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 2 

Abstract 40 

Navigating around the world, we must adaptively allocate attention to our surroundings 41 
based on anticipated future stimuli and events. This allocation of spatial attention boosts 42 
visuocortical representations at attended locations and locally enhances perception. 43 
Indeed, spatial attention has often been analogized to a “spotlight” shining on the item 44 
of relevance. Although the neural underpinnings of the locus of this attentional spotlight 45 
have been relatively well studied, less is known about the size of the spotlight: to what 46 
extent can the attentional field be broadened and narrowed in accordance with 47 
behavioral demands? In this study, we developed a paradigm for dynamically estimating 48 
the locus and spread of covert spatial attention, inferred from visuocortical activity using 49 
fMRI in humans. We measured BOLD activity in response to an annulus while 50 
participants (4 female, 4 male) used covert visual attention to determine whether more 51 
numbers or letters were present in a cued region of the annulus. Importantly, the width 52 
of the cued area was systematically varied, calling for different sizes of the attentional 53 
spotlight. The deployment of attention was associated with an increase in BOLD activity 54 
in corresponding retinotopic regions of visual areas V1—V3. By modeling the 55 
visuocortical attentional modulation, we could reliably recover the cued location, as well 56 
as a broadening of the attentional enhancement with wider attentional cues. This 57 
modeling approach offers a useful window into the dynamics of attention and spatial 58 
uncertainty.  59 

Significance Statement 60 

This study explores whether spatial attention can dynamically adapt by shifting and 61 
broadening the attentional field. While previous research has focused on the modulation 62 
of neural responses at attended locations, less is known about how the size of the 63 
attentional field is represented within visual cortex. Using fMRI, we developed a novel 64 
paradigm to estimate the spatial tuning of the attentional field and demonstrate that we 65 
were able to recover both the location as well as the width of the attentional field. Our 66 
findings offer new insights into the neural mechanisms underlying the deployment of 67 
spatial attention, contributing to a deeper understanding of how spatial attention 68 
supports visual perception.  69 
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 3 

Introduction 70 

We bounce attention around all the time. Take, for instance, when we’re monitoring 71 
oncoming traffic while driving. It isn’t sufficient to attend to the single most likely source 72 
of traffic. Instead, attention adaptively broadens and narrows to cover the anticipated 73 
spatial distribution of relevant events. The need to spread attention across different 74 
swaths of the visual field is driven, to a large degree, by spatial uncertainty: statistical 75 
regularities give us a general sense as to where something useful might happen, and this 76 
evolves from moment to moment. We navigate this uncertainty by dynamically deploying 77 
spatial attention. 78 

Covert spatial attention improves behavioral performance at attended locations 79 
at the cost of performance at unattended locations (Posner, 1980), leading to a common 80 
metaphor that spatial selective attention acts as a ‘spotlight’ or ‘zoom lens’ (Shaw and 81 
Shaw, 1977; Posner, 1980; Eriksen and St. James, 1986; Carrasco, 2011). This 82 
attentional ‘spotlight’ is characterized by a specific size and location and traverses the 83 
visual field based on behavioral demands (Eriksen and St. James, 1986; Castiello and 84 
Umiltà, 1990), selectively boosting information at the attended location within the visual 85 
system while suppressing information elsewhere. Animal studies have observed 86 
multiplicative increases in visuocortical neural responses at attended locations 87 
(McAdams and Maunsell, 1999; Maunsell, 2015) and human neuroimaging studies have 88 
found similar focal enhancements of population responses (Kastner et al., 1998; 89 
Brefczynski and DeYoe, 1999; McMains and Somers, 2004; Datta and DeYoe, 2009; 90 
Sprague and Serences, 2013; Puckett and DeYoe, 2015; Samaha, Sprague and Postle, 91 
2016; Shioiri et al., 2016; Bloem and Ling, 2019). 92 

While neural modulation at the locus of attention has been relatively well studied, 93 
less is known regarding the neural signatures of the size of the attentional field 94 
(Yeshurun, 2019). Spreading attention over a larger region of visual space can decrease 95 
behavioral performance, but only a handful of studies have interrogated associated 96 
effects within visual cortex (Müller et al., 2003; Herrmann et al., 2010; Itthipuripat et al., 97 
2014; Feldmann-Wüstefeld and Awh, 2020). This is surprising, as the spatial distribution 98 
of the attentional field is a key feature in an influential theoretical model of attention 99 
(Reynolds and Heeger, 2009). The model assumes that the size of the attentional field 100 
can be adjusted based on task demands and that the interaction between attentional 101 
field size and stimulus-related factors can predict observed attentional gain effects. 102 

While the studies that have experimentally manipulated the attentional field size 103 
found evidence congruent with this prominent theory (Herrmann et al., 2010; Itthipuripat 104 
et al., 2014; Kınıklıoğlu and Boyaci, 2022), few studies have directly investigated the 105 
spatial extent of the attentional window and its concomitant neural representation. One 106 
neuroimaging study revealed that the attentional field expanded in the face of greater 107 
task-related uncertainty (Herrmann et al., 2010), while other studies showed that the 108 
responsive area of visual cortex increased in size, coupled with a decrease of the overall 109 
population response (Müller et al., 2003; Feldmann-Wüstefeld and Awh, 2020). While 110 
these studies are consistent with the notion that the attentional field size can be detected 111 
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in visual cortex, methods for dynamically recovering location and field size from moment 112 
to moment are lacking.  113 

In this study, we developed a paradigm that allowed us to dynamically 114 
characterize the spatial tuning of spatial attention across the visual field. Using fMRI in 115 
humans, we examined whether attentional modulation of the BOLD response spanned 116 
a larger area of visual cortex when participants were cued to perform attend to a larger 117 
region of space. Behavioral performance confirmed that participants could successfully 118 
allocate their attention to different-sized swaths of the visual field. This deployment of 119 
attention was associated with a boost in cortical activity in the corresponding retinotopic 120 
areas of visual cortex. By modeling the location and spread of the visuocortical 121 
modulation, we dynamically recovered the cued location from the attentional activity with 122 
a high degree of fidelity, together with a broadening of the attentional enhancement for 123 
wider attentional cues.  124 
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 5 

Materials and Methods 1 

Participants. Eight healthy adults (4 female, 4 male, mean age = 30) participated in the 2 
main attention experiment, five of whom also participated in a second experiment 3 
featuring a contrast manipulation. All participants had normal or corrected-to-normal 4 
vision. All procedures were approved by the Boston University Institutional Review 5 
Board, and informed consent was obtained from all participants. 6 
 7 
Apparatus and stimuli. Participants were presented with stimuli generated using 8 
PsychoPy (v1.85.1; Peirce, 2007) on a MacBook Pro. The visual stimuli were displayed 9 
on a rear-projection screen (subtending ~20°x16° visual angle) using a VPixx 10 
Technologies PROPixx DLP LED projector (maximum luminance 306 cd/m2). 11 
Participants viewed the screen through a front surface mirror. Participants were placed 12 
comfortably in the scanner with padding to minimize head motion. 13 
 14 
Procedure. 15 
Attentional width manipulation. Participants were instructed to fixate a central point 16 
(radius 0.08° visual angle) while dynamic pixelwise white noise (flickering at 10 Hz, 50% 17 
contrast) was presented in the periphery (annulus spanning 4.6° to 7.4° visual angle). 18 
The annulus was segmented into 20 bins (18° polar angle per bin) by white grid lines 19 
radiating from a white circle at the center of the screen (radius 0.25°), passing behind 20 
the annulus, and terminating at 8.5° eccentricity.  In the middle of each bin, a number or 21 
letter (height: 2.1°) was superimposed on the white noise annulus (see Figure 1a). For a 22 
subset of the participants (3 out of 8) the screen distance inside the scanner was 23 
changed, therefore for those participants the letter size was 1.86° visual angle, and the 24 
white noise annulus spanned 4.1º to 6.5º visual angle. The set of possible letters included 25 
all lowercase letters of the Latin alphabet except a, b, e, g, i, o, and u. The set of numbers 26 
included 2, 3, 4, 5, 7, and 8. 27 

Participants were cued to attend covertly to a contiguous subset of the bins and 28 
their task was to report, via button press, whether there were more numbers or letters 29 
present within the cued region. The cue was a bold red segment on the central white 30 
circle, which corresponded to 1, 3, 5, or 9 bins (18°, 54°, 90°, or 162° polar angle; see 31 
Figure 1a). The true proportion of letters versus numbers was controlled within each cue 32 
width condition. For cued regions of 1 bin, there was either a single number or letter in 33 
the bin. For cued regions of 3 bins, the ratio was always 2:1 (either two numbers and one 34 
letter or vice versa). For cued regions of 5 bins, the ratio was 3:2, and for cued regions 35 
of 9 bins, the ratio was 6:3. Cues could be centered on any of the 20 bins. 36 

Participants completed 8 to 12 runs of the task (mean = 10.4), with each run 37 
lasting 341 s and containing 100 trials. Each cue remained constant for a block of five 38 
trials (lasting 15.5 s, 10 TRs), although the letters and numbers within the cued region 39 
changed on every trial. Thus, each participant saw 20 unique cues (combinations of cue 40 
location and width) per run. Each run began and ended with 15.5 s of the dynamic noise 41 
annulus. 42 
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During each trial, the cue and white noise annulus were presented alone for 1.35 43 
s. The numbers and letters were then displayed for 0.5 s. Thereafter, the cue and white 44 
noise remained visible while the participant had 1.25 s to indicate whether there had 45 
been more digits or letters within the cued region, resulting in a total trial duration of 3.1 46 
s (2 TRs). No accuracy feedback was provided during the main experiment. However, all 47 
participants completed three training runs with trial-by-trial feedback prior to the scan 48 
session. During training runs, the response window was shortened to 1 s and the 49 
remaining 0.25 s presented feedback in the form of a change in color of the fixation point 50 
(blue for correct responses and orange for incorrect responses).  51 
 52 
Physical contrast manipulation. A subset of participants (n=5) also participated in an 53 
experiment that enhanced the physical contrast intensity of the dynamic visual noise in 54 
segments of the annulus. This additional experiment was carried out during the same 55 
scan session and allowed for benchmarking the detectability of stimulus-evoked 56 
modulation in visual cortex using our analyses. The stimuli and trial structure were similar 57 
to the attentional manipulation. The task differed in the following ways: (1) the contrast 58 
of the white noise annulus was increased to 100% for segments of the annulus 59 
corresponding to 1, 3, 5, 7 or 9 bins (18°, 54°, 90°, 126°, or 162° polar angle), with a 60 
Gaussian rolloff (σ = 15°) that spanned 25% of the furthest included bins and 25% of the 61 
adjacent excluded bins; (2) the enhanced segments were always centered on the 62 
cardinal directions (0°, 90°, 180°, and 270° polar angle); (3) the contrast increase 63 
remained constant for 15.5 seconds (10 TRs); (4) participants performed a color change 64 
detection task at fixation. Each unique combination of 4 locations and 5 widths of the 65 
contrast enhancement was shown once per run, with the order randomized. To estimate 66 
a baseline response, each run started and ended with 15.5 seconds without contrast 67 
modulation. Participants completed two runs total, each lasting 341 seconds (220 TRs).  68 

Throughout the physical contrast runs, participants were instructed to fixate on a 69 
central point (radius 0.08° visual angle) and to press a button when the fixation point 70 
switched color (alternating white and red). The fixation point remained a color for at least 71 
one second and then had a 10% probability of switching every 100 ms. No cue was 72 
presented associated with the regions of increased contrast. Additionally, no letters or 73 
numbers were superimposed on the white noise annulus. 74 
 75 
Population receptive field mapping. Population receptive field (pRF) estimates were 76 
obtained for each participant in a separate scan session. We used the experimental 77 
procedure as described in the Human Connectome Project 7T Retinotopy dataset 78 
(Benson et al., 2018). Stimuli were composed of a pink noise background with colorful 79 
objects and faces at various spatial scales, displayed on a mean luminance gray 80 
background. Stimuli were updated at a rate of 15 Hz while participants performed a color 81 
change detection task at fixation. Participants viewed two types of mapping stimuli: (1) 82 
contracting/expanding rings and rotating wedges; (2) moving bar stimuli (Dumoulin and 83 
Wandell, 2008; Kay et al., 2013). A total of 4-6 scans (300 TRs) were collected for each 84 
participant (2-3 scans per stimulus type). 85 
 86 
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 7 

MRI data acquisition. All MRI data were acquired at Boston University’s Cognitive 87 
Neuroimaging Center (Boston, Massachusetts) on a research-dedicated Siemens 88 
Prisma 3T scanner using a 64-channel head coil. A scanning session lasted 2 hours.  89 
All functional neuroimaging data were acquired using a simultaneous multislice (SMS) 90 
gradient echo echoplanar acquisition protocol (Moeller et al., 2010; Setsompop et al., 91 
2012): 2 mm isotropic voxels; FoV = 212 x 212 mm; 72 axial slices; TR = 1.55 s; TE = 92 
35.60 ms; flip angle = 72º; multiband acceleration factor 4. We computed distortion field 93 
maps by using a spin echo echoplanar protocol with opposite y-axis phase encoding 94 
directions (2 mm isotropic voxels; FOV = 212 x 212 mm; TR = 8850 ms; TE = 70.80 ms; 95 
flip angle = 90°). During a separate scan session, we acquired a whole-brain anatomical 96 
scan using a T1-weighted multi-echo MPRAGE 3d sequence (1 mm isotropic; FoV = 256 97 
x 256 mm; 176 sagittal slices; TR = 2530 ms; TE = 1.69 ms; flip angle = 7°), and the pRF 98 
scans (occipital coverage only; right-left phase encoding; 2 mm isotropic voxels; FoV = 99 
136 x 136 mm; 36 slices; TR = 1 s; TE = 35.4 ms; flip angle = 64°; multiband acceleration 100 
factor 3). 101 
 102 
MRI data analysis. 103 
Structural data preprocessing. Whole brain T1-weighted anatomical data were analyzed 104 
using the standard ‘recon-all’ pipeline provided by Freesurfer software (Freesurfer 105 
version 5.3, (Fischl, 2012)), generating cortical surface models, whole-brain 106 
segmentation, and cortical parcellations.  107 
 108 
Functional data preprocessing. All analyses were performed in the native space for each 109 
participant. First, EPI distortion correction was applied to all fMRI BOLD time-series data 110 
using a reverse phase-encode method (Andersson, Skare and Ashburner, 2003) 111 
implemented in FSL (Smith et al., 2004). All functional data were then preprocessed using 112 
FS-FAST (Fischl, 2012), including standard motion-correction procedures, Siemens slice 113 
timing correction, and boundary-based registration between anatomical and functional 114 
volumetric spaces (Greve and Fischl, 2009). To facilitate voxel-wise analysis, no 115 
volumetric smoothing was performed and across-run within-modality robust rigid 116 
registration was applied (Reuter, Rosas and Fischl, 2010), with the middle time-point of 117 
the first run serving as the target volume, and the middle time-point of each subsequent 118 
run used as a movable volume for alignment. Lastly, data were detrended (0.005 Hz 119 
high-pass filter) and converted to percent signal change for each voxel independently 120 
using custom code written in MATLAB (version 2020b). 121 
  122 
Population receptive field mapping and voxel selection. The time series were analyzed 123 
using the analyzePRF toolbox in MATLAB, implementing a compressive spatial 124 
summation pRF model (Kay et al., 2013). The results of the pRF analysis were used to 125 
manually draw boundaries between early visual regions (V1, V2, and V3), which served 126 
as our regions of interest (ROIs).  127 

Within each ROI, pRF modeling results were used to constrain voxel selection 128 
used in the main experiment. We excluded voxels with a preferred eccentricity outside 129 
the bounds of the pRF stimulus (<0.7° and >9.1°), with a pRF size smaller than 0.01°, or 130 
with poor spatial selectivity as indicated by the pRF model fit (R2 < 10%). Following our 131 
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2D visualizations (see below), we further constrained voxel selection by only including 132 
voxels whose pRF overlapped with the white noise annulus.  133 
 134 
2D visualizations of attentional modulation. To visualize the topography of attentional 135 
modulation under different cue widths, we projected the average BOLD responses for a 136 
given block (10 TRs with a consistent cue location and width, shifted by 3 TRs [4.65 s] 137 
to compensate for the hemodynamic delay) into the visual field using each voxel’s pRF 138 
location. This method is similar to that described in (Favila, Kuhl and Winawer, 2022). 139 
First, we computed the Cartesian (x,y) coordinates from the pRF eccentricity and polar 140 
angle estimates for each voxel. Then, within a given ROI, we interpolated the BOLD 141 
responses over (x,y) space to produce a full-field representation. Each representation 142 
was then z-scored to allow for comparison across blocks, cue conditions, and 143 
participants. Finally, the representation was rotated so that the center of the cue was 144 
aligned to the right horizontal meridian (see Figure 2a). 145 
 146 
1D spatial profile of attentional modulation. We also examined the spatial profile of 147 
attentional modulation as a function of polar angle. Voxels with pRFs overlapping the 148 
white noise annulus were grouped into 60 bins according to their pRF polar angle 149 
estimate (6° polar angle bin width). We computed a median BOLD response within each 150 
bin. To improve the signal-to-noise ratio, the resulting profile was smoothed with a 151 
moving average filter (width 18° polar angle; see Figure 2b).  152 
 153 
Model fitting. We quantified the spatial profile of attentional modulation with a 154 
generalized Gaussian model (Nadarajah, 2005). The generalized Gaussian function (G) 155 
combines Gaussian and Laplace distributions: 156 

The function has free parameters for location (𝜇), scale (𝜎), and shape (𝛽). The shape 157 
parameter enables the tails of the distribution to become heavier than Gaussian (when 158 
𝛽	 < 	2), or lighter than Gaussian (when 𝛽	 > 	2); as 𝛽	 → ∞, the model approaches a 159 
uniform distribution.  160 
 161 
Next, 𝐺 was normalized to range between 0 and 1, and vertically scaled and shifted by 162 
two additional free parameters for amplitude (𝑎) and baseline offset (𝑏): 163 

We fit the five free parameters (𝜇, 𝜎, 𝛽, 𝑎, 𝑏) using the MATLAB optimization tool fmincon, 164 
minimizing the squared error between the model prediction and the 1D profile described 165 
above. To avoid local minima, we first ran a grid search to find the initialization values 166 
with the lowest SSE (6 possible values for 𝜇, equally spaced between 0 and 360°, 167 

𝐺 = 	𝑒𝑥𝑝 2− 4
𝑥 − 𝜇
𝜎 4

!
5 (1) 

𝑦7 = 𝑎 ⋅ 𝐺 + 𝑏	 (2) 
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crossed with 6 possible values for 𝜎, equally spaced between 9º and 162° polar angle; 168 
𝛽 = 4; 𝑎 = 1; 𝑏 = 0). We imposed the following parameter bounds on the search: 𝜎: [6°, 169 
180° polar angle], 𝛽: [1.8, 50], and 𝑎: [0, 20]. 𝜇 was unbounded, but was wrapped to 170 
remain within [0°, 360°].  171 

From the model fits we computed the following summary metrics: 1) angular error, 172 
defined as the polar-angle distance between the true and estimated location; 2) the full 173 
width at half-maximum (FWHM) of the best-fitting generalized Gaussian function, which 174 
served as our measure of the width of attentional modulation. The FWHM was controlled 175 
mainly by the scale parameter (𝜎) but also to a lesser degree by the shape parameter (𝛽; 176 
see Figure 3a); 3) the gain modulation of the spatial profile (𝑎); 4) the model's goodness 177 
of fit quantified as the percentage of explained variance (R2) in the spatial response 178 
profile: 179 

Statistical testing. To assess how the attentional cue width manipulation influenced the 180 
1D spatial profile of BOLD modulation, we tested whether the computed summary 181 
metrics (absolute angular error, FWHM, and amplitude) varied as a function of cue width. 182 
Specifically, we performed a linear regression for each metric and tested whether the 183 
slopes differed from zero. This was done independently for each ROI.   184 
 185 
Eye-position monitoring. Gaze data were collected for all participants using an MR-186 
compatible SR Research EyeLink 1000+ eye tracker sampling at 1 kHz. Data from blink 187 
periods were excluded from analysis. Participants maintained fixation throughout the 188 
task, with average gaze eccentricity below 0.5° for all participants. Gaze eccentricity did 189 
not significantly vary by cued width (pairwise comparison of width conditions using a 190 
paired t-test, all p >= 0.205 with Bonferroni correction for multiple comparisons) nor 191 
location (pairwise comparison, all p >= 0.522 with Bonferroni correction for multiple 192 
comparisons). 193 

𝑅" 	= 1 −
(𝑦	 −	𝑦7)"

(𝑦	 −	𝑦?)"
	 (3) 
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Results 1 

Behavioral performance indicates effective deployment of covert spatial attention 2 
We set out to investigate the spatial distribution of attentional modulation within 3 

visual cortex. To do so, we first ensured that participants (n=8) could successfully 4 
allocate covert spatial attention to cued portions of the visual field. During the 5 
experiment, participants’ task was to fixate the center of the screen and report whether 6 
there were more numbers or letters in a cued peripheral region (Figure 1a). The cued 7 
region varied in location and width: it could be centered on any of 20 polar angles and 8 
could span any of four widths (18°, 54°, 90°, and 162° of polar angle). Task performance 9 
indicated that participants used the cue effectively, as the proportion of correct 10 
responses was significantly above chance for all width conditions (Figure 1b; t-test, all 11 
p<.001). We verified, with eye tracking, that participants performed the task using 12 
peripheral vision while maintaining central fixation. The upper bound of the 95% CI for 13 
each participant’s average gaze eccentricity ranged from 0.29° (degrees of visual angle) 14 
to 0.64° (mean = 0.48°; Figure 1c), suggesting that gaze did not exceed the cue annulus 15 
at fixation and that participants used covert spatial attention to perform the task. 16 

Figure 1. a. Task schematic. 
Participants’ were instructed to 
maintain central fixation and use 
covert spatial attention to 
determine whether there were 
more numbers or letters present 
within a cued region of a white 
noise annulus. On each trial, the 
red cue was displayed alone for 
1.35 s and remained present 
throughout the trial. Twenty digits 
and letters were then presented 
for 0.5 s, equally spaced and 
overlaid on the annulus. 
Participants had 1.25 s to indicate 
via button press whether more 
digits or letters were present in 
the cued region. The cue 
remained stable for 5 trials (10 
TRs, 15.5 s), had a width of 1, 3, 
5, or 9 segments (18°, 54°, 90°, or 
162°), and was centered on any of 
the 20 digit/letter slots. b. 
Behavioral task performance: 
Group mean accuracy for each 
cue width. Error bars are SEM; 
gray circles show individual 
participants. c. Group mean gaze 
eccentricity (in degrees of visual 
angle) for each cue width, 
conventions as in b. 
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Attentional modulation of BOLD responses broadens with cue width 17 
 We assessed the spatial distribution of attention by visualizing how the BOLD 18 
response was modulated by the location and width of the cue. To do so, we used each 19 
voxel’s population receptive field (pRF) to project BOLD responses for each attentional 20 
cue into the visual field. The resulting 2D visual field maps were averaged across trials 21 
for each cue width by rotating the maps so the attentional cue aligned to 0° polar angle 22 
(right horizontal meridian). The reconstructed visual field maps revealed that increasing 23 
cue width led to a concomitant broadening of attentional modulation in cortex (Figure 24 
2a). While this pattern was evident in all three early visual regions (V1–V3), the effect 25 
appeared to strengthen when ascending the visuocortical hierarchy. 26 

Next, we computed the one-dimensional profile of attentional modulation at a 27 
fixed eccentricity. We were able to do this because we manipulated the location of the 28 
attentional field only as a function of polar angle, so all cues directed the attentional field 29 
to iso-eccentric locations. We selected voxels with pRFs that overlapped the white noise 30 
annulus and sorted them according to their polar angle preference.  31 

Figure 2. a. BOLD response 
projected into the visual field for 
each attentional cue width. 
Heatmaps represent the group 
mean BOLD activity using each 
voxel’s population receptive field 
(pRF) location within the visual 
field, shown separately for V1, 
V2, and V3. Maps were rotated to 
align all attentional cue locations 
to 0° polar angle (rightward). 
Concentric circles indicated by 
black dashed lines represent the 
location of the white noise 
annulus. b. Average spatial 
modulation profiles at the 
eccentricity of the annulus. The 
spatial profiles were recentered 
to 0° polar angle based on the 
cue location.  Solid lines 
represent the group mean BOLD 
activity and shaded regions the 
SEM across participants. 
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 12 

For visualization purposes, the spatial response modulations were recentered to 32 
align all cues at 0° polar angle and averaged across trials for each cue width separately. 33 
Much like in the visual field reconstructions, there was a clear attentional enhancement 34 
centered on 0°, which broadened and decreased in amplitude with cue width – a pattern 35 
that was particularly evident in area V3 (Figure 2b).  36 
Dynamic model-based recovery of the attentional field  37 
 We next applied a modeling approach to estimate the location and width of 38 
attentional modulation, allowing us to further investigate the spread of attention in visual 39 
cortex. To do this, we averaged the spatial response profiles across TRs within each 10-40 
TR block, in which the cue maintained a consistent location and width, yielding between 41 
27 and 53 averaged spatial response profiles per participant for each width condition. 42 
We fit a generalized Gaussian function to each of these spatial profiles to estimate the 43 
location and width of attentional modulation per spatial profile (see Figure 3a). The width 44 
of attentional modulation was quantified in terms of the full width at half maximum 45 
(FWHM) of the best fitting model prediction (see Figure 3b).  46 

Figure 3. a. Modeling approach. The generalized Gaussian model is characterized by parameters for 
location (𝜇), scale (𝜎), and shape (𝛽). b. Example model fits for two spatial profiles. Dots indicate BOLD 
response amplitudes for two attentional cues differing in position and width. Solid lines indicate the best 
fitting model estimate. To quantify the attentional field, we extracted the location and gain (dashed 
arrows), as well as the width (FWHM; solid arrows). 

Can we dynamically recover the attentional field from activity within visual cortex? 47 
Model fits explained a substantial proportion of variance in the spatial profiles of BOLD 48 
activity (V1: for 18° cues, mean [standard deviation] of R2 = 0.42 [0.03]; for 54° cues, 0.43 49 
[0.03]; for 90° cues, 0.44 [0.03]; for 162° cues, 0.42 [0.03]; V2: for 18° cues, 0.51 [0.05]; 50 
for 54° cues, 0.54 [0.05]; for 90° cues, 0.54 [0.04]; for 162° cues, 0.55 [0.04]; V3: for 18° 51 
cues, 0.50 [0.03]; for 54° cues, 0.56 [0.04]; for 90° cues, 0.55 [0.03]; for 162° cues, 0.51 52 
[0.02]). To interpret the estimated model parameters, we excluded the bottom 20% of 53 
fits based on a pooled R2 across V1, V2, and V3, leaving roughly equal proportions of 54 
included blocks across cue width conditions (18°: mean [standard deviation] = 0.78 55 
[0.04], 54°: 0.83 [0.05], 90°: 0.83 [0.04], 162°: 0.77 [0.07]). 56 
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To assess how well the model-estimated attentional field matched the cued 57 
location, we first calculated the angular error between the cue center and the model's 58 
estimated location parameter. The angular error distribution across blocks, separated by 59 
width condition, is shown in Figure 4a for one example participant to display block-to-60 
block variation. The model reliably captured the location of the attentional field with low 61 
angular error. This result was consistent across participants. The group mean absolute 62 
angular error in V1 was 41.9° (SEM=2.86°), in V2 was 32.2° (2.31°), and in V3 was 24.7° 63 
(1.54°). Additionally, the magnitude of the absolute error did not vary linearly with the 64 
width of the cue in V1 or V2 (regression slope tested against zero; both p>=.468; Figure 65 
4b). In V3, we observed a small but statistically significant increase in absolute error 66 
magnitude associated with greater cue widths (t(1,30)=2.86, p=.008). 67 

Figure 4. Attentional 
field parameter 
estimates. a. The full 
parameter estimate 
distributions across 
blocks for location, 
width, and amplitude 
are shown for one 
example participant in 
V1, V2, and V3. Median 
parameter estimates 
are shown by the white 
points, with the box plot 
representing the 25th to 
75th percentile, and 
whiskers extending to 
all non-outlier points. b. 
Group results for 
location, width, and 
amplitude estimates. 
Overall group mean and 
standard error are 
shown, separated by 
cue width and brain 
region. 
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Next, we evaluated the width of the attentional field by visualizing the distribution 68 
of FWHM for the same example participant (Figure 4a), and at the group level (Figure 69 
4b). Confirming the broadening of the attentional field observed in the visual field 70 
reconstruction maps, we found that the estimated FWHM increased with greater cue 71 
widths in V2 and V3 (V2 t(1,30)=4.60, p<.001; V3 t(1,30)=6.71, p<.001). The effect was 72 
not statistically significant in V1 (t(1,30)=1.61, p=.118).  73 

Finally, we assessed the gain of the attentional modulation in the model (Figure 74 
4a and 4b for the example participant and group data, respectively). We observed no 75 
significant relationship between amplitude and cue width (V1 t(1,30)=-.18, p=.861; V2 76 
t(1,30)=-.42, p=.677; V3 t(1,30)=-1.00, p=.325). We also found that the overall gain was 77 
greater in V2 and V3 compared to V1 (paired t-test, both p<=.01).  78 
Temporal interval analysis 79 

In the previous analyses, we leveraged the fact that the attentional cue remained 80 
constant for 5-trial blocks (spatial profiles were computed by averaging BOLD 81 
measurements across a block of 10 TRs). We next examined the degree to which we 82 
were able to recover the attentional field on a moment-by-moment (TR-by-TR) basis. To 83 
examine the consistency of the attentional field over a varying number of TRs with an 84 
identical cue, we systematically adjusted the number of TRs that contributed to the 85 
averaged spatial response profile. To maintain a constant number of observations across 86 
the temporal interval conditions, we randomly sampled a subset of TRs from each block. 87 

When we systematically varied the number of TRs included for each model fit (1, 88 
2, 3, 5, or 10 TRs), we found a significantly positive linear relationship between cue width 89 
and recovered FWHM when averaging two or more TRs in V3 (all p<=.008), and five or 90 
more TRs in V2 (both p<=.034; Figure 5a). As described above, V1 did not reliably show 91 
a monotonic relationship between cue width and FWHM, even when averaging ten TRs. 92 
We did not find that varying the number of TRs systematically altered the FWHM 93 
estimates in V1 or V3 (V1, t(1,18)=1.70, p=.106; V3, t(1,18)=.85, p=.405), although a 94 
significant effect was observed in V2 such that larger numbers of TRs were associated 95 
with greater width estimates (t(1,18)=2.39, p=.028).  96 

The number of TRs significantly affected the absolute angular error associated 97 
with the estimated location of the attentional field (Figure 5b). Error magnitude 98 
decreased with TRs in all three visual regions (V1, t(1,18)=-4.40, p<.001; V2, t(1,18)=-99 
5.15, p<.001; V3, t(1,18)=-4.10, p<.001), suggesting that more data yielded more 100 
accurate estimates, though absolute angular error remained consistently below chance 101 
(90°) even when fitting the model to single-TR BOLD responses. Location error remained 102 
stable across width conditions (V1, t(1,18)=-.38, p=.706; V2, t(1,18)=.66, p=.520; V3, 103 
t(1,18)=1.29, p=.215).  104 
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The estimated gain of the attentional enhancement showed a dependence on 105 
number of TRs, with more TRs associated with lower gain estimates (V1, t(1,18)=-6.67, 106 
p<.001; V2, t(1,18)=-6.03, p<.001; V3, t(1,18)=-5.74, p<.001), with no evident 107 
dependence on cue width (V1 t(1,18)=-.03, p=.976; V2 t(1,18)=-.24, p=.810; V3 t(1,18)=-108 
.28, p=.782; Figure 5c).  109 

Finally, the model's goodness of fit improved with more data, with larger R2 110 
associated with greater numbers of TRs included in the average profiles (V1, 111 
t(1,18)=5.82, p<.001; V2, t(1,18)=12.89, p<.001; V3, t(1,18)=8.30, p<.001), though all R2 112 
were above 0.3 across all visual regions even for single-TR model fits. We did not 113 

Figure 5. Effect of number of TRs. Model fits were computed using BOLD data averaged across 
different temporal intervals (1, 2, 3, 5, or 10 TRs). Group means (with SEM) are plotted for FWHM, 
absolute angular error, amplitude estimates, and R2, separated by cue width, brain region, and the 
number of TRs used for each model fit. 
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observe a dependence of R2 on cue width (V1, t(1,18)=.23, p=.823; V2, t(1,18)=.46, 114 
p=.653; V3, t(1,18)=.05, p=.959; Figure 5d). 115 
Width of the attentional field mimics perceptual modulation 116 
 While the attentional field broadened as expected when participants were cued 117 
to attend to a larger portion of the white noise annulus, the size of the estimated 118 
attentional modulation was greater than the true size of the cued region. The cue width 119 
varied between 18° and 162°, whereas the width estimate derived from spatial profiles 120 
of BOLD modulation varied between 103° and 179° (Figure 4b). We wondered what the 121 
underlying cause of this disparity might be. One possibility is that the BOLD-derived 122 
FWHM might tend to overestimate the retinotopic extent of the modulation. If this were 123 
the case, we would expect to obtain overestimates of FWHM when applying the same 124 
modeling approach to perceptual modulations as well. Alternatively, the true subjective 125 
attentional field might be consistently broader than cued, despite the presence of nearby 126 
distractors. If this were the case, modulation driven by perceptual differences should not 127 
result in the same large FWHM estimates. 128 

To address this, we compared our estimates of the attentional field with 129 
equivalent estimates for spatial profiles induced by a perceptual manipulation. In this 130 
additional experiment, we varied the contrast intensity of sections of the white noise 131 
annulus. Participants were not asked to deploy spatial attention to the stimulus and were 132 
instead instructed to perform a color change detection task at fixation. The regions of 133 
increased noise contrast matched the attentional cue widths (18°, 54°, 90°, and 162°, 134 
plus an additional intermediate width of 126º), and were centered on one of the four 135 
cardinal locations (0°, 90°, 180°, 270° polar angle). 136 

As expected, we observed a broadening of the spatial profile of BOLD modulation 137 
in all three visual areas as the region of increased contrast widened (Figure 6a). Using 138 
an identical modeling procedure, we estimated the spatial profile of the perceptual BOLD 139 
modulation. The group results for model estimates revealed that: 1) we were highly 140 
accurate in estimating the location of the contrast increment; 2) FWHM of the spatial 141 
profiles broadened across contrast widths, and 3) the amplitude remained stable across 142 
contrast widths (Figure 6b).  143 

Mirroring the results from the attentional manipulation, FWHM estimates 144 
systematically exceeded the nominal size of the perceptually modulated region of the 145 
visual field. Comparing the estimated FWHMs of the perceptual and attentional spatial 146 
profiles (Figure 6c) revealed that the estimated widths were highly comparable (Pearson 147 
correlation r=0.664 across width conditions and visual regions). This finding implies that 148 
the BOLD-derived generative Gaussian model may have had a general tendency to 149 
return upwardly biased width estimates, but that it recovered relative differences in a 150 
similar manner for attentional and perceptual forms of modulation. 151 

For the perceptual contrast manipulation, the increase in the recovered FWHM 152 
with contrast width was observed in both V1 and V3 (Figure 6b; V1, t(1,23)=4.59, p<.001; 153 
V3, t(1,23)=4.96, p<.001), though this effect was not clearly observed in V2 (t(1,23)=1.22, 154 
p=.236). The mean magnitude of angular error between the model-estimated location 155 
and the center of the contrast stimulus did not depend linearly on contrast width in any 156 
of the three visual areas (all p>=.584). The estimated amplitude of modulation also did 157 
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not show a relationship to contrast width in any of the visual areas (V1, t(1,23)=1.19, 158 
p=.245; V2, t(1,23)=-.32, p=.749; V3, t(1,23)=.28, p=.783).  159 

160 

Figure 6. a. Spatial 
profiles of perceptual 
modulation. Solid lines 
represent the group mean 
BOLD activity and shaded 
regions the SEM. b. 
Group level parameter 
estimates. Overall group 
mean and standard error 
are shown for the 
absolute angular error, 
FWHM, and amplitude, 
separated by contrast 
width and brain region. c. 
Comparison of FWHM 
estimates obtained from 
the attentional 
manipulation and the 
physical contrast 
manipulation. Dot color 
indicates brain region; 
each point represents the 
mean FWHM for a given 
width condition across 
participants.  
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Discussion 1 

We investigated the topographic spread of spatial attention in human visual cortex 2 
by characterizing the spatial profile of BOLD responses while participants attended to 3 
different portions of the visual field. Behavioral performance confirmed that participants 4 
used the fixation cue to dynamically allocate attention to different swaths of the visual 5 
field. Attention allocation was associated with a boost in the BOLD response in 6 
corresponding retinotopic areas of visual cortex. To characterize the topography of that 7 
boost, our approach involved selecting voxels with pRF preferred eccentricities that 8 
overlapped our white noise annulus, and organizing those voxels into one-dimensional 9 
profiles of attentional modulation as a function of preferred polar angle. This allowed us 10 
to model the location and spread of the attentional field and test how well it tracked the 11 
nominal location and width of the cue presented at fixation. Using a generalized 12 
Gaussian model, the cued location could be recovered with high fidelity. Furthermore, 13 
we observed a broadening of the estimated attentional field in areas V2 and V3 with the 14 
cue width, suggesting our method was capable of dynamically recovering the location 15 
and size of the attentional field from moment to moment.  16 

This work builds on the concept of an attentional ‘spotlight’ or ‘zoom lens’ that 17 
has long been theorized to aid in spatial attention (Shaw and Shaw, 1977; Posner, 1980; 18 
Eriksen and St. James, 1986; Carrasco, 2011). By flexibly adjusting and shifting the focus 19 
of the spotlight, visual representations are selectivity enhanced within a specific region 20 
of the visual field. However, the empirical evidence demonstrating that attention can 21 
change its spread across the visual field by modulating brain responses is surprisingly 22 
lacking (Yeshurun, 2019). Our understanding of how the attentional window interacts 23 
with spatial representations is mainly based on behavioral reports (Gobell, Tseng and 24 
Sperling, 2004; Palmer and Moore, 2009; Herrmann et al., 2010; Beilen et al., 2011; 25 
Taylor et al., 2015; Huang et al., 2017; Kınıklıoğlu and Boyaci, 2022), but see (Hopf et al., 26 
2006; Itthipuripat et al., 2014; Tkacz-Domb and Yeshurun, 2018; Feldmann-Wüstefeld 27 
and Awh, 2020), despite it forming a crucial component in an influential theoretical model 28 
of attention (Reynolds and Heeger, 2009). This model proposes that the interaction 29 
between stimulus properties (such as its size and specific features) and the attentional 30 
field can explain a wide variety of attentional effects reported in behavioral and 31 
neurophysiological studies (Herrmann et al., 2010; Itthipuripat et al., 2014; Bloem and 32 
Ling, 2019; Jigo, Heeger and Carrasco, 2021). The present study sought to address this 33 
gap, with our results showing that the visuocortical attentional field broadened as we 34 
increased the cue width (Figure 4). This provides compelling evidence that the attention-35 
related cortical response can, in fact, flexibly vary in its position and spatial distribution.  36 

In this study, we modeled the attentional field using a one-dimensional 37 
distribution. This approach aligned with our experimental design, as the attentional cue 38 
was manipulated only as a function of polar angle. However, we know that spatial 39 
processing varies substantially as a function of eccentricity. Spatial resolution is highest 40 
at the fovea and rapidly drops in the periphery (Anton-Erxleben and Carrasco, 2013). The 41 
spatial distribution of attention will presumably also vary with eccentricity and will likely 42 
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take on different functional properties close to the fovea, where spatial resolution is high, 43 
compared to the far periphery where spatial resolution is low (Intriligator and Cavanagh, 44 
2001; Jigo, Heeger and Carrasco, 2021). Future work can help provide a better 45 
understanding of the contribution of spatial attention by considering how the attentional 46 
field interacts with these well described spatial variations across the visual field. 47 
Measuring the full spatial distribution of the attentional field (across both eccentricity and 48 
polar angle) will shed light on how spatial attention guides perception by interacting with 49 
the non-uniformity of spatial representations. 50 

The spread of the attentional field likely influences the degree to which spatial 51 
resolution at the attended location is transformed, leading to enhanced behavioral 52 
performance. In our experiment, we cued participant to varying swaths of an iso-53 
eccentric annulus of white noise and participants had to discriminate whether more 54 
numbers or more letters were presented within the cued region. Spatial attention was 55 
vital for this task, as enhanced spatial perception allowed the participants to better 56 
discriminate all stimuli within the cued region (Anton-Erxleben and Carrasco, 2013). 57 
However, the estimated spatial spread of the attentional modulation (as indicated by the 58 
recovered FWHM) was consistently wider than the cued region itself. We therefore 59 
compared the spread of the attention field with the spatial profile of a perceptually 60 
induced width manipulation. Our model overestimated the retinotopic extent of the cued 61 
region in both the attentional and perceptual versions of the task (Figure 6c), suggesting 62 
that the BOLD-derived FWHM systematically overestimated the extent of modulation. 63 
Future work could unpack the degree to which the size of the attentional field influences 64 
the spatial resolution of visual cortical representations (Klein, Harvey and Dumoulin, 65 
2014; Vo, Sprague and Serences, 2017; Tünçok, Carrasco and Winawer, 2024), and how 66 
this influences spatial perception.  67 

Beyond addressing core questions related to the function of spatial attention, this 68 
method also lays groundwork for addressing questions about spatial predictive 69 
uncertainty and belief updating. Prior work on these topics has relied almost entirely on 70 
inferring participants' predictions from their behavior, often requiring participants to 71 
report overt point predictions (Nassar et al., 2010; McGuire et al., 2014; D’Acremont and 72 
Bossaerts, 2016; Nassar, Bruckner and Frank, 2019), or inferring participants' 73 
predictions from their sequences of decisions (Daw et al., 2006; Behrens et al., 2007; 74 
Payzan-LeNestour and Bossaerts, 2011; Payzan-LeNestour et al., 2013). These 75 
approaches have shed light on how we dynamically adapt our learning and belief 76 
updating processes over time in differently structured contexts. However, methods for 77 
recovering information about full predictive belief distributions have been limited, relying 78 
on indirect measurements such as eye movements (O’Reilly et al., 2013; Bakst and 79 
McGuire, 2021, 2023), and physiological measures of uncertainty and surprise in EEG 80 
and pupillometry (Preuschoff, ’t Hart and Einhauser, 2011; Nassar et al., 2012; Nassar, 81 
Bruckner and Frank, 2019). The methods developed here offer a potential way to recover 82 
the location and width of a spatial predictive distribution via the attentional field in 83 
contexts in which it is unknown a priori and might be dependent on how a given 84 
participant has integrated previous sequential evidence. Future work could extend this 85 
method to more directly interrogate how predictive uncertainty is represented 86 
throughout the brain on a moment-by-moment basis. 87 
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In summary, we found evidence that people could dynamically adapt the spread 88 
of spatial attention, and that the retinotopic extent of attentional enhancement of the 89 
BOLD response reflected this dynamic adaptation. These findings address a gap in our 90 
understanding of spatial attentional control, supporting core theoretical models of 91 
attention. Our modeling approach also lays the groundwork to address further questions 92 
related to how the attentional field interacts with the non-uniformity of spatial 93 
representations and how uncertainty in spatial contexts is represented in the human 94 
brain.  95 
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