simultaneously in
the distribution system, without recovering the original data, is still an open problem.

In this paper, we study the problem ofmulti-functional secure distributed aggregation, in
which all the aggregation functions mentioned above can be obtained securely in a single aggre-
gation query. We also propose three complementary schemes to work around this problem.
We first present SEDAR, which is a SEcure Data Aggregation scheme under the Range segmen-
tation model, and then proposed two enhanced version REDAR (Random based SEDAR) and
CEDAR (Compression based SEDAR).
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To reduce the communication cost by capturing the data characteristics, a range segmenta-
tion model is adopted in proposed schemes, and different range uses different aggregation
strategy. Raw data in dominant range are encoded into well defined vectors at each node to
preserve both the order-related and the value-related information during distributed aggrega-
tion, and thus different types of statistics can be obtained simultaneously recovering the origi-
nal data. The vectors are encrypted by a homomorphic scheme, and encrypted vectors are
aggregated directly in cipher domain at an intermediate node, so concealment is also achieved.
Raw data in other range will be encrypted by traditional asymmetric encryption schemes, and
transmitted without in-network aggregation.

The major contributions of this paper are summarised as follows.

• We propose a novel and practical scheme, called SEDAR, in which all common statistical
results can be securely and efficiently obtained without recovering the original data.

• We also present two enhanced versions, namely REDAR and CEDAR, to further reduce the
communication cost with the trade-off lower security and lower accuracy, respectively.

• We implement these three schemes and extensively evaluate their performance. Evaluation
results, based on six different scenes of real data, show that all of them have an excellent per-
formance on cost and accuracy.

The remaining parts of this paper are structured as follows. Section 2 describes terminolo-
gies, and additional background knowledge. Section 3, 4 and 5 introduce SEDAR, REDAR and
CEDAR. Section 6 and 7 is performance analysis and evaluation results. Section 8 briefly exam-
ines the related work. Section 9 provides a summary.

Preliminaries
In this section, we first give a range segmentation model and a network model, and then pres-
ent problem definition. We also introduce a homomorphic encryption scheme.

Range Segmentation Model
An illustration of range segmentation model is given in Fig 1, terminologies used in this model
are defined as follows.

Definition 1 (Rm,measurement range) Measurement ranges are those over which the mea-
surement instruments are calibrated. Convincing and reliable results of a given instrument will
only appear in its measurement range, i.e., Rm = [XLM, XUM], s.t. Rm� R

Definition 2 (Re, effective range, operation range, valid range) Effective range is the set of
allowed values for a variable in a concrete application. It’s a subset of Rm, i.e., Re = [XLE, XUE],
s.t. Re� Rm

Fig 1. Range Segmentation Model.

doi:10.1371/journal.pone.0159605.g001
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Definition 3 (Rd, dominant range, dominant area, advantaged region, main range) Domi-
nant range is a subset of Re, whose probability is significantly greater than other’s, i.e.,
Rd = [XL, XU] s.t. Rd� Re && P(Re) − P(Rd)� 1

Definition 4 (Rb, border region, boundary region, margin area) Border region is the set of
allowed values that outside the dominant range. It’s a subset of Re, i.e.,

Rb ¼ ½XLE;XUE� ¼ RdRe s:t:Rb \ Rd ¼ ;&&Rb [ Rd ¼ Re

Network Model
The network is modeled as a connected graph G = (V, E), with jVj vertices and jEj links. Each
vertex represents a network node and each link represents a communication channel. Node is a
logical concept. For example, in global scale distribution systems, each data center can be
regarded as a node.

The sink node S 2 V, which has a powerful computing and storage capacity, is a trusted
node. S is also known as query server. The remainder nodes C� V are either reliable or unreli-
able, each node only has one parent node. |C| = N. X = {x1, x2, . . ., xN} is raw data generated at
these nodes. A set of nodes A are selected as aggregator nodes, A� C. The aggregator nodes

are also performed as cluster heads, the others nodes (CA) are cluster members. Each cluster
member join an appropriate cluster according certain criterion, such as signal strength in wire-
less network and delay in wired network.

Problem Definition
Definition 5 (Data aggregation) Given a dataset X = {x1, x2, . . ., xN}, a aggregation function set
F = {f, h, . . .}, and a aggregation result set Y = {y1, y2, . . .}, a data aggregation is defined as
Y = F(X), s.t. jYj � jXj.

Definition 6 (Distributed Aggregation) Given a network G, X is the raw data generated at
each node, divide X into several subsets {X1, X2, XM}, s.t.M< N, X1 [ X2. . . [ XM = X, X1 \
X2. . . \ XM = ϕ. An in-network data aggregation is defined as y = F(X) = f (h(X1),. . ., h(XM)).
Each subset can be further divided, and this definition is still satisfied.

Data aggregation of each subset is accomplished at aggregator nodes, and the final data
aggregation is executed at the query server.

Definition 7 (MFSDA, Multifunction Secure Distributed Aggregation) An MFSDA is a dis-
tributed aggregation which can provide both privacy confidentiality and multi-functional sup-
porting. Multi-functional means that several statistical results can obtain efficiently in the same
query, and results include at least count, summation, average, median, maximum, minimum,
variance and standard deviation.

Homomorphic Encryption Scheme
The traditional encryption technology is not suitable for secure distributed aggregation. It only
provides concealment but do not support cipher text operations, so the intermediate aggrega-
tors will have to decrypt the received data before aggregation. And then the aggregated results
need be re-encrypted before sending. Frequent encryption and decryption in intermediate
nodes will increase the computing cost and the energy consumption. The key management is
also difficult. Each intermediate node has to maintain the private key for decryption, which
will increase the risk of leaks.

To reduce the computing cost and enhance the security, a homomorphic encryption
scheme is used in the proposed schemes. It is derived from homomorphism in the abstract
algebra. By using homomorphism, operations in one algebraic system (plaintext) can be
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mapped into operation in another algebraic system (cipher text), which means data aggrega-
tion can perform on cipher text directly, and only the sink node needs to store the private for
decryption. Homomorphic encryption technology includes partially homomorphic and fully
homomorphic. In theory, based on the fully homomorphic, all these statistics can be easily
computed. However, the fully homomorphic encryption, while revolutionary, is not really
practical. Practitioners rely therefore on already existing partially homomorphic encryption,
which is constructed from traditional encryption schemes and has been widely used in multi-
party computation, electronic voting, non-interactive verifiable secret sharing, e-auction, and
others [15, 16].

Homomorphic encryption used in proposed schemes is a partially homomorphic which can
only allow homomorphic computation of only one operation (i.e., addition). To further reduce
key size with high security and benefit us with the computation cost, an ElGamal Encryption
Scheme (EC-EG) [2, 14], which is an elliptic curve based encryption, will be used here. EC-EG
is also an asymmetric homomorphic encryption scheme, so the key management is easy. It
consists of four parts: Setup, KeyGen, Encryption (HEnc) and Decryption (HDec). Its cipher-
text is an elliptic curve over a finite field, and� is the point addition on elliptic curves.

Theorem 1 (Additive Homomorphic Encryption) EC-EG is an additive homomorphic
encryption scheme, namely the addition in plaintext is equivalent to point addition in cipher
domain, i.e., m1 +m2 =HDec(HEnc(m1)� HEnc(m2))

SEDAR
In this section, we introduce SEDAR to solve themulti functional secure distribution aggrega-
tion problem. We first give a brief overview of SEDAR. Then, a detail version is presented.
Finally, a concrete example is given.

Overview
In the proposed scheme, aggregation is performed in cipher domain. Both the sub-aggregation
and the final aggregation results are encrypted vectors, which can be decrypted using the pri-
vate key owned by the server. All statistics are calculated directly from the final aggregated vec-
tor at the server, which makes thing much easier.

As shown in Fig 2, there are five steps in the proposed scheme: mapping, encoding, encryp-
tion, aggregation, and decryption. The first three are executed on each node independently,
while the last two are executed at aggregation nodes and the server respectively. Mapping and
encoding are used to enable multi-function supporting, while the other three are used to
achieve data confidentiality.

There are also five kinds of data corresponding to each step: raw data x, mapped data y,

encoded data~v , encrypted data~c, aggregation of encrypted data ~C , and aggregation of encoded

data ~V .
Raw data xk is the original data gathered at node k, which is belong to a subset of real

domain. This real domain is split into several partition based on the range segmentation
model, and different strategies will choice for different range.

The lower bound of Rd is defined as XL ¼ maxðXLE; m̂ � bd̂Þ, and the upper one is
XU ¼ minðXUE; m̂ þ bd̂Þ.~m and~d are mean and standard deviation estimated using historical
or empirical data. β is a factor. β 2 [1.8, 3], and β = 2 satisfies most application. The bounds of
Re and Rm are determined by the application itself.

Effective data in the dominant range (xk 2 Rd) will be transformed intomapped data yk
using themapping function. yk is belong to a subset of the natural numbers, i.e. yk 2 (0, L],

Multi-Functional Secure Aggregation
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where L ¼ dXU�XL
a
e and a is the accuracy requirement of xk. The conversion between xk and yk

is achieve by themapping function and its inverse, i.e. fm and f �1m . To achieve value-preserved
and order-preserved during this conversion, fm and f �1m should be monotonic functions. The
mapping function can be a linear one or a nonlinear one, which can be either a piecewise func-
tion or a non piecewise function. For example, a linearmapping function and its inverse are

like yk ¼ fmðxkÞ ¼ xk�XLB
a

, and xk ¼ f �1m ðykÞ ¼ a� yk þ XLB.

Effective data outside the dominant range (xk 2 Rb) will be encrypted by traditional asym-
metric encryption scheme, and transmitted without in-network aggregation. As P(Re) −
P(Rd)�1, serial transmission of these data will not increase the transmission overhead signifi-
cantly. Abnormal data that outside Re are also reported to the server without aggregation.

Encoded data~vk is a vector,~vk 2 f0; 1gL, where L is the number of elements. The (yk)th ele-
ment of~vk is 1, and all other elements is 0. The conversion between yk and~vk is achieve by the
encoding function and its inverse, i.e.,~vk ¼ feðykÞ, and yk ¼ f �1e ð~vkÞ: For example, the encoding
function can be programmed as two instructions, i.e.~vk ¼ zerosð1; LÞ and~vkðykÞ ¼ 1, while its
inverse function can be achieved by yk ¼ findð~vk > 0Þ.

Each node k encrypts its~vk into~ck using the homomorphic encryption scheme, and sent~ck
to its parent. As all encrypted data~ck are generated with the same public key, we can aggrega-

tion it directly in ciphertext ~C ¼ �~ck. According homomorphism, the final aggregation result
~V can be obtain by decrypting ~C . Then the typical statistical results can be obtained from ~V .

Detail of SEDAR
SEDAR consists of three procedures: Setup, Operations on Clients, and Operations on Server.

Setup. The Setup procedure performs network initialization, encryption initialization, and
parameters distribution.

Fig 2. SEDAR.

doi:10.1371/journal.pone.0159605.g002
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Boundary definitions (i.e., Re, Rd, and Rb) and accuracy requirement (i.e. a) are distributed
into each node, include clients and server. Itmsize, Bmsize, Bcsize, and Bnum mentioned above are
also public information.

There are two encryption schemes used in this paper: a traditional one and a homomorphic
one. Both of them are public key cryptogram schemes.

The traditional encryption scheme is used for Rb, where the key pair is {KPriS, KPubS}, the
encryption function is C = Enc(msg, KPubS), and the decryption function ismsg = Dec(C,
KPriS).

The homomorphic encryption scheme is used for Rd, where the key pair is {KPriSH,
KPubSH}, the encryption function is C =HEnc(msg, KPubSH), and the decryption function is
msg =HDec(C, KPriSH).

Both KPubS and KPubSH are public information, while private keys (i.e. KPriS and KPriSH)
must be keep in privacy only by the server.

Operations on Clients. It consists of three parts: local data processing, received data pro-
cessing and data transmission.

As shown in algorithm 1, in local data processing, each node gathers the raw data xi, and
process it according the range definition. The traditional encryption scheme will be used for
the data belong to Rb, the encrypted data will add into bSeti. For data in Rd,mapping fm and
encoding fe function will be used before the homomorphic encryption, the encrypted data will
add into hSeti. For the data outside the valid range Re, the node ID will be added into the alarm
set aSeti after being encrypted.

Algorithm 1Operations on Client (Part I)

1: procedure LOCAL DATA PROCESSING

2: if (xi 2 Rb) then
3: Ci Enc(xi, KPubS)
4: bSeti {Ci}
5: else if (xi 2 Rd) then
6: yi fm(xi) ⊳ Mapping

7: ~vi  feðyiÞ; s.t. ~vi 2 f0; 1gL. ⊳ Encoding
8: Chi nul
9: for j 0 to Bnum − 1 do

10: start maxð1; ðj~v jið�ðjþ 1ÞBmsize þ 1Þ
11: end  j~vij � jBmsize

12: m ~vi½start;end�
13: c HEnc(m, KeyPubSH)
14: Chi [c, Chi]
15: end for
16: hSeti {Chi}
17: else
18: CIDi Enc(IDi, KPubS)
19: aSeti {CIDi}
20: end if
21: end procedure

As shown in algorithm 2, the received data processing only exists in cluster header (i.e.,
CHs). Each CH use it to deal with packets received from its children (i.e., CMs). Items in each
packet will be classified into three sets, i.e., bSeti, hSeti, and aSeti. All items of hSeti will be aggre-
gated directly in cipher domain, and the aggregation result is Chi.

In the data transmission, all processing results Chi, bSeti, and aSeti are send to its parent.

Each element in~vk (i.e., vk(i)) or ~V is allocated the same size (denote as, Itmsize or jvk(i)j), it
is influenced by N and the distribution of x. Itmsize 2 dlog N

L
e; dlogNe� �

.
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The maximum size (denote as Psize) that the homomorphic encryption function can operate
each time, is always large than Itmsize. To reduce the total ciphertext size and the computation
cost, several adjacent vector elements can be encrypted at the same time. For example, in Fig 2,
each element is allocated three bits, and every two elements are encrypted with each other.

The maximum number of vector elements that can be encrypted by the encryption function

is b Psize
Itmsize
c, and the actual size of plaintext for the encryption function is Bmsize ¼ b Psize

Itmsize
cItmsize.

The corresponding ciphertext size is denoted as Bcsize. When j~vkj is much larger than Bmsize, the

homomorphic encryption function need to repeat Bnum ¼ d j~vk jBmsize
e times to finish the encryption

for~vk. The decryption function also needs to repeat Bnum times.

Algorithm 2Operations on Client (Part II)

1: procedure RECEIVED DATA PROCESSING

2: if current node is a CH then
3: for all received Packetk do
4: extract {Chk, bSetk, aSetk} from Packetk

5: bSeti bSeti [ bSetk

6: aSeti aSeti [ aSetk

7: hSeti hSeti [ {Chk}
8: end for
9: for j 1 to Bnum do

10: ct1 is initialized as the infinity point of E
11: for all Chk 2 hSet do
12: ct2 Chk [(j − 1)Bcsize + 1, jBcsize]
13: ct1 ct1� ct2
14: end for
15: Chi [(j − 1)Bcsize + 1, jBcsize] ct1

16: end for
17: end if
18: end procedure

Operations on Sever. Operations on server consist of five parts: data receiving and retriev-
ing, boundary range data processing, alarm data processing, dominant range data processing,
and obtain statistical results. The first three are contained in algorithm 3, while the others are
contained in algorithm 4 and 5.

Algorithm 3Operations on Server (Part I)

1: procedure OPERATIONS ON SERVER

2: for all received Packetk do ⊳ data retrieving
3: extract {Chk, bSetk, aSetk} from Packetk

4: bSet S
bSetk

5: aSet S
aSetk

6: hSet S
Chk

7: end for
8: mSet {} ⊳ boundary range data processing
9: for all Ci 2 bSet do

10: mi Dec(KPriS, Ci)
11: mSet S

{mi}
12: end for
13: for all cid 2 aSet do ⊳ alarm data processing
14: IDi Dec(KPriS, cid)
15: treat IDi as a potential abnormal node
16: end for
17: end procedure

Multi-Functional Secure Aggregation

PLOS ONE | DOI:10.1371/journal.pone.0159605 August 23, 2016 8 / 25



In the data receiving and retrieving, the server receives all packets from its children. All its
children are CH, and the packets like {Chi, bSeti, aSeti}. Items in each packet will be classified
into three sets, i.e. bSet, aSet and hSet.

Items in bSet are boundary range data, all of them are encrypted in traditional scheme. The
decrypted data are added intomSet.

Items in aSet are IDs of clients which data is out of boundary range. Those nodes are treated
as potential abnormal node, and may need further analysis.

Items in hSet are dominant range data, all of them are homomorphic encrypted data, so all
items in this set can be aggregated directly in cipher domain. After decrypting the aggregated
encrypted data using KPriSH, we get an aggregation result of data in dominant range, in a vec-

tor form, i.e., ~V ¼ fn1; n2; . . . ; nLg.
Algorithm 4Operations on Server (Part II)

1: procedure OPERATIONS ON SERVER

⊳ dominant range data processing
2: for j 1 to Bnum do
3: ct1 is initialized as the infinity point of E
4: for all Ci 2 hSet do
5: ct2 Ci [(j − 1)Bcsize + 1, jBcsize]
6: ct1 ct1� ct2
7: end for
8: tmp HDec(t1, keyPriS)
9: ~M  ½~M ;tmp�

10: end for
11: ~V  nul

12: Bsize  jM j
L

13: for j 1 to L do
14: nj M [|M| −j Itmsize + 1, |M| −(j − 1)Itmsize]
15: ~V  ½nj; ~V �
16: end for
17: end procedure

Finally, each statistical results can be obtained directly from ~V andmSet by algorithm 5.

Property of SEDAR
Multi-function. On the one hand, the value-related information needs to be preserved in

the transformation for the summation based statistics. yk can be recovered from ~V ðiÞ, and xk
can be recovered from yk. ~V ðiÞ itself represents how many xk ¼ f �1m ðiÞ in the raw data. So the

value-related information is maintained in the ~V .
On the other hand, the order-related information needs to be preserved in the transforma-

tion for the comparison based statistics. Assuming that ~V ðiÞ 6¼ 0, ~V ðjÞ 6¼ 0, and i> j. We
recover the raw data as xi ¼ f �1m ðiÞ and xj ¼ f �1m ðjÞ, and then we can use the monotonicity of fm

to judge which one is larger. So order-related information is maintained in the vector ~V .
Therefore, both the summation based statistics and the comparison based statistics can be

calculated in the proposed scheme.
Data Privacy. On the one hand, the adversary cannot infer the true position of the non-

zero element from an encrypted vector, and thus can not recover xk by using these informa-
tion. There is a random function in the homomorphic encryption scheme. Even if two ele-
ments have the same value, their ciphertexts are still different from each other. For example,
in the leaf nodes, each encoded vectors contain only a non-zero elements, and all other
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elements are zero. It’s easily infering the corresponding value xk in plaintext domain by
obtaining the position i of the non-zero elements and using f �1m f �1e ðiÞ. However, in ciphertext
domain, encrypted elements are different to each other, and even encrypted zero elements are
also different to each other. As a result, inferring the position of non-zero elements is difficult
in encrypted vectors.

Algorithm 5Operations on Server (Part III)

1: procedure OBTAIN STATISTIC RESULT

2: CNT PL

i¼1 ni þ mSet ⊳ Count

2: SUM  PL

i¼1 f
�1
m ðiÞ � ni þ

P
mSetxi ⊳ Summation

4: MEAN SUM
CNT

⊳ Average/mean

5: imax max({i i 2 (0, L]&&ni > 0})
6: max1  f�1m ðimaxÞ
7: max2 max(mSet)
8: MAX max {max1, max2} ⊳ Maximum
9: imin min({i i 2 (0, L]&&ni > 0})

10: min1  f�1m ðiminÞ
11: min2 min(mSet)
12: MIN min min1, min2 ⊳ Minimum
13: cntL #{mSet(	 < MIN1)},

⊳ cntL is the total number in {mSet} whose value is less then or
equal to MIN.

14: M  min fjjPj
i¼1 ni 
 dCNT2 e � cntLg

� �

15: M 0  min fjjPj
i¼1 ni 
 dCNTþ12

e � cntLg
� �

16: if CNT is odd then ⊳ Median
17: MEDIAN f�1m ðMÞ
18: else

19: MEDIAN f�1m ðM Þþf�1m ðM 0 Þ
2

20: end if
21: SUM ðx̂2Þ  PL

i¼1 ðf�1m ðiÞÞ2ni þ
P

mSetxi
2

22: E x̂2ð Þ  SUM ðx̂ 2Þ
CNT

23: Eðx̂Þ2  MEAN 2

24: VAR E(x2) − E(x)2 ⊳ Variance

25: STD ffiffiffiffiffiffiffiffiffi
VAR
p

⊳ Standard deviation
26: m1cnt maxð~V Þ
27: imode1  findð~V ¼¼ m1cntÞ
28: mode2 mode(mSet)
29: m2cnt sum(mSet = = mode2)
30: if m1cnt > m2cnt then ⊳ Mode
31: MODE f�1m ðimode1Þ
32: else
33: MODE mode2
34: end if
35: end procedure

On the other hand, all message relayed or aggregated in the intermediate node are encrypted
message. Due to the homomorphic encryption scheme, the aggregation for data in Rd performs
on cipher text of~vk directly. Message in aSet and bSet are encrypted by a traditional encryption
scheme. So all message relayed or aggregated in the intermediate node are encrypted message,
all private keys keep in privacy only by the server. Without private key, no one can decrypt, so
data confidentiality is achieved.
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A Concrete Example for SEDAR
Assuming Re = (20, 40], Rd = (30, 34] and accuracy requirement is a = 1. As shown in Table 1,
there are 10 nodes in the given network. Raw data of each node list in the 2nd column, the 3rd
and 4th columns are data classification and processing results.

Raw data of node 2 and node 8 are outside of the valid data range Re = (20, 40]. Both of
them will be regarded as illegal data and discarded, and their IDs will be added into alarm set
aSet.

Raw data of node 5 and node 10 are in the boundary range Rb ¼ ReRd ¼ ð20; 30�
Sð34; 40�.

Both of them will be added into boundary set bSet.
Other raw data are in the dominant range Rd. Each of them will be transformed into yk

(yk 2 (0, 4]) by using themapping function. Each valid mapped data yk will then be encoded
into a vector~vk whose length is L. The yk-th elements is 1, while all the remaining elements are
set to 0. For example, in node 1, the raw data is x1 = 32, the mapped data yk = 2 is obtained
after mapping step, and in the encoding step, the 2nd (yk-th) element of the vector is set to 1,
while other elements are 0, i.e.~vk ¼ ð0 1 0 0Þ.

Each vector will be encrypted by the homomorphic encryption scheme and in-network
aggregation will perform directly in cipher domain.

Elements of aSet and bSet will be encrypted by the traditional encryption scheme, and be
relayed to the server without in-network aggregation.

According the homomorphic property, the aggregation of vectors in cipher text domain is
equivalent to that in plaintext. Therefore, the server can obtain the final aggregation result
~V ¼P

~vk by decrypting the received data. Encrypted data in aSet and bSet can also be
decrypted by server. The final data obtained at the server include

~V ¼ P
~vk ¼ ð0 2 3 1Þ

mSet ¼ S
mSeti ¼ f25; 28g

aSet ¼ S
aSeti ¼ f“3”; “8”g

Each statistic can be calculated using algorithm 5.
CNT = (2 + 3 + 1) + 2 = 8;
SUM = 2 × (2 + 30) + 3 × (3 + 30) + 1 × (4 + 30) + (25 + 28) = 250;
MEAN = 31.25;
imax = 4,max1 = 34,max2 = 28,MAX = 34;
imin = 2,min1 = 32,min2 = 25,MIN = 25;

Table 1. Example for SEDAR.

ID Raw data Range Result

1 32 Rd (0 1 0 0)

2 16 Re
aSet = {“3”}

3 32 Rd (0 1 0 0)

4 33 Rd (0 0 1 0)

5 28 ReRd
mSet = {28}

6 33 Rd (0 0 1 0)

7 34 Rd (0 0 0 1)

8 49 Re
aSet = {“8”}

9 33 Rd (0 0 1 0)

10 25 ReRd
mSet = {25}

doi:10.1371/journal.pone.0159605.t001
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cntL = 2,M = 2,M0 = 3,MEDIAN = 32.5;

SUM(x2) = 2 × (2 + 30)2+3 × (3 + 30)2+1 × (4 + 30)2+(252+282) = 7880; E x2ð Þ ¼ SUMðx2Þ
CNT

;

E(x)2 =MEAN2;
VAR = 8.4375; STD = 2.9;
m1cnt = 3; imode1 = 3;mode2 = 25. (InmSet, 25 and 28 have the same frequency, and the

first element, i.e., 25, is chosen as its mode.)
m2cnt = 1; becausem1cnt>m2cnt,MODE ¼ f �1m ðimode1Þ ¼ 33.
Note that CNT is 8 instead of 10; this is because there are two nodes whose data is out of the

operation range, which means there a failure is caused by node failure or other reasons. That is
to say, computation of the final statistics, can automatically adapt to the dynamic network.

REDAR
In SEDAR, most elements of the encoded data~v near the leaf nodes are zero, which means it
contains redundant information. Directly transmitting these low information data using a full
vector is too expensive. As these encrypted zeros are used to hidden the exact position of the
encrypted non-zero elements. Encrypting all zeros is not necessary, especially when L large.

In this section, we propose REDAR, which can significantly reduce the communication cost
with the trade-off of lower security on leaf node. In REDAR, all non-zero elements and a small
number of random selected zero elements of the leaf nodes’ vector are encrypted.

Random Encryption
Random selection zero-elements are used to reduce packet size, as well as provide security for
the non-zero elements.

First,~v are split the into several segments. Then, all non-zero elements and a small number
of randomly chose zero elements are encrypted.

For example, in Fig 3-1, there are 27 elements in~v , each element contains 3 bits, each cipher
element is encrypted from 2 elements, where the leftmost cipher element only contain 1 ele-
ment in this case.~v is split into 3 segments, each of the right two segments has 5 cipher ele-
ments at most, and the last segments has 4 cipher elements at most.

For each segment whose elements are zero, a random number r will generate between 1 and
ns, where ns is the number of elements in the segment. Then the r rightmost elements of the
segment are encrypted using the homomorphic encryption scheme. For example, in Fig 3-1, all
elements of the leftmost and the rightmost segments are zero, i.e., ns = 4 and ns = 5 respectively,
and thus one cipher element in the leftmost segment and two cipher elements in the rightmost
segment are obtained.

For the segment containing a non-zero element, a random number r is generated, where r is
between 0 and ns − py, and py is the position of non-zero elements in the segment with respect
to the right end. Then the r + py rightmost elements of the segment are encrypted. For example,
in Fig 3-1, the 2nd segment contains a non-zero element, and py = 2. Because r = 0 is return by
the random function, only py + r = 2 leftmost elements are encrypted.

Packing and Unpacking
The packing step is used for constructing packet from the random encryption result. As show
Fig 3-2, encrypted data in each segment are packed together in the original order, and a delim-
iter is added between adjacent segments. Because each cipher has the same size and only several
leftmost elements are encrypted, the original encrypted vector can be reconstructed in the
unpacking step.
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Secure Data Aggregation
All received packets are unpacked to get~c 0k sets, and then aligned together with the local gener-
ated encrypted data. Finally, data aggregation will performs directly on cipher domain column
by column, and aggregation results of all segments are packed and send to its parent.

For example, in Fig 3-3, the first line is the encrypted data generated locally, the 2nd and
3rd are received from its children, and all of them are the 2nd segment of each vector. Segments
received from different children may have a different number of elements, all of them are
aligned to the right side. Because c17 is not exist in the 1st child, we ignore it, and just aggregate
other two elements, i.e. c7

0 ¼ c7 � c27. Among these three segments, the maximum number of
elements is 3 (the 3nd line in Fig 3-3), so the elements number in the aggregation result of this
segment is also 3.

Correctness and Security
As random selected encryption only performs on zero elements, all no-zero elements in each
vector are encrypted, and aggregated into the final result. No raw data is loss in REDAR, so the
final results are the same as that in SEDAR.

Fig 3. REDAR.

doi:10.1371/journal.pone.0159605.g003
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In REDAR, the communication cost is reduced for much less zero elements is encrypted
and contained in the packet. However, as the number of encrypted data is reduced, it benefits
the adversary with guessing the true position of non-zero elements. An inappropriate distribu-
tion of the encrypted data also benefits the adversary with the success probability of guess. So
we need carefully design the random function and make sure that sufficient encrypted data is
still retained after using random selected encryption. The more the encrypted elements, the
lower probability it is guessed successfully. After aggregating at intermediate node, the
encrypted elements will contain more than one encrypted non-zero elements, which means the
success probability of the adversary will decrease significantly. More specifically, in the leaf
node i, where only one non-zero elements in the vector. Assuming ni encrypted data exist in
the final packet, then the adversary’s success probability is 1

ni
. In the cluster header, assuming k

nodes aggregate together, the probability reduces to 1
nk
, where n = ∑j maxi(nij), and nij is the

number of elements in the jth segment of node i. As n and k increase along the aggregation
tree, the adversary’s success probability decrease obviously.

For example, when n
 25 and k
 4, the success probability no larger than 2.56 × 10−6. As
in cluster-based networks, the cluster member in each cluster is often large than 4, which
means when n
 25, except in the leaf node, no encrypted data can be success guessed with
probability larger than 2.56 × 10−6. When k = 6 and n = 35, the success probability already
decreases to 5.44 × 10−10.

CEDAR
In this section, we present CEDAR. CEDAR and REDAR are complementary schemes.
CEDAR is used before encoding, while REDAR is used after encoding.

In SEDAR, the total communication cost is mainly determined by the size and accuracy of

Rd, i.e. L ¼ jRd j
a
. L sometimes is large, so the total communication cost is still heavy. In order to

reduce the communication cost, a compression step is introduced in CEDAR. As shown in
Fig 4, mapping data y is compressed from a lager space with size of L into a smaller space with
size of L0. Encoding step executes on compression data z, which make the vector length
decreased from L to L0. Compression function can be a linear one or a non-linear one. Due to
the limited space, we only illustrate the linear one.

A linear compression function fc can compress y into z, i.e., z ¼ fcðyÞ ¼ fcfmðxÞ ¼ dyce ¼ dfmðxÞc
e,

c is the compression factor, which is larger than 1. Encoding step is based on z instead of y, i.e.,

Fig 4. CEDAR.

doi:10.1371/journal.pone.0159605.g004
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~v ¼ feðzÞ ¼ fefcðyÞ. So the total communication cost is reduce from L to dL
c
e. One can recover ŷ

as an estimate of y, using the decompressing function on z, i.e.,
ŷ ¼ f �1c ðzÞ ¼ f �1c f �1e ðiÞ ¼ c � z � bc

2
c ¼ c � i � bc

2
c.

Performance Analysis
In this section, we analyse communication and computation performance of proposed
schemes. Performance criteria includes whether there are existing a bottleneck, and whether it
achieves load balance.

Communication performance
First, we analyse the maximum packet size to judge whether exists a bottleneck. Then analyse
the distribution attribution of packet size to judge whether it achieves load balance. After a
thorough analysis, we find out that no bottleneck exist, and it achieves load balance. The
detailed analysis goes as follows.

Data in Rd are encrypted by a homomorphic scheme, so encrypted data can aggregate
directly in cipher domain in the intermediate nodes, and thus the total length will not change.
Data in Rb uses a traditional encryption scheme. Without the private key, the intermediate
nodes have to cascade each encrypted data and replay forwarding. So the length will increase,
the minimum values of the data packets size appear in the leaf node of the aggregation tree,
and the maximum length of the package is in the vicinity of the server node.

Now, let’s analyse packet length for Rd and Rb respectively. For the sake of simplicity, data
length analysis is based on plain text.

Communication cost for Rd is determined by the number of elements in the vector and the
data length of each element. The former is determined by the range length of Rd and accuracy
requirement a. The latter determined by the largest number of samples fall in the same point,
and the worst case is all samples in Rd (i.e. N × P(Rd)) fall in the same position. In practice, the
probability of the worst case can be ignored. So,

CostRd <
jRd j
a
dlog N � P Rdð Þð Þe ¼ 2bd̂

a
dlog N � P Rdð Þð Þe.

Now, let’s consider the communication cost for Rb. Since the data in Rb is not aggregated in
the intermediate nodes, the total data length will reach the maximum in the vicinity of the
server node. The maximum value is determined by the total number of samples N and the
probability (P(Rb)) of the sample in the region Rb, as well as the transmission overhead of a sin-
gle sample. In practice, we can assume that the probability of abnormal data is much less than
the normal one, which means the number of elements outside Re can be ignored. So,

PðRbÞ ¼ PðReRdÞ ¼ PðReÞ � PðRdÞ � 1� PðRdÞ. and then
CostRb

< N� PðRbÞdlog Rb
a
e � Nð1� PðRdÞÞ dlog jRb j � jRd ja

e.
In order to judge wether it achieves load balance, let’s analyze the distribution of the whole

network traffic first.
The minimum values of the data packets size appear in the leaf node of the aggregation tree.

In the leaf node, when x 2 Rb, no encoding step is used, so its data length is dlog jRe j�jRd j
a
e. When

x 2 Rd, the encoding data length is CostRd . The former one (Let’s denote it as C0) is much less

than the last one. However, C0 only exists in very small number of leaf node. Assuming each
cluster containsm leafs. The probability that C0 appears at the same time inm nodes is (1 −
P(Rd))

m. For example, in a normal distribution, assuming β = 2, when m = 3, (1 −
P(Rd))

m = 9.48 × 10−5. The probability is small, which means even a small number of leaf node
has a packet size of C0, its parent will at least CostRd . Therefore, C0 is lack of significance, and

the representative minimum value should be selected as Costmin ¼ CostRd .
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In the whole network, the minimum packet appears in the leaf nodes, the maximum packet
appears in the vicinity of the server. In the path of the leaf node to the root node, the size of the
packet increases from the minimum to the maximum value. Because P(Rd)
 P(Rb), the

growth rate of packet size is small enough, and the average packet size Cost � CostRd .

The maximum value of the data packet is, Costmax ¼ CostRd
þ CostRd

. On the one hand,

once the Rd is determined, CostRd can be treat as a const. If CostRd is too large, CEDAR can be

used. So CostRd is controllable. On the other hand, according the define of Rd, P(Rd)� 1, so

CostRd is small enough. As a result, the maximum packet size can be regarded as a controllable

const, and there is no bottleneck in the network.

As the difference among Costmin, Costmax and Cost is small, we can easily make a conclusion
that it achieves load balance.

Computation performance
For computation performance, we also analyse the maximum computation cost to judge
whether exists a bottleneck, and analyse the distribution attribution of computation cost to
judge whether it achieves load balance. We find out that no bottleneck exist, and it achieves
load balance. The detailed analysis goes as follows.

Each data can either be homomorphic encrypted after encoded, or encrypted by traditional
scheme directly, according the range it belongs to. Let’s denote the computation cost of the for-
mer as C11, and the latter one as C21.

For the data inside the Rd, mapping and encoding are required before homomorphic
encryption. Both of them cost much less than encryption and decryption, thus can be ignored.
For the homomorphic encrypted data, the intermediate nodes will not decrypt it, and aggregate
them directly in cipher domain. Assuming a single cipher domain addition cost C13, the total
aggregation cost is C13(N × P(Rd) − 1), due to that N × P(Rd) − 1 times aggregation operation
are necessary for N × P(Rd) elements in Rd.

The final aggregated result will be decrypted in the server, and the decryption cost is C12.
Each encrypted data in the boundary range, will also decrypted in the server, and the decryp-
tion cost is C22.

So the total computational cost is C = C11 N × P(Rd) + C13(N × P(Rd) − 1)+C12 + N × P(Rb)
(C21+C22).

Average computational cost is Cavg ¼ C
N
¼ C11PðRdÞ þ C13ðN�PðRdÞ�1Þ

N
þ C12

N
þ

PðRbÞ ðC21 þ C22Þ ≈ ðC11 þ C13Þ PðRdÞ þ ðC21 þ C22Þ ð1� PðRdÞÞ.
In instances of homomorphic encryption, encryption cost and decryption cost are often

much larger than the cipher domain aggregation cost. For example, in the ECC-based version,
the main operations of encryption and decryption are scalar multiplication, and the main oper-
ation of cipher domain aggregation is point addition. The former is far greater than the latter,
so C13 can also be ignored, and Cavg� C11 P(Rd) + (C21+C22)(1 − P(Rd)).

There are two main computational cost operations, i.e. encryption and decryption. Both of
them not exist in the same node. Each client only performs one type of encryption operation,
i.e. homomorphic one or traditional one. Two types of decryption exist in the server.

Since each client only chooses one of the two kinds of encryption mechanisms, each data is
encrypted only once, so the computation cost is C11 or C21. In general, the encode data has larger
length than the raw data, so C11> C21, so the maximum computational cost of client is C11. Two
types of decryption exist in the server, the corresponding overhead is C12 + N × P(Rb)C22.
Because N × P(Rb) is often small, and the server node has a large computational power, the
decryption operation is not a difficult task. Therefore, there is no computational bottleneck exist.
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Each client only encryption once, and the aggregation operations in each intermediate node
are not compute-intensive, so the the proposed scheme also achieve load balance in computation.

Statistics functions supported
In this section, we compare the proposed schemes with other data aggregation schemes on sta-
tistics functions and encoding method. Table 2 is the comparison result. All of them are distrib-
uted aggregation schemes, which mean that intermediate nodes generate partial aggregation
results from their received data.

Evaluation

Data sets description
Evaluation is based on six datasets gathered from different type of sensors. All of them are
obtained from TAO (Tropical Atmosphere Ocean) project. The TAO is a project of NOAA
(National Oceanic and Atmospheric Administration), which aim to enable real-time collection
of high quality oceanographic and surface meteorological data for monitoring, forecasting, and
understanding of climate swings associated with El Nino and La Nina.

Table 3 is the general description of each dataset. Rh0n156e_hr is a dataset of relative
humidity. Bp0n156e_hr is sea level pressure.W0n156e_hr is wind direction. Sst0n147e_hr and
sst0n156e_hr are different datasets of sea surface temperature. rad0n156e_hr is shortwave radi-
ation. The 2nd column is the sample size of each dataset. The 3rd and 4th columns are skew-
ness and kurtosis respectively. The 5th and 6th columns are mean and standard deviation
estimated using the history record.

Table 2. Comparison on Statistics Functions and Encoding Method.

Encoding Statistics

Considine et al. [9] Synopsis generation function CNT, SUM, AVG
VAR, STDRoy et al. [11]

Li et al. [17] Slicing and assembling technique

Yang et al. [18]

Castelluccia et al. [10] No

Lu et al. [19]

Ertaul et al. [20] No MAX, MIN

Samanthula et al. [21]

RCDA [14] l = dlogLe, β = l(i − 1),
~vi ¼ xijj0b

CNT, SUM, AVG
VAR, STD, MAX
MIN, MODE, MEDIAN

EERCDA [13]

Proposed schemes ~vi ¼ zerosð1; LÞ,~viðyiÞ ¼ 1

doi:10.1371/journal.pone.0159605.t002

Table 3. General description of datasets.

Dataset Size Skewness Kurtosis d̂ m̂

rh0n156e_hr 144250 0.331 3.301 5.508 78.587

bp0n156e_hr 122035 -0.174 2.852 1.820 1008.3

w0n156e_hr 146702 -0.409 1.992 96.268 197.416

sst0n147e_hr 65535 0.313 3.706 0.469 29.712

rad0n156e_hr 39916 -0.008 1.757 234.273 596.817

sst0n156e_hr 4672 0.829 4.683 0.358 29.338

doi:10.1371/journal.pone.0159605.t003
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These datasets cover several different scenarios. The distribution characteristics of them are
different from each other, and thus has certain representativeness.

Effectiveness of Range Segmentation Model
In the proposed schemes, a range segmentation model is introduced to reduce the encoded vec-
tors length, and thus reduce the total communication cost as long as the P(Rb) is small enough.
To achieve this purpose, we should choose dominate range carefully and make sure that sam-
ples beside this range is small enough. Now, let’s verify whether the boundary setting of the
dominate range (Rd) is effective.

As we described above, the lower bound XL and the upper bound XU of dominate range Rd

are determined by XL ¼ maxðXLE; m̂ � bd̂Þ and XU ¼ minðXUE; m̂ þ bd̂Þ. XLE and XUE are

const defined in TAO project. m̂ and d̂ are estimated from history data, which can also be
regarded as const. Different dominate range can be generated by different β.

The proportion of data outside Rd, i.e. P(Rb), under different parameters are list in Table 4.
As β increase, P(Rb) reduce significantly. For example, when β = 2.2, P(Rb) is no larger than
3.5% in all six datasets, and two of them are even reduced to zero.

However, it’s not means the larger of β, the better of the communication performance. As β
increase, the encoded vector length also increase, and the communication cost for Rd will
increase. We need to achieve a balance between the communication cost for Rd and Rb.

Fig 5 is the relationship between the maximum packet size and dominant range Rd setting.
The network size is 1000. We can easily find out that, as β increasing, the maximum packet size
reduces significantly, and when β> 1.8, the decreasing rate becomes moderate. Let’s analysis
the reason. As the increase of β, the communication cost for the boundary range Rb reduce sig-
nificantly. More specifically, the communication overhead reduced in Rb is much larger than
that increased in Rd, so the total packet size is still significantly decreased. When β reaches a
certain value, the maximum packet size reaches a minimum value. E.g., β = 1.6 for
sst0n156e_hr and β = 2 for w0n156e. In some case, when β is larger than its optimal value,
P(Rb) is small enough, the communication cost for Rb can be ignored, and the cost for Rd is
may increase as the bound of Rd still in Re, so the maximum packet size may increase mildly.

Communication Cost of SEDAR in Different Rd Setting
Fig 5 is the communication cost of SEDAR in different Rd setting. According to this figure,
when β is between 1.8 and 3, the change of the maximum packet size in each dataset is rela-
tively small. Which means, any β 2 [1.8, 3] meets the basically requirements and doesn’t signif-
icantly reduce the communication performance. This feature is very useful, which means Rd

setting is easy.
Although it is difficult to achieve optimal performance by setting an accurate dominant

range in advance, by choosing arbitrary β 2 [1.8, 3], we can still obtain a suboptimal

Table 4. P(Rb) in different dominant range setting.

Dataset β = 1.4 β = 1.8 β = 2.2 β = 2.6 β = 3

rh0n156e_hr 15.61% 7.39% 3.22% 1.40% 0.50%

bp0n156e_hr 16.40% 6.78% 2.54% 0.66% 0.19%

w0n156e_hr 17.11% 4.82% 0 0 0

sst0n147e_hr 14.10% 6.73% 3.27% 1.55% 0.75%

rad0n156e_hr 18.70% 0 0 0 0

Sst0n156e_hr 14.75% 5.78% 3.47% 1.85% 1.02%

doi:10.1371/journal.pone.0159605.t004

Multi-Functional Secure Aggregation

PLOS ONE | DOI:10.1371/journal.pone.0159605 August 23, 2016 18 / 25



performance, which is very similar to the optimal one. For example, in following evaluation,
we directly set β = 2 for different datasets, and still obtain a good result.

Comparsion with RCDA and EERCDA
In this section, we compare SEDAR with RCDA and EERCDA. Both of them support mutil-
functional security data aggregation, and homomorphic encryption scheme is used in all of
them. The main difference lies in the encoding function. Each client encrypts collected and
encoded data. The aggregation performs on cipher text directly at each intermediate aggrega-
tor, and the decryption performs on the server. The computation cost of encryption and
decryption are near-linear related to the encoded data length. Limited to space, we only con-
cern the comparison on communication cost. In these evaluations, β = 2. The comparison
result lists in Fig 6. (θ is used to characterize the intensity of data fluctuation in a given appli-
cation for EERCDA.)

Fig 5. Communication cost in differentRd setting.

doi:10.1371/journal.pone.0159605.g005

Multi-Functional Secure Aggregation

PLOS ONE | DOI:10.1371/journal.pone.0159605 August 23, 2016 19 / 25



According Fig 6, we can easily find out that the proposed scheme is obviously superior to
RCDA and EERCDA. And due to the slow growth of communication cost as the increase of N,
it can be applied to large scale networks.

In w0n156e_hr, bp0n156e_hr and rad0n156e_hr, when N is small, RCDA and EERCDA is
better than SEDAR. In these datasets, when β = 2, the dominate range is a little large. So when
the network size N is small, the communication cost is larger than that in RCDA and EERCDA.
However, when N increases to a certain value, the advantage of this scheme is very obvious. In
other three datasets, the dominate region size is small, and most samples are in the dominate
range when β = 2, so the proposed scheme has an absolute advantage even in the small network.

In sst0n147e_hr, w0n156e_hr and rad0n156e_hr, the average and maximum communica-
tion cost are almost have the same value, this is because most elements are in Rd. In contrast,
the average and maximum communication cost aren’t the same in other three datasets.

Table 5 is comparison on end-to-end aggregation time. Due to limited space, we only compare
SEDAR with RCDA. The evaluation is built on MICAz. MICAz has a low-power 8-bit microcon-
troller ATmega128L and an IEEE 802.15.4 compliant CC2420 transceiver. The clock frequency of

Fig 6. Comparsion with RCDA and EERCDA.

doi:10.1371/journal.pone.0159605.g006

Multi-Functional Secure Aggregation

PLOS ONE | DOI:10.1371/journal.pone.0159605 August 23, 2016 20 / 25



ATmega128L is 8 MHz. The claimed data rate of CC2420 is 250 kbps. Meulenaer et al. [22] mea-
sured the effective data rate for transmitting is 121 kbps which far below the claimed rates. In the
energy models used in this paper, we use 121 kbps as the data rate for the evaluation of communi-
cation delay. For the computational cost evaluation, we decide to implement the proposed
scheme based on TinyECC [23]. According to its evaluation result based on MICAz, the execu-
tion time for encryption is 3907.46ms, which is similar to the one used in RCDA [14]. According
to RCDA, MICAz needs 73.71 ms to aggregate two data in cipher domain. According to the com-
parison results, end-to-end aggregation time of SEDAR is much smaller than that of RCDA.
With the increase of network size, this advantage will be more obvious.

Cost and Accuracy Evaluation for CEDAR
Wemeasure the performance of CEDAR in this section. Figs 7 and 8 are the communication
overhead and accuracy in different compression factor c.

According to Fig 7, we can know that with the increase of c, the average and the maximum
communication cost of each dataset are reduced to some extent. The reduction trend in each
dataset is not entirely consistent. When the compression factor is large, the communication
volume curve is flat, which means the compression effect is decreased. According to Fig 8, with
the increase of C, the error rates in each dataset are increasing. So it is necessary to ensure that
a balanced between the communication cost and the error rate.

The growth trend of the error rate has a certain degree of relationship with the initial com-
munication cost. The initial communication cost is the corresponding communication cost in
SEDAR. The error rates increase more quickly in cases that have much larger initial communi-
cation cost. For example, as shown in Fig 8, the initial communication cost of rad0n156e_hr is
relatively large, and when c = 5, the bound of error rates is still less than ±0.015. In sst0n147e_hr,
w0n156e_hr, and rh0n156e_hr, in which the initial communication cost is small, the bound is
close to or more than pm0.03 when c = 5. In particular, error bound of rh0n156e_hr, is greater
than 0.4 when c = 4. In fact, according to Fig 7, the initial communication cost of rh0n156e_hr is
the minimal one, and the reduction tendency of rh0n156e_hr is not obvious.

Hence, we can choose a large compression factor for the case with large initial communica-
tion cost, and we should choose a small one, or even give up the CEDAR for the case with
small initial communication cost.

Related work

Distributed Aggregation
Distributed aggregation is a traditional research topic in database community. Kuhn and Osh-
man [6] studied the complexity of computing count and minimum in synchronous directed

Table 5. Comparison on end-to-end aggregation time (unit: ms; N = 1000; cluster-based network. Compu.: computation delay; Commu.: communica-
tion delay; Total: total delay).

SEDAR RCDA

Compu. Commu. Total Compu. Commu. Total

sst0n147e_hr 1.52 × 104 15.59 1.52 × 104 4.96 × 105 339.25 4.96 × 105

sst0n156e_hr 1.15 × 104 20.63 1.15 × 104 4.35 × 105 339.25 4.35 × 105

w0n156e_hr 2.30 × 104 23.54 2.30 × 104 4.37 × 105 237.48 4.37 × 105

bp0n156e_hr 2.33 × 104 42.06 2.34 × 104 7.56 × 105 407.11 7.56 × 105

rh0n156e_hr 1.29 × 103 6.65 1.29 × 103 7.97 × 104 101.77 7.98 × 104

rad0n156e_hr 6.50 × 104 66.48 6.51 × 104 1.05 × 106 271.40 1.05 × 106

doi:10.1371/journal.pone.0159605.t005
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networks. Hobbs et al. [7] presented a distributed protocol to compute maximum and average
under the SINR model. Cormode and Yi [8] focused on tracking the value of a aggregation
function on distributed monitoring area. Cheng et al. [24], Li and Cheng [25] considered the
approximate aggregation problem and presented (�, δ)-approximate schemes based on Ber-
noulli sampling. Xie and Wang [26] and Shen et al. [27] studied network construction and
message routing algorithm for data aggregation.

Secure Distributed Aggregation
Several secure distributed aggregation schemes have been proposed. Most of them focus on
secure itself, and very limited numbers of aggregation functions can be supported. Considine
et al. [9] and Roy et al [11] proposed secure distributed aggregation scheme for duplicate sensi-
tive aggregation based on synopsis generation function. Li et al. [17] and Yang et al. [18] pro-
posed slice-mix based schemes for additive aggregation functions, which guarantees data
privacy through data “slicing and assembling” technique. Castelluccia et al. [10] and Lu et al.

Fig 7. Cost Evaluation of CEDAR.

doi:10.1371/journal.pone.0159605.g007
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[19] proposed secure distributed aggregation scheme based on homomorphic encryption,
which is also only support summation-based statistical functions, such as CNT and SUM.
Agrawal et al. [28] presented the order-preserving encryption scheme. Ertaul et al. [20] and
Samanthula et al. [21] applied it to secure distributed aggregation, to get comparison-based sta-
tistics, such as MAX, MIN. However, summation-based statistics is not support in these
schemes. Chien-Ming et al. [14] and Jose et al. [13] adopted encoding steps before encryption
to achieve arbitrary aggregation function. However, their encoding steps are simple concatena-
tion all sensing data without any information compression method, and the communication
cost is too heavy to extend to large scale networks. Enabling operation in cipher domain is also
an important topic in cloud computing [29–31]. In addition to traditional encryption scheme,
data privacy can be achieved by steganography [32, 33]. Beside data privacy, date authentica-
tion is also necessary. Ren et al. [34] proposed an efficient mutual verifiable provable data pos-
session scheme. Guo et al. [35] designed a lightweight and tolerant authentication to guarantee
data security.

Fig 8. Accuracy Evaluation of CEDAR.

doi:10.1371/journal.pone.0159605.g008
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Conclusions
In this paper, we have studied the problem ofmultifunction secure distributed aggregation, and
also have proposed three complementary schemes (i.e., SEDAR, REDAR and CEDAR) to solve
this problem. The first one can obtain accurate aggregation results. The other two can signifi-
cantly reduce communication cost with the trade-off lower security and lower accuracy, respec-
tively. Extensive analysis and experiments, based on six different scenes of real data, have
shown that all of them have an excellent performance.
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