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Abstract: Mass spectrometry (MS) is increasingly used in clinical studies to obtain molecular evidence
of chemical exposures, such as tobacco smoke, alcohol, and drugs. This evidence can help verify
clinical data retrieved through anamnesis or questionnaires and may provide insights into unreported
exposures, for example those classified as the same despite small but possibly relevant chemical
differences or due to contaminants in reported exposure compounds. Here, we aimed to explore
the potential of untargeted SWATH metabolomics to differentiate such closely related exposures.
This data-independent acquisition MS-based profiling technique was applied to urine samples of
316 liver and 570 kidney transplant recipients from the TransplantLines Biobank and Cohort Study
(NCT03272841), where we focused on the immunosuppressive drug mycophenolate, which is either
supplied as a morpholino-ester prodrug or as an enteric-coated product, the illicit drug cocaine,
which is usually supplied as an adulterated product, and the proton pump inhibitors omeprazole
and esomeprazole. Based on these examples, we found that untargeted SWATH metabolomics has
considerable potential to identify different (unreported) exposure or co-exposure metabolites and
may determine variations in their abundances. We also found that these signals alone may sometimes
be unable to distinguish closely related exposures, and enhancement of differentiation, for example
by integration with pharmacogenomics data, is needed.

Keywords: data-independent acquisition; exposomics; liquid chromatography; mass spectrometry;
metabolomics; SWATH; transplantation

1. Introduction

Human health is influenced by multiple factors, including genetic predisposition,
nutrition, lifestyle choices, environmental exposures, and medical care [1]. Due to the
importance of these factors for our wellbeing, researchers worldwide are studying them
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intensively using a variety of research instruments. For example, genetic predisposition
is frequently studied using sequencing technologies, lifestyle and nutrition are mostly
queried through questionnaires, and assessment of environmental and medical care-related
factors often relies on data mining, respectively utilizing environmental data registries and
patient records [2–6].

For every health determinant, the availability and quality of research instruments
is key to evaluating its importance. Taking genetic predisposition as an example, the
understanding of causes and mechanisms of complex diseases remained limited prior
to completion of the Human Genome Project (HGP) in 2003. Its completion, however,
instigated the genome revolution which transformed biomedical sciences and put more
emphasis on genetic factors as important health determinants [7]. The success story of ge-
nomics medicine furthermore stressed the need to keep advancing analytical technologies,
since the HGP could not have achieved its goal in 2003 without the advent of capillary
sequencing machines in the years before [8].

Despite the lessons learned from the HGP roughly twenty years ago, many health
determinants are still studied using subjective instruments that rely on the principle of self-
reporting, in particular in lifestyle, nutrition, and pharmacoepidemiologic research [9–11].
There is, however, a growing interest in bioanalytical approaches to yield more objective
data in these different forms of exposure research [12–14]. A notable example in this
regard is the use of mass spectrometry (MS)-based workflows to objectively determine
exposures, such as habitual alcohol consumption through targeted quantification of the
ethyl glucuronide metabolite in urine or illicit drug use through untargeted profiling of
drugs of abuse in hair [15,16].

Untargeted profiling methods are particularly gaining momentum in clinical exposure
research, as illustrated by several recent studies reporting discrepancies between self-
reported and bioanalytical data on exposures [17–20]. The corresponding profiling methods
have a very high identification capability for known compounds, and recent advances
in data processing are facilitating the elucidation of increasing numbers of unknown
chemicals [21]. Still, several challenges prevent untargeted profiling methods from reaching
their full potential in clinical exposure research, including the ability to distinguish exposure
to closely related compounds.

In this study, we explore the potential of the untargeted profiling technique ‘SWATH
metabolomics’ to differentiate closely related exposures using almost 900 urine samples
obtained from the TransplantLines Biobank and Cohort Study [22]. We selected three
representative challenges for this purpose in order to emphasize both the compound
identification and targeted signal extraction capabilities of this technique within the same
analysis. Firstly, we studied usage of the immunosuppressive drug mycophenolate (MPA),
which can be supplied either as a mofetil prodrug or as enteric-coated MPA. Secondly,
we studied exposure to cocaine and possible cocaine adulterants. Thirdly, we studied
the proton pump inhibitors omeprazole (i.e., equal mixture of R- and S-omeprazole) and
esomeprazole (i.e., S-omeprazole). These examples represent analytically distinct and
clinically relevant challenges, respectively, due to the varying degrees of closeness between
the corresponding chemical exposures and the clinical importance of these chemicals in
light of therapeutic efficacy and safety.

2. Materials and Methods
2.1. Clinical Samples

This study used 24-h urine samples from the TransplantLines Biobank and Cohort
Study (NCT identifier NCT03272841), which was approved by the Institutional Review
Board of the University Medical Center Groningen (UMCG; decision METc 2014/077) and
adheres to the UMCG Biobank Regulation, the Declaration of Helsinki, and the Declaration
of Istanbul [22]. The samples were collected (per strict protocol designed within the
UMCG for generic biobanking purposes and lacking the addition of preservative agents
commonly used in metabolomics research, such as protease inhibitors and boric acid) in BD
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Vacutainer 24-h urine collection containers (<48 h between sample collection and handing
it in), and samples were stored at −20 ◦C for up to four days after manual aliquoting.
Next, samples were stored at −80 ◦C and atmospheric pressure for up to five years until
shipment (<72 h on dry ice in a security-sealed, insulated box compliant with IATA, ADR,
and 49 CFR (DOT) transport regulations) and up to six months after shipment. For this
study, we analyzed samples from 316 liver and 570 kidney transplant recipients who
were ≥1 year post-transplantation and had already been transplanted prior to the start of
the TransplantLines study.

2.2. Small-Molecule Profiling

After thawing (overnight at −25 ◦C, <4 h at 2–6 ◦C), vortex-mixing (30 s), and cen-
trifugation (4 ◦C, 10 min, 14,000× g), 50 microliters of supernatant were transferred to glass
inserts (BGB; Cat. No. 110501) placed in glass autosampler vials (BGB; Cat. No. SF2) and
sealed with plastic caps (BGB; Cat. No. 070301). The urine was mixed with 10 microliters
of a 5 pmol/µL internal standard solution in 10% methanol (see Table S1) by vortex-mixing
(30 s). Next, 24 microliters of sample solution were analyzed by reversed-phase liquid
chromatography coupled to high-resolution quadrupole-time-of-flight mass spectrometry
operated in positive electrospray ionization and SWATH data-independent acquisition
(DIA) modes. A detailed overview of LC and MS parameters is provided in Table S2.

2.3. Data Processing

Mycophenolate-positive samples were identified by spectral library matching [17]
(SLM) using SCIEX PeakView software (version 2.2.0.11391; 71 Four Valley Drive, Concord,
ON, Canada, L4K 4V8) and in-house generated reference spectra for glucuronidated my-
cophenolate (obtained with SCIEX TripleTOF instruments at a collision energy of 40 eV
and a collision energy spread of 30 eV) followed by the feature-based evaluation of SLM
results as presented in [19]. The same software and a commercial forensic MS/MS spectral
library from SCIEX (version 1.1; 71 Four Valley Drive, Concord, ON, Canada, L4K 4V8;
1700 entries; obtained with SCIEX TripleTOF instruments at a collision energy of 35 eV and
a collision energy spread of 15 eV) were used for identification of benzoylecgonine-positive
samples, which was confirmed by sample reanalysis and by using a targeted assay [23],
and for identifying possible adulterants in these samples. Omeprazole-positive samples
were identified following SRM-like targeted signal extraction using SCIEX MultiQuant
software (version 2.1) with a ± 2.5 mDa mass extraction window and a 2.0-point Gaussian
smoothing width. Specifically, signals were extracted for five possible oxidation products of
omeprazole, including its main metabolites, 5-hydroxyomeprazole and omeprazole sulfone
(see Figures S1–S3). Here, a positive identification required signals above the detection limit,
as was established according to the detection limit estimation approach presented in [19]
for at least three metabolites. At last, feature-based analyses were performed using SCIEX
MarkerView software (version 1.3.1; 71 Four Valley Drive, Concord, ON, Canada, L4K 4V8),
and detailed overviews of data (pre)processing settings are provided in Tables S3 and S4.

3. Results and Discussion
3.1. Sample Analysis

Urine samples were obtained from the TransplantLines Biobank and Cohort Study [22]
for stable liver (LTR) and kidney transplant recipients (KTR). Included patients had a func-
tional graft for at least 1 year post-transplantation, had already been transplanted before
the biobank was started, and a sufficient amount of sample material had been biobanked
(see Table S5). In total, 316 LTR samples were analyzed between November 18 and 22, 2021,
and 570 KTR samples were analyzed between 24 November and 3 December 2021 in
batches which were constructed following widely adopted recommendations [24]. Ana-
lytical performance was monitored using stable-isotope-labelled standards, as described
previously [19], and a check for potential batch effects was performed using principal com-
ponent analysis (PCA). The latter did not indicate pronounced batch effects (Figure 1A,B),
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as the first principal components showed separation based on immunosuppressive drug
use for both LTR and KTR data (Figure 1C,D).
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Figure 1. (A–D) Pareto-scaled scores and (E,F) loading plots for unsupervised principal component
analysis of MS1-level feature data of stable (A,C,E) liver and (B,D,F) kidney transplant recipients.
Different coloring was applied to the samples in the score plots based on (A,B) the analytical batches
in which these were measured or (C,D) the use of azathioprine (in red) and mycophenolate (in blue).
The latter was determined by spectral library matching using in-house generated reference spectra
for 6-thiouric acid (Toronto Research Chemicals, Cat. No. T375500) and mycophenolate glucuronide
(Toronto Research Chemicals, Cat. No. M831520), respectively. Coloring was also applied to the
features in the loadings plots based on whether peaks were assigned as monoisotopic peaks (in
green) or not (in gray). Furthermore, an unknown feature (m/z 610/8.4 min) which clusters around
some mycophenolate-related features is indicated with a red circle in the loadings plots whereas its
isotope peak is indicated with a blue circle. Features which correspond to the residual precursor and
deglucuronidated version of mycophenolate glucuronide (as ammonium adduct) are indicated with
green and black circles, respectively.

3.2. Mycophenolate Versus Mycophenolate Mofetil

We selected mycophenolate (MPA) use as the initial example to evaluate the discovery
and differentiation potential of untargeted SWATH mass spectrometry-based profiling
workflows. This drug is a cornerstone of immunosuppressive drug treatments aimed at
reducing rejection rates after solid organ transplantation [25]. In the mid-1990s, it was
initially marketed as mycophenolate mofetil (MMF), a morpholinoethyl ester prodrug
with good bioavailability. Later, it became available as an enteric-coated (EC) tablet at
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higher costs but with reduced incidence of upper gastrointestinal adverse effects [26,27].
As with EC-MPA, the drug is absorbed as MPA in case of the prodrug since “after oral
administration, MMF can hardly be detected at any time in plasma because it is rapidly de-
esterified in the stomach to produce MPA”, according to the recently published consensus
report by the International Association of Therapeutic Drug Monitoring and Clinical
Toxicology [25]. Comparable urinary metabolite profiles are thus expected in users of the
two products, although possible biotransformation products of intact MMF [28] and/or the
cleaved mofetil group [29] might be detected in urine.

Unsupervised PCA was initially performed following the observation reported in
Section 3.1 that the first principal components showed separation based on immunosup-
pressive drug use (see Figure 1C,D). The corresponding loading plots (see Figure 1E,F)
indicated that strong contributors to PC2 include MPA-related features, such as the am-
monium adduct of MPA glucuronide (m/z 514/9.3 min) and its deglucuronidated form
(m/z 321/9.3 min) that is presumably formed during ion transfer to the mass spectrometer.
We also found an unknown feature (m/z 610/8.4 min) among the five strongest contributors
to PC2. Upon inspection of feature intensities across the different samples, this feature was
observed in all but one of the MPA-positive LTR and in 80% of the MPA-positive KTR. We
extracted the SWATH fragment spectrum of this feature (Figure 2A) and also selected a
representative sample, which we reanalyzed to acquire a somewhat cleaner product ion
spectrum (Figure 2B). Both spectra suggested the presence of a glucuronidated form of
MMF based on the m/z difference of 176 between the m/z 610 and 434 peaks, which is
indicative of glucuronic acid moieties [30], and the closeness of the m/z of the 434 peak (i.e.,
434.216 Da) to the mass of protonated MMF (i.e., 434.217 Da).
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Figure 2. Exemplary (A) SWATH and (B) product ion scan fragment spectra of an unknown fea-
ture (m/z 610/8.4 min). This feature clusters around mycophenolate-related features in principal
component analysis (see Figure 1E,F) and is observed in most but not all mycophenolate-positive
samples. (C) Product ion scan fragment spectrum of mycophenolate mofetil obtained from a crushed
mycophenolate mofetil tablet from the company Sandoz. The blue arrows on the y-axes indicate
thresholds for presenting m/z values.

For confirmation, we would have preferred to verify the identity of this compound
using a chemical reference standard of MMF glucuronide, but an appropriate standard
was unavailable. We could, however, generate a fragment spectrum of the prodrug MMF
(Figure 2C), which was highly similar to that of the unknown chemical and essentially
only lacked the +176 glucuronide peak. From this, we are confident that the unknown
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feature represents MMF glucuronide and that it can be useful to differentiate MMF and
EC-MPA users.

Next, we performed a univariate t-test on MS1 feature data of the KTR samples
aiming to find other differentially abundant features between MMF and EC-MPA users.
As expected, this put forward the m/z 610/8.4 min. feature, a possible deglucuronidated
form of this feature, and their isotope peaks among features with the lowest observed
p-values. Also, among the top 10 most significant features, we found three early-eluting
features having nominal m/z values of 146, 148, and 162 (Figure 3). These features likely
represent oxidation products of MMF’s mofetil moiety, but definitive confirmation of
their identity would necessitate custom synthesis of candidate structures and further
analytical investigation.
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Figure 3. Exemplary (A) MS1 extracted ion chromatograms and (B–D) SWATH fragment spec-
tra of three possible biotransformation products of MMF’s mofetil moiety, which show spectral
similarities to each other (see also Figure S4). The first feature (B) may represent the previously pre-
dicted [29] metabolite N-(2-carboxymethyl)-morpholine, the second (C) may represent the previously-
predicted [29] metabolite N-(2-hydroxyethyl)-morpholine N-oxide, and the third (D) may represent
N-(2-carboxymethyl)-morpholine N-oxide, which has not been described previously. The blue and
white arrows on the y-axes indicate thresholds for presenting m/z values.

Finally, MMF and EC-MPA are often considered as therapeutically-equivalent in
clinical studies, despite differences in side effects which triggered the development of
EC-MPA [26], and despite differences in metabolite patterns which were found in this study.
These differences may provide incentives for reassessing their supposed equivalence, and
untargeted SWATH mass spectrometry-based profiling could be a useful technique in this
regard. This technique’s differentiation potential is likely applicable to other closely related
exposures, although we acknowledge this depends on several factors, for example those
related to the structures and abundances of the chemicals of interest.
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3.3. Cocaine Adulteration

To further evaluate the discovery and differentiation potential of untargeted SWATH
mass spectrometry-based profiling workflows, we studied exposure to cocaine and possible
adulterants in LTR and KTR. Cocaine abuse has frequently been linked to liver and kidney
failure [31], and we expected to encounter this drug in some of the subjects as it is highly
addictive and has an estimated lifetime use of around 5% in the Netherlands [32]. We
furthermore expected to encounter drug adulterants in the urine of possible cocaine users
given that it is rarely provided as pure product [33]. Moreover, we attempted to consider
possible temporal trends in cocaine adulteration [34]. Accordingly, we explored publicly
available data from a previous study on KTR and (potential) living kidney donors whose
urine samples were analyzed with a profiling workflow that is nearly identical to the one
used in this study [19].

Exposure to cocaine was determined by spectral library matching targeting the cocaine-
specific metabolite benzoylecgonine in urine samples. This search yielded zero and five
positive identifications in LTR and KTR, respectively, and two positive identifications in the
previous study on KTR (see Figure S5 and Table S6). The profiling data of benzoylecgonine-
positive samples were subsequently subjected to SLM using a commercial forensic spectral
library to identify possible cocaine adulterants. This indicated the presence of several thera-
peutic drugs (e.g., levetiracetam, losartan, metoprolol (5×), oxazepam (2×), ranitidine (2×),
sulfamethoxazole, temazepam, trimethoprim, xylometazoline). Also, we found the with-
drawn anthelmintic drug levamisole in the two samples from the previous study and the
synthetic ecstasy analogs methylone and 5,6-methylenedioxy-2-aminoindane (5,6-MDAI)
in one of the samples from the previous study (Figure 4).
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Figure 4. Exemplary spectral library matching results for the possible adulterants (A) levamisole,
(B) methylone, and (C) 5,6-methylenedioxy-2-aminoindane (5,6-MDAI), as observed in one of the
cocaine-positive samples. See Figures S6–S8 for a more detailed overview of SLM results. The blue
arrows on the y-axes indicate thresholds for presenting m/z values.

With respect to the levamisole identifications, it is interesting that we observed this
chemical in both samples from the previous study and none from the present study, consid-
ering that the samples were collected around 2009 and 2018, respectively. The identifications
in the older samples are consistent with findings from a large-scale study on cocaine adul-
teration performed in several European countries [35]. This study proposed levamisole as
the most commonly used adulterant, being found in more than 50% of the tested cocaine
samples in the Netherlands between 2009 and 2013.
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Regarding the methylone and 5,6-MDAI identifications, ecstasy analogs have previ-
ously been identified in cocaine preparations. However, these so-called new psychoactive
substances (NPS) are frequently encountered as adulterants on the ecstasy market [35,36]
but are also used recreationally [37]. In fact, many NPSs are known as ‘legal highs’ for
considerable periods of time, since they must be identified by legislative bodies before
they can get banned, and this can be many years after market introduction due to a lack of
generic legislation for NPS [38].

Finally, it is impossible to draw concrete conclusions on cocaine adulteration based
on our findings, mostly due to low statistical power, large variability in drug adulteration,
and because some users take different illicit drugs at the same time. Nonetheless, our data
emphasize the relevance of identifying (pharmacologically active) co-exposures and could
be useful for detecting risky lifestyle habits, representing an important but difficult subject
to study. Furthermore, this example of drug adulteration underlines the discovery potential
of untargeted SWATH mass spectrometry-based profiling workflows, as is particularly
illustrated by the 5,6-MDAI findings. This chemical was identified by SLM, and upon
further inspection of SLM results, it was found that there were actually two closely eluting
signals which could be matched to the 5,6-MDAI reference spectrum (see Figure S8). Using
our SWATH data-independent acquisition workflow, we were able to generate informative
fragment spectra for both signals, which may correspond to 5,6-MDAI and its positional
isomer 4,5-MDAI that are known to produce similar fragment spectra [39]. In fact, SWATH
workflows can yield MS2-level information for theoretically all (ionizable) compounds,
unlike the more common data-dependent acquisition and MS1-only workflows. SWATH
workflows thus yield a ‘digital archive’ for every sample which can be interrogated retro-
spectively [33] and is particularly interesting for exposures that are not yet ‘on the radar’
when samples are analyzed.

3.4. Omeprazole Versus Esomeprazole

Both the MPA example and the cocaine adulteration example presented above ad-
dressed differentiation between related exposures based on molecules with different molec-
ular masses. In this example, we focused on more chemically similar exposures, namely
the racemic drug omeprazole (i.e., equal mixture of R- and S-omeprazole) and the enan-
tiopure drug esomeprazole (i.e., S-omeprazole), which was developed in response to the
considerable interindividual variability in bioavailability, effect, and safety observed among
omeprazole users [40,41].

Previous studies (utilizing human liver microsomes) showed stereoselective metabolism
of omeprazole, notably demonstrating different patterns of oxidation products for R- and
S-omeprazole [42]. Hence, we aimed to explore possible differences in (es)omeprazole
metabolism in a real-world clinical setting, for which we first identified (es)omeprazole-
positive subjects using information on drug use listed in the available clinical database
and molecular evidence of omeprazole exposure. As shown in Table 1, both data sources
showed good concordance (90–95%), and the information was combined to extract double-
positive and double-negative subjects, for whom it is plausible that they were or were
not recently exposed to (es)omeprazole. Exposed subjects were furthermore grouped as
possible omeprazole users or possible esomeprazole users based on corresponding clinical
database entries.

Next, feature-based analyses were performed to find features associated with (es)omeprazole
use. This included principal component analysis-discriminant analysis (Figure 5) to yield
a global overview of discriminative features and subsequent univariate t-test analysis
(Table 2) to extract the most discriminating ones. With respect to the latter, it was expected
that some features reflect multiple signals, as was also the case for the two MDAI signals
which were detected as one single feature due to the closeness of their respective retention
times. We thus used the features’ m/z values and obtained extracted ion chromatograms
and the corresponding fragment spectra from raw MS data (see Figures S9–S26). This gave
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a more reliable overview of the total number of possible (es)omeprazole metabolites in the
data, which are listed in the right column of Table 2.

Table 1. Concordance between clinical database-derived information on (es)omeprazole use and
molecular evidence of omeprazole exposure, as is based on urinary signals of five possible oxidation
products of omeprazole.

Clinical Database-Derived Drug Use
Non-User Omeprazole Esomeprazole Total

Liver transplant recipients: 196 (62%) 77 (24%) 43 (14%) 316
0 metabolite signals 184 1 7 3 194 (61%)
1–2 metabolite signals 2 2 1 5 (2%)
≥3 metabolite signals 10 68 2 39 2 117 (37%)

Kidney transplant recipients: 214 (38%) 316 (56%) 39 (7%) 569
0 metabolite signals 198 1 16 2 216 (38%)
1–2 metabolite signals 3 9 1 13 (2%)
≥3 metabolite signals 13 291 2 36 2 340 (60%)

1 Expected and confirmed (es)omeprazole-negative subjects (“double-negative”). 2 Expected and confirmed
(es)omeprazole-positive subjects (“double-positive”).
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Figure 5. Pareto-scaled scores plots for supervised principal component analysis-discriminant analy-
sis of MS1-level feature data of (es)omeprazole-negative and -positive stable (A) liver and (B) kidney
transplant recipients. Groups were made according to the absence of (es)omeprazole (in gray) and
the suspected presence of omeprazole (in blue) and esomeprazole (in red), as was based on combined
clinical database- and metabolomics-derived drug use information.

Table 2. Overview of nominal m/z values and possible identities of features which showed strong
differentiation between (es)omeprazole-positive and -negative subjects following t-test analysis.

m/z Possible Biotransformation(s) Possible Signals

268 various (cysteine metabolite) 1
310 various (mercapturate metabolite) 1
316 dehydroxylation (−16), demethylation (−14) 2
330 dehydroxylation (−16) 1
332 demethylation (−14) 2

346 none (omeprazole) not detected

360 dehydroxylation (−16), carboxylation (+30) 2
362 hydroxylation (+16) 3
376 carboxylation (+30) 3
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Table 2. Cont.

m/z Possible Biotransformation(s) Possible Signals

378 dihydroxylation (+32) 5
392 hydroxylation (+16), carboxylation (+30) 1
492 dehydroxylation (−16), demethylation (−14), glucuronidation (+176) 4
506 dehydroxylation (−16), glucuronidation (+176) 2
508 demethylation (−14), glucuronidation (+176) 8
522 glucuronidation (+176) 7
536 dehydroxylation (−16), carboxylation (+30), glucuronidation (+176) 1
538 hydroxylation (+16), glucuronidation (+176) 5
552 carboxylation (+30), glucuronidation (+176) 1
554 dihydroxylation (+32), glucuronidation (+176) 2

In order to find metabolites that discriminate between omeprazole and esomeprazole
users, we focused on possible phase I metabolites of (es)omeprazole and calculated peak
area ratios following targeted extraction of MS1-level signals. In total, we targeted 21 ana-
lytes resulting in 210 ratios which were compared among omeprazole and esomeprazole
users (see Table S7). For the compounds showing the most and strongest differences, we
also extracted more selective MS2-level signals and compared the corresponding peak area
ratios among users of the two drugs (Table 3). Statistical analyses indicated that there are
multiple ratios showing pronounced differences between the two groups, although not
even the most discriminative ratio allowed for an overlap-free differentiation (see Figure 6).

Table 3. Mann Whitney U p-value 1 matrix for differences in MS2-level 2 ratios of possible phase
I metabolites of omeprazole when comparing omeprazole and esomeprazole users 3 among liver
transplant recipients (LTR) and kidney transplant recipients (KTR).

m/z 332 360 362 376 378 392

RT (min) 7.9 8.3 10.3 7.2 7.7 8.5
332 7.9 1.4 × 10−4 1.2 × 10−8 0.18 1.4 × 10−4 3.9 × 10−10

360 8.3 0.54 4.7 × 10−11 0.03 0.06 2.7 × 10−17

362 10.3 1.8 × 10−4 6.3 × 10−5 1.5 × 10−9 1.9 × 10−12 0.05
376 7.2 0.95 0.61 2.2 × 10−4 0.013 2.8 × 10−15

378 7.7 3.2 × 10−3 3.2 × 10−3 3.8 × 10−6 0.01 4.5 × 10−11

392 8.5 3.5 × 10−6 8.1 × 10−7 0.06 6.2 × 10−6 1.2 × 10−6

K
T

R

LTR
1 Significance testing was based on an alpha of 0.05 and Bonferroni correction. Statistically significant as-
sociations are presented in scientific format. 2 Ratios were derived from the following SRM-like traces:
[324–339]→ 165.0117 (332), [352–367]→ 149.0709 (360), [352–367]→ 298.1550 (362), [366–381]→ 149.0709 (376),
[366–381]→ 212.0376 (378), [380–395]→ 149.0709 (392). 3 Only “double-positive” subjects were included, and
subjects were assigned as omeprazole or esomeprazole user based on information present in the clinical database.

Finally, none of the ratios showed complete differentiation between omeprazole and
esomeprazole users, and it is possible that the study setting, the study samples and/or
the selected analytical strategy do not allow for such differentiation. It should, how-
ever, also be taken into account that there may be incorrect database entries which could
hamper any complete differentiation [17]. Furthermore, there may be external (e.g., co-
exposures) and/or genetic factors (e.g., cytochrome p450 polymorphisms) affecting drug
metabolism in individual subjects which can have profound influences on drug metabo-
lite patterns [41,43]. In fact, a recent study on 316 (es)citalopram users originating from
the same geographical area reported that 80% of the participants were CYP3A4 normal
metabolizers and only 56% were CYP2C19 normal metabolizers [44]. Considerable num-
bers of subjects may thus show altered (es)omeprazole metabolism since CYP2C19 and
CYP3A4 are the main enzymes responsible for metabolism of both drugs [41,42]. Accord-
ingly, it would be interesting for future studies to combine our ‘pharmacometabolomics’
data with pharmacogenomics data, for example when attempting to (further) personalize
pharmacotherapeutic treatments.



Metabolites 2022, 12, 942 11 of 14

Metabolites 2022, 12, 942 11 of 14 
 

 

subjects were included, and subjects were assigned as omeprazole or esomeprazole user based on 
information present in the clinical database. 

 
Figure 6. MS2 peak area ratios of the possible (es)omeprazole metabolites m/z 360 (8.3 min) and m/z 
392 (8.5 min) in (A) liver and (B) kidney transplant recipients (as black dots). Median values are 
indicated with a gray line. 

Finally, none of the ratios showed complete differentiation between omeprazole and 
esomeprazole users, and it is possible that the study setting, the study samples and/or the 
selected analytical strategy do not allow for such differentiation. It should, however, also 
be taken into account that there may be incorrect database entries which could hamper 
any complete differentiation [17]. Furthermore, there may be external (e.g., co-exposures) 
and/or genetic factors (e.g., cytochrome p450 polymorphisms) affecting drug metabolism 
in individual subjects which can have profound influences on drug metabolite patterns 
[41,43]. In fact, a recent study on 316 (es)citalopram users originating from the same geo-
graphical area reported that 80% of the participants were CYP3A4 normal metabolizers 
and only 56% were CYP2C19 normal metabolizers [44]. Considerable numbers of subjects 
may thus show altered (es)omeprazole metabolism since CYP2C19 and CYP3A4 are the 
main enzymes responsible for metabolism of both drugs [41,42]. Accordingly, it would be 
interesting for future studies to combine our ‘pharmacometabolomics’ data with phar-
macogenomics data, for example when attempting to (further) personalize pharmacother-
apeutic treatments. 

4. Conclusions 
Untargeted mass spectrometry-based profiling workflows can contribute to increas-

ing data reliability in clinical exposure research by verifying the presence of chemical ex-
posures in biological samples like blood and urine, as underlined by the urinary presence 
of (es)omeprazole metabolites, which was in good concordance (90–95%) with clinical da-
tabase-derived (es)omeprazole use. These workflows also have a rather high discovery 
potential and thus may yield complementary insights into exposures, notably by identi-
fying previously unknown exposure metabolites as we showed for mycophenolate use, 
by identifying varying combinations of co-exposures as we showed for cocaine use, and 
by detecting differential abundances of known and previously unknown exposure metab-
olites as we showed for (es)omeprazole use. Based on these capabilities, profiling methods 
such as SWATH metabolomics hold considerable potential for differentiating between 
closely related exposures, which is a major challenge in clinical exposure research. How-
ever, this differentiation potential could be further increased by integrating profiling data 

68 omeprazole- and 39 esomeprazole-
using liver transplant recipients

omeprazole esomeprazole
1

2

4

8

16

32

64

128

256

lo
g2

-s
ca

le
d 

36
0/

39
2 

pe
ak

 a
re

a 
ra

tio
 (

M
S

2)

291 omeprazole- and 36 esomeprazole-
using kidney transplant recipients

omeprazole esomeprazole
1

2

4

8

16

32

64

128

256

lo
g2

-s
ca

le
d 

36
0/

39
2 

pe
ak

 a
re

a 
ra

tio
 (

M
S

2)

A B

Figure 6. MS2 peak area ratios of the possible (es)omeprazole metabolites m/z 360 (8.3 min) and
m/z 392 (8.5 min) in (A) liver and (B) kidney transplant recipients (as black dots). Median values are
indicated with a gray line.

4. Conclusions

Untargeted mass spectrometry-based profiling workflows can contribute to increasing
data reliability in clinical exposure research by verifying the presence of chemical expo-
sures in biological samples like blood and urine, as underlined by the urinary presence
of (es)omeprazole metabolites, which was in good concordance (90–95%) with clinical
database-derived (es)omeprazole use. These workflows also have a rather high discovery
potential and thus may yield complementary insights into exposures, notably by identify-
ing previously unknown exposure metabolites as we showed for mycophenolate use, by
identifying varying combinations of co-exposures as we showed for cocaine use, and by
detecting differential abundances of known and previously unknown exposure metabolites
as we showed for (es)omeprazole use. Based on these capabilities, profiling methods such
as SWATH metabolomics hold considerable potential for differentiating between closely
related exposures, which is a major challenge in clinical exposure research. However, this
differentiation potential could be further increased by integrating profiling data with, for
example, clinical patient characteristics and pharmacogenomics data, as would be desirable
given the complexity and the uncertainties inherently associated with exposure research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12100942/s1, Table S1: Overview of internal standards;
Table S2: Overview of LC-MS analytical parameters; Table S3: Overview of PeakView chemical identi-
fication settings; Table S4: Overview of MarkerView data (pre)processing settings; Table S5: Baseline
characteristics of the stable liver (LKR) and kidney transplant recipients (KTR) included in this study;
Table S6: Quantitative data for cocaine and selected cocaine metabolites in the urine of samples in
which benzoylecgonine was identified; Table S7: p-value matrix for differences in MS1-level ratios of
possible phase I metabolites of omeprazole when comparing omeprazole and esomeprazole users
among liver transplant recipients and kidney transplant recipients; Figures S1 and S2: Exemplary
extracted ion chromatograms and fragment spectra of five possible oxidation products of omeprazole;
Figure S3: Extracted ion chromatograms and fragment spectra of 5-hydroxyomeprazole-D3, omepra-
zole sulfone, and omeprazole; Figure S4: Exemplary extracted ion chromatograms and fragment
spectra of three possible biotransformation products of MMF’s mofetil moiety, and an extracted ion
chromatogram and fragment spectrum of N-(2-hydroxyethyl)-morpholine. Figure S5: Extracted ion
chromatogram and fragment spectrum of benzoylecgonine and spectral library matching results of
benzoylecgonine-positive samples; Figure S6: Extracted ion chromatogram and fragment spectrum of
levamisole and spectral library matching results of levamisole-positive samples; Figure S7: Extracted
ion chromatogram and fragment spectrum of methylone and spectral library matching result of the
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methylone-positive sample; Figure S8: Extracted ion chromatogram and fragment spectra of two possi-
ble methylenedioxy-2-aminoindanes (MDAI) as well as spectral library matching result for 5,6-MDAI,
extracted ion chromatograms of presumed MDAI-derived fragments, and structural formulas of
5,6-MDAI and 4,5-MDAI, as observed in the 5,6-MDAI-positive sample; Figures S9–S26: Exemplary
extracted ion chromatogram and fragment spectrum of a possible phase I and II metabolites of omeprazole.
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