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This manuscript is published with a closely related companion entitled, Enabling Global Image Data
Sharing in the Life Sciences, which can be found at the following link, arXiv:2401.13023 [q-bio.OT].
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Abstract

Together with the molecular knowledge of genes and proteins, biological images promise to

significantly enhance the scientific understanding of complex cellular systems and to advance

predictive and personalized therapeutic products for human health. For this potential to be realized,

quality-assured image data must be shared among labs at a global scale to be compared, pooled,

and reanalyzed, thus unleashing untold potential beyond the original purpose for which the data was

generated. There are two broad sets of requirements to enable image data sharing in the life

sciences. One set of requirements is articulated in the companion White Paper entitled “Enabling

Global Image Data Sharing in the Life Sciences,” which is published in parallel and addresses the

need to build the cyberinfrastructure for sharing the digital array data (arXiv:2401.13023 [q-bio.OT],

https://doi.org/10.48550/arXiv.2401.13023). In this White Paper, we detail a broad set of

requirements, which involves collecting, managing, presenting, and propagating contextual

information essential to assess the quality, understand the content, interpret the scientific

implications, and reuse image data in the context of the experimental details. We start by providing an

overview of the main lessons learned to date through international community activities, which have

recently made considerable progress toward generating community standard practices for imaging

Quality Control (QC) and metadata. We then provide a clear set of recommendations for amplifying

this work. The driving goal is to address remaining challenges, and democratize access to common

practices and tools for a spectrum of biomedical researchers, regardless of their expertise, access to

resources, and geographical location.

Background and Motivation

Biological image data promises to significantly enhance our understanding of complex biological

systems, and this promise requires that image data be compared, reanalyzed and shared among labs

at a global scale. Over the past decades, advances in sharing of genomics data and protein structure

data have revolutionized biology (i.e., the Human Genome Project,

https://www.genome.gov/human-genome-project; and the Protein Data Bank - PDB,

https://www.rcsb.org) and have been transformative for society. Biological image data sharing

promises to have great impact as well because of the unique temporal and spatial data that biological
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imaging can provide. Together with the molecular knowledge of genes and proteins, biological images

are essential for scientific understanding of complex cellular systems. This will make it possible to

achieve predictive and personalized therapeutic products for human health and will benefit all sectors

of the bioeconomy. Cellular, tissue and medical imaging provides vast amounts of data from the

organisms that together hold the answers to disease management (i.e., surveillance, prevention,

diagnosis, and treatment), new manufactured products, environmental resilience, and other global

issues. The complexity of biological systems and the multidisciplinary nature of the research

requirements mean that achieving this vision will require the interoperability, integration, and sharing

of image data across laboratories and research studies. Much of this data, while often made publicly

accessible in some form through publications, remain largely unexplored, uncurated, siloed and

inaccessible, reducing the benefit and value of the tens of billions of dollars that are invested annually

in scientific research around the globe.

Data sharing is globally recognized as highly desirable (UNESCO 2022; UNESCO and Canadian

Commission for UNESCO 2022). The Open Science Movement (Ramachandran et al. 2021) is

motivated by the idea that the production of FAIR (Findable, Accessible, Interoperable and Reusable,

or more recently Findable and Artificial Intelligence Ready) (Wilkinson et al. 2016) data unleashes the

untold potential for data beyond the original purpose for which it was generated. Many research

funding applications now include requirements for Data Management and Sharing plans

(NOT-OD-21-013: Final NIH Policy for Data Management and Sharing, Preparing your data

management plan; European Research Council - Scientific Council; California Digital Library 2022).

Although the intention to reuse image data is widely held, many technical challenges are preventing

this vision from being realized. There are two broad requirements for image data sharing. One

requirement is the cyberinfrastructure (Andreev et al. 2021) for sharing the digital array data, as

articulated in the White Paper on Enabling Global Image Data Sharing in the Life Sciences (Bajcsy et

al. 2024) and in other reports (NIH Strategic Plan for Data Science; Nagaraj et al. 2020), which

highlight the critical need for infrastructure supporting the collection, analysis, and dissemination of

image data in a coordinated, federated manner.

In this companion report, we detail a second class of requirements for image data sharing, which

involves collecting, managing, presenting, and propagating contextual information about the data

generation process. This information is essential to assess the quality, to understand, interpret, and

reuse the image data in the context of the experimental details. These essential provenance and

quality control (QC) metadata describe the pre-publication steps in an imaging study, and include
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details about experimental protocols and reagents, instruments, and image data processing and

analysis. These needs are analogous to activities undertaken by users of genomic data: as the

collection of genetic and genomic data became more prevalent, the comparison and sharing of data

required establishing metrics and protocols for evaluating and assuring the provenance and quality of

the data. Two such efforts are the Minimum Information About a Microarray Experiment (MIAME)

(Rustici et al. 2008) and Minimum Information about a high-throughput SEQuencing Experiment

(MINSEQE) (Brazma et al. 2012) specifications, which include reporting the description of the system,

samples and experimental variables, the experimental protocols, the quality scores for sequence

data, and the data processing protocols. Image data are more complicated than genomic data

because of the variety of experiment types, imaging modalities, and instrumentation that can be used,

and the sensitivity of living systems to handling and reagents. Regardless of how convincing

published imaging data looks, it often does not convey sufficient information about the conditions in

which it was acquired, processed, and analyzed, making its scientific interpretation often difficult, if

not impossible (Linkert et al. 2010; Eriksson and Pukonen 2018; Nature Editorial Staff 2018; Sheen et

al. 2019; Botvinik-Nezer et al. 2020; Marqués et al. 2020; Pines 2020; Chen et al. 2023; Viana et al.

2023). As is true for genomic data, reporting sufficient information about image data and its

appropriate management across the experimental lifecycle enables independent evaluation of the

results, engenders confidence in reproducibility, and provides means to assess the suitability (or

futility) of data reuse.

A number of international community activities are engaged in addressing the challenges associated

with the implementation of FAIR principles during image data generation and post-acquisition

processing. The Open Microscopy Environment (OME) (Swedlow et al. 2003, 2006; Goldberg et al.

2005; Linkert et al. 2010; Allan et al. 2012; Moore et al. 2021, 2023) has been active for many years

in encouraging metadata collection and in standardizing image data file formats. The global

bioimaging community, in particular, the African BioImaging Consortium (ABIC) (African BioImaging

Consortium (ABIC) 2020), Association of Biomolecular Resource Facilities (ABRF) (Abrams et al.

2020), BioImaging North America (BINA) (Strambio-De-Castillia et al. 2019), Euro-BioImaging

(Kemmer et al. 2023), the European BioInformatics Institute (EMBL-EBI) (Ellenberg et al. 2018),

Global BioImaging (Global BioImaging 2015; Eriksson and Pukonen 2018; Swedlow et al. 2021),

Quality Assessment and Reproducibility for Instruments & Images in Light Microscopy

(QUAREP-LiMi) (Boehm et al. 2021; Nelson et al. 2021), the RTmfm (RTmfm 2022), and the

NIH-funded 4D Nucleome (4DN) Project (Dekker et al. 2017, 2023), have recently coalesced around
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improving community standard practices for instrument QC and metadata (Microscopy Australia

2016; Hammer et al. 2021; Huisman et al. 2021; Montero Llopis et al. 2021; Rigano et al. 2021;

Sarkans et al. 2021; Faklaris et al. 2022). Through these community efforts (Supplemental Table 1),

individual imaging laboratories and Shared Research Resources (SRR; i.e., commonly known and

hereafter referred to as core facilities) are coming together with instrument manufacturers to define

shared metadata frameworks and execute inter-laboratory studies to refine and deploy standard

methods for QC (Faklaris et al. 2022; Gaudreault et al. 2022; Nelson 2022; Abrams et al. 2023).

These groups have demonstrated interest and a willingness to voluntarily commit precious resources,

and the funding for these efforts has been sufficient to allow limited but significant headway within

small pockets of the broader imaging community. Despite several remaining challenges, this progress

is the beginning of a path forward for biomedical researchers to generate and manage reliable and

well-documented microscopy data that can be trusted and reused. By satisfying FAIR principles this

will then help unlock the vast potential of quantitative image-based research.

In this white paper, we provide an overview of the main lessons learned to date through this

community work and provide a clear set of recommendations moving forward on how this work can

be amplified. The driving goal is to address remaining challenges and democratize access to

common practices and tools so as to involve a wide spectrum of biomedical researchers regardless of

their expertise, access to resources, and geographical location.

Data generation challenges lie at the very heart of the image data lifecycle, involve important

considerations that are made at the planning phase of the research project, and are relevant often

even before the sample hits the image acquisition platform.

We start by describing the challenges connected with sample preparation and image acquisition. We

will then move on to describe issues related to reproducible and reliable post-acquisition processing

of image data to extract quantitative measurements. Last but not least, we will describe the

importance of data stewardship (Steeleworthy 2014; Boeckhout et al. 2018; Demchenko and Stoy

2021), also known as Research Data Management (RDM). Best practices and tools for data

stewardship would consist of a broad set of processes that are undertaken to produce organized,

well-documented, securely stored, accessible, and reusable high-quality research data both during

the course of a research project and in preparation for data sharing. As such, data stewardship is

essential to maintain a persistent link between image data and metadata across the entire

experimental lifecycle. Ensuring that the origin and lineage (i.e., provenance) of data can be tracked

and its quality assessed is an essential prerequisite for guaranteeing FAIR characteristics for the
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microscopy data. The scientific and sharing value derived from these metadata is the extent to which

the data serve its intended scientific purpose and can be shared with other scientists to extract further

insights.

While these challenges involve all areas of biomedical imaging, in this white paper, we concentrate

specifically on optical microscopy, mass spectrometry imaging and electron microscopy modalities.

These modalities are used to perform quantitative biomedical imaging by automated quantification of

the spatial distribution of molecules and supramolecular structures at the sub-cellular, cellular, tissue

and whole organism level. This choice was made because image data and metadata standards have

been established and are routinely used to ensure instrument QC and for the interchange of medical

imaging data in clinical settings (Bidgood et al. 1997; Mustra et al. 2008). Even though we are not

going to discuss Medical Imaging explicitly, all considerations discussed here broadly apply to several

different biomedical imaging techniques.

Data Generation

Good practices in data generation and management that ensure that data are “FAIR from the start”

are essential for rigorous and reproducible quantitative cell image-based research and for producing

image data that can be interpreted, trusted, and reused through model-based and data-driven mining,

aggregation, reanalysis, and integrative modeling.

Although the definition of image quality remains vague and varies significantly depending on the

context, what is crucial is that third-party data users have ready access to all data-related information

(i.e., metadata) that enables them to evaluate the suitability of given datasets for answering specific

scientific questions before accessing or downloading them. In the case of biological imaging, such

information is collectively called image metadata and includes details about experimental conditions,

sample description and preparation, image acquisition (i.e., hardware description and image

acquisition settings) and image processing, visualization, and analysis (i.e., data provenance

metadata), as well as system performance recorded through standardized QC protocols and metrics

(i.e., QC metadata).

Experimental Conditions and Sample Preparation

Description and interpretation of the results of any microscopy research project requires an extended

knowledge of the fundamental experimental factors and the sample itself. Such information should be

captured not only in the Methods section of journal articles (Marqués et al. 2020; Montero Llopis et al.

2021; Larsen et al. 2023) but also as machine-readable structured metadata to be associated with
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any dataset made available for sharing and reuse. These metadata fields should include the following

categories: 1) the source or provenance of the biological sample and how it was obtained, processed,

cultured, and prepared, 2) the protocols and reagents (e.g., labeling procedures) used to visualize the

structure of interest in the sample, 3) the mounting technique and media used to preserve the

integrity of the specimen during imaging, and 4) the sample receptacle (e.g., slide and cover slip)

used to hold the sample during image acquisition.

To facilitate the appropriate metadata annotation of image datasets to be shared and reused,

communities are starting to converge towards shared minimal metadata guidelines such as those

provided by the Recommended Metadata for Biological Images (REMBI) framework (Sarkans et al.

2021), which was developed by a 2019 community gathering to address the data stewardship and

sharing needs of the light, electron and X-ray microscopy fields (Sarkans et al. 2021). REMBI

provides a high-level map of the different metadata topics that have to be covered to ensure

interpretability and trust and can serve as a convergence point for other communities working on

each individual aspect. Along these lines, important efforts are represented by the multiplexed Tissue

Imaging (MITI) minimum information guidelines for highly multiplexed tissue images (Schapiro et al.

2022) and Minimum Information about Cell Migration Experiments (Cell Migration Standardisation

Organisation 2021), which provide guidance at multiple levels of the experimental procedure and

sample preparation documentation.

Also key to compliance and implementation of effective metadata usage is the utilization of consistent

ontologies for knowledge representation (Jupp; Ong et al. 2017; Hotchkiss et al. 2019; Sickle Cell

Disease Ontology Working Group 2019), and where possible, the automated capture and annotation

of metadata.

Microscope Hardware Specifications, Image Acquisition Settings and QC

Quality assessment, reproducibility, interpretation and reuse of image data are critically dependent on

the availability of sufficient information about the hardware specifications, image acquisition settings

and performance of the instrument used at the time of the data acquisition (Hammer et al. 2021;

Huisman et al. 2021). A full technical description of the configuration of the imaging system can be

used to calculate key information about spatiotemporal resolution, the noise associated with the

system, as well as the physical and temporal dimensions of the image pixel data it generates. An

instrument performance assessment plan, including tracking standardized QC metrics at regular

intervals, can be used to quantitatively measure variability, changes in performance over time, and
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decline in the consistency of measurements (Faklaris et al. 2022; Gaudreault et al. 2022; Nelson

2022; Abrams et al. 2023). These metrics in turn allow us to quantify disparities between expected

(theoretical) and observed (empirical) values and compare the results with the values measured

during the system installation (t=0 for the microscope lifetime). The metrics can also help to

characterize and calibrate derived quantities that can be extracted by image analysis (e.g.,

coregistration measurements). Ultimately, capturing the overall state (Rigano et al. 2021) and

performance of the microscope at the time of data acquisition, and linking this information to the

acquired image data in the form of metadata, is essential to identify potential batch effects in large

datasets (Viana et al. 2023) Batch effects has been shown to significantly impact the performance of

Artificial Intelligence / Machine Learning (AI/ML) algorithms (Arevalo et al. 2023; Cimini et al. 2023;

Tromans-Coia et al. 2023), so capturing instrument state and performance is critical for the

interpretation of results (Chen et al. 2023; Viana et al. 2023).

Documentation of and Integration with image data processing visualization and
analysis

For the assessment of the analysis quality, reproducibility and proper results interpretation, all details

pertaining to the image analysis workflow should be provided as described in recently developed

community guidelines (Aaron and Chew 2021; Miura and Nørrelykke 2021; Schmied et al. 2023).

Additionally, the data size and computing hardware and networking requirements should be provided

as part of the metadata.

However, this is not a trivial request, as providing primary software versions does not ensure

reproducibility. This is due to potential variabilities introduced by the chain of software packages upon

which the primary software depends. Deep dependency graphs are not uncommon in scientific

analysis programs written in the Python and R programming languages. As an illustration of this

complexity Supplemental Figure 1 displays the dependency graph for the napari image analysis

program version 0.4.18 (Ahlers et al. 2023). Thus, if the software tool used to perform a given step of

the image processing/analysis pipeline does not explicitly constrain the version of each component of

the chain of dependency, installing the original version of the primary software may not ensure the

same versions of the components it depends upon were installed. Accurately reporting all

dependencies beyond the primary software in a manual fashion is unfeasible and is best performed

using automated package managers (e.g., the pip freeze command).

Since image processing pipelines may rely on several tools, one must also address the need to

ensure that the intermediate and final results of processing and analysis pipelines and associated
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metadata are stored in an harmonized and comparable manner across different software tools

(Könnecke et al. 2015). Developers have made important strides towards the use of containers

(González and Evans 2019; Bajcsy and Hotaling 2020; Mitra-Behura et al. 2021; Schapiro et al.

2021), workflow tools (Wollmann et al. 2017, 2023; Stirling et al. 2021; Berthold 2023; Di Tommaso

and Floden 2023; KNIME Community and bioml-konstanz 2023), cloud-ready data exchange formats

(Moore et al. 2021, 2023; Swedlow et al. 2021), metadata frameworks (Moore 2022a) and

standardized Application Programming Interfaces (APIs) that allow integration of images and results.

However, much work is still left to do to make these solutions robust and universally adopted.

If one could recreate the analysis environment in terms of hardware, operating system, image

analysis software and all parameter settings, one should obtain the same results. In practice, if the

image analysis software utilizes randomness as part of its computations, obtaining exactly the same

results is unlikely, and obtaining results within error margins that are considered acceptable in a given

experimental context (i.e., similar results) is generally considered sufficient (Registration overview —

SimpleITK documentation; PyTorch Consortium 2023; TensorFlow Development Team 2023). Finally,

algorithms and implementations utilizing randomness require special care. This entails the fixing and

sharing software parameters which are often not fixed, random seed values, or sharing of additional

information. For example, when using deep learning, replicating results obtained by a retrained or

new model, requires access to the code and model weights which should be shared using an

interoperable file format across deep learning frameworks (e.g., the Open Neural Network Exchange,

ONNX format, https://onnx.ai/).

Stewardship of image data during the duration of the research project

Data stewardship is an intrinsic and essential aspect of the generation of high-quality image data that

is “FAIR from the start.” For this to happen, data stewardship has to involve the entire lifecycle of the

data, starting with the planning phase and continuing during experimental design and execution,

sample preparation, data acquisition, post-processing, visualization and analysis. In addition, data

stewardship has to continue after the conclusion of a research project to ensure that the published

data is made available for further re-use as detailed in the companion White Paper on Enabling

Global Image Data Sharing in the Life Sciences (Bajcsy et al. 2024). Specifically, correct data

stewardship ensures that the conditions used to generate, process, analyze and validate (i.e., assess

the appropriateness of all aspects of the imaging pipeline and of the resulting data for a given

purpose) data to be shared are transparently documented and propagated alongside the data in both

human readable forms (i.e., scientific publications) (Marqués et al. 2020; Heddleston et al. 2021;
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Montero Llopis et al. 2021; Larsen et al. 2023) and machine readable structured FAIR frameworks

(Hammer et al. 2021; Moore et al. 2021, 2023; Rigano et al. 2021; Sarkans et al. 2021; Moore 2022b;

Schapiro et al. 2022), and the provenance of the data is automatically reported to downstream users.

This, in turn, ensures that data can be trusted, correctly interpreted, reproduced and reused through

data aggregation, mining, integrative modeling and further analysis (including AI/ML). In addition,

proper data stewardship is crucial to organize data, thus avoiding the waste of time and resources

needed to have to re-generate data that has been lost or cannot be interpreted and, as a result,

promote efficiency and sustainability (economic, environmental and societal) (Meyn et al. 2022; Budtz

Pedersen and Hvidtfeldt 2023).

As such, effective data stewardship requires well maintained, enterprise grade to assure scalability,

open-source and commonly available cyberinfrastructure (Andreev et al. 2021) leveraging Persistent

Identifiers (PIDs) for research resources, individuals, publications and data (Cousijn et al. 2021;

Brown et al. 2022a, 2022b; McCafferty et al. 2023), shared file formats such as OME-NGFF and

associated APIs (Moore et al. 2021, 2023; Marconato et al. 2023), community-defined

ontology-based harmonization (Côté et al. 2010; Lomax 2019)(Ciavotta et al. 2022; Khurana et al.

2023)), Image Metadata specifications (Hammer et al. 2021; Sarkans et al. 2021; Schapiro et al.

2022) and Next Generation Metadata frameworks (Moore 2022b). This cyberinfrastructure should

interface with Electronic Lab Notebooks (ELN) and Laboratory Information Management Systems

(LIMS) and, whenever possible, automatically capturing and propagating output metadata from all

relevant instrumentation (including but not limited to robotic apparatuses, microfluidics and image

acquisition hardware) (Marx 2022a, 2022b). In summary, this cyberinfrastructure should cover the

following three interconnected aspects (Figure 1):

○ WHAT information should be captured in Image Metadata (i.e., develop

community-specifications for Experiment description, Sample preparation, Image acquisition,

Image Processing, Visualization, and Analysis metadata; in particular, Image acquisition

metadata should include hardware specifications, image acquisition settings, and QC protocols

and metrics) (Hammer et al. 2021; Huisman et al. 2021; Sarkans et al. 2021; Schapiro et al.

2022).

○ WHERE Image Metadata should be stored (i.e. OME-NGFF and Next Generation Metadata

with shared APIs) (Moore 2022b)(Moore et al. 2021, 2023)

○ HOW Image Metadata should be captured to facilitate metadata annotation, data curation
and seamless integration of all aspects of the imaging pipeline (i.e., integration with LIMS,
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ELNs and hardware instrumentation; leverage community-specifications and Next Generation

Metadata frameworks, ontology enriched, REMBI-based, modular template spreadsheets;

incorporate QC protocols and output metrics as image metadata) (Hammer et al. December, 9-12

2019; Kobayashi et al. Dec 10-11 2019; Sansone et al. 2012; Wolstencroft et al. 2012; Bukhari et

al. 2018; Kunis et al. 2021; Rigano et al. 2021; Ryan et al. 2021; NFDI4Plants Consortium 2022).

Specific Modalities

Multiplexed RNA, Multiplexed DNA FISH, Protein Optical, and Mass Imaging

Within the last 20 years, the basic principle of imaging—visualizing cells or nucleic acid probes in

situ—has expanded to include dozens of methods empowering the granular study of tissues at single

and spatial resolution. These techniques include spatial RNA profiling methods capable of resolving

hundreds of probes at subcellular resolution using light microscopy, e.g., multiplexed error-robust

fluorescence in situ hybridization (MERFISH) (Chen et al. 2015; Moffitt et al. 2018), in situ sequencing

(ISS) (Ke et al. 2013), and many others. In addition to imaging-based methods that now allow

100-1000+ RNA probes to be examined in a single tissue section, spatial barcoded techniques

empower analysis of the whole transcriptome via capture arrays. Given their considerable promise,

these technologies have been the subject of several recent reviews and we refer the reader to these

resources (Moffitt et al. 2022; Baysoy et al. 2023; Vandereyken et al. 2023). Multiplexed

imaging-based spatial transcriptomic experiments targeting RNAs and their multiplexed ‘spatial

genomics’ counterparts targeting DNA (Wang et al. 2016; Takei et al. 2021) rely on sets of

bioinformatically designed, oligonucleotide (oligo)-based probes.

Such primary oligo probes can be designed de novo (Rouillard et al. 2003); (Beliveau et al. 2018);

(Hu et al. 2020); (Zhang et al. 2021), or by querying genome-scale databases of pre-discovered

probes (Gelali et al. 2019); (Hershberg et al. 2021). In either case, care must be taken to ensure that

primary probes remain hybridized through many iterative rounds of staining and imaging, have

minimal secondary structure, and have sufficient specificity to minimize unwanted background signal.

Furthermore, “secondary” or “readout” probes with sequences that are orthogonal to the genome

being imaged should be used to facilitate multiplexed imaging. Finally, signal amplification methods

(Choi et al. 2014); (Kishi et al. 2019) may be necessary to make FISH signals bright enough to detect,

especially in tissue samples.
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Several highly multiplexed antibody-based imaging techniques have recently been developed and

commercialized (Hickey et al. 2022; Kinkhabwala et al. 2022; Rivest et al. 2023). Methods employing

fluorophore-labeled antibodies are the most numerous and include cyclic methods relying on

elimination of the fluorescent signal (Gerdes et al. 2013; Lin et al. 2018; Radtke et al. 2020); (Porciani

et al. 1992; Kinkhabwala et al. 2022) or antibody removal (Gut et al. 2018; Rivest et al. 2023) to

achieve high parameter imaging. Non-cyclic methods such as spectral (Gerner et al. 2012; Lin et al.

2023) and vibrational imaging (Wei et al. 2017) utilize advanced imaging systems with mutliplexed

fluorophores to evaluate more than ten markers at once. Methods employing oligo-conjugated

antibodies apply a single mixture of antibodies to the tissue and serially reveal markers through

fluorescently conjugated oligo-reporters specific to each tagged antibody (Wang et al. 2017; Goltsev

et al. 2018; Saka et al. 2019).

An alternative to fluorescence-based approaches is mass spectrometry (MS)-based methods where

antibodies are labeled with mass tags instead of fluorophores or chromogens. Whereas antibodies

tagged with the latter are quantified using light, MS-based methods create images by mapping the

spatial distribution of the mass reporters attached to each antibody. The two most common

technologies are multiplexed ion beam imaging (MIBI) (Angelo et al. 2014) and imaging mass

cytometry (IMC) (Giesen et al. 2014), which utilize elemental mass tags and differ by the use of an

ion beam or laser, respectively, for tag ionization and detection. MIBI and IMC are used routinely to

quantify 40 or more biomarkers in a tissue section using a single master mix of metal-conjugated

primary antibodies. More recently, methods have emerged that enable highly multiplexed IHC based

on matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-IHC) (Yagnik et al.

2021). Here antibodies are conjugated with photocleavable synthetic peptides that are released and

ionized during laser irradiation. Although spatial resolution is currently limited to ~10 µm pixel sizes,

the advantage of this approach is the ability to integrate untargeted metabolomic and lipidomic MALDI

imaging mass spectrometry (IMS) collected from the same tissue sections. The major benefit of mass

spectrometry-based techniques is the ability to detect and resolve dozens of metal/molecule-labeled

antibodies simultaneously. Mass barcodes possess low background signal by circumventing

autofluorescence and incorporating high instrumental mass-resolving power (Tideman et al. 2021;

Mund et al. 2022).

A majority of these multiplexed imaging techniques have been developed within the past decade. The

recent introduction of these methods, combined with their complexity and diversity, result in a variety

of workflows related to sample processing, reagent QC, image acquisition, image processing, and
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image analysis without agreed upon community standards. The establishment and wide adoption of

such standards are essential for cross-lab and cross-platform data interoperability and analysis,

which is even more critical to the community since these data are expensive to acquire (Hickey et al.

2022; Quardokus et al. 2023; Vandereyken et al. 2023) and are associated with a number of

consortia efforts (HuBMAP Consortium 2019; Rozenblatt-Rosen et al. 2020; Jain et al. 2023). For

these reasons, critical details related to sample preparation, reagent validation, and platform-specific

imaging parameters must be recorded and shared using community-defined metadata. Here we

highlight specific challenges around the harmonization of multiplexed image processing and reporting

that limit current ability towards FAIR data (Wilkinson et al. 2016).

Harmonization of Sample Preparation Procedures

Despite the diversity of imaging-based spatial omics methods described above, there are several

parallels and shared challenges related to imaging tissues. First and foremost, tissues must be

optimally prepared to allow downstream profiling of RNA or proteins. This pre-image data generation

stage consists of several steps not limited to 1) careful processing of samples into snap frozen, fixed

frozen, or formalin-fixed paraffin embedded (FFPE) specimens, 2) optimal placement and orientation

into tissue molds, 3) sectioning of thin tissue sections onto slides, imaging chambers, or bar-coded

arrays, and 4) antigen retrieval to expose epitopes altered during FFPE preparation (optional). For

FISH-based assays, permeabilization with detergents to allow for probe penetration, heat and acid

treatment to denature protein structure and promote target accessibility, and denaturation with heat

and chemical agents such as formamide to remove secondary structure from the target nucleic acids

are critical pre-treatment steps.

Harmonization of Reagent Preparation & Reporting

For multiplexed antibody-based imaging techniques, antibody validation and panel design are

resource and time-consuming processes, estimated to take 6-8 months and tens of thousands of

dollars to build (Hickey et al. 2022; Quardokus et al. 2023). Recent efforts within the Human

BioMolecular Atlas Program Affinity Reagents and Imaging Validation Working Group provided

guidelines (HuBMAP Consortium 2019; Jain et al. 2023) and a potential solution (Quardokus et al.

2023) for the tedious process of antibody validation and panel design. Organ Mapping Antibody

Panels (OMAPs), accompanying Antibody Validation Reports (AVRs), and resulting datasets are

designed to reduce the time, cost, and expertise required for imaging proteins in tissues using

antibodies (see Tables in references links; (HuBMAP Consortium 2023a, 2023b). Antibody
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performance is well known to be context specific. Therefore, it’s important to share the metadata

uniquely identifying an antibody, research resource identifier (RRID) (Bandrowski et al. 2016, 2023;

Bandrowski 2022), and the experimental details contributing to the success or failure of a particular

reagent, e.g., tissue, fixation method, antigen retrieval conditions, imaging method, etc. For these

reasons, the sharing of negative data is invaluable as this practice prevents others from wasting time

and money on reagents that are known to fail for their particular application. To this end, a community

initiative has emerged to support imaging scientists using a variety of methods employing

fluorophore-labeled antibodies (Yaniv et al. 2023).

Harmonization of Image Acquisition and Processing

As with traditional microscopy, multiplexed RNA and protein imaging methods report metadata

associated with imaging parameters to ensure cross-comparisons and appropriate interpretation of

the resulting data. However, there are substantially greater amounts of image processing that go on

within multiplexed imaging datasets. This is because tissues need to be imaged iteratively and/or

over long periods of time, requiring additional algorithms for tissue registration, stitching, shading

correction, deconvolution, and background subtraction. Each of these image processing steps has

many different choices of algorithms, each with advantages and disadvantages that continue to grow

in number each year. Documenting which algorithm is used at each step of the pipeline is also

important for cross-comparison. Moreover, detailing the key parameter choices used when employing

image analysis algorithms (e.g., threshold, sigma range, max iterations for Gaussian fitting), recording

key output data (e.g., centroid position, precision for Gaussian fitting), and providing example inputs

and outputs is essential for reproducibility. Furthermore, it is important to consider how the image

analysis workflow is documented and maintained as described above. This focus on reproducibility is

a particularly acute need for the multiplexed imaging community because of the size of raw

multiplexed imaging datasets that can reach terabytes for even one whole slide image, and

processing of datasets can reduce the data to GB sizes. Consequently, what is usually shared with

the community are processed images.

Another recent change within the multiplexed imaging community is the number of commercial

vendors that now sell multiplexed imaging solutions. Many of these companies provide on-computer

image processing. However, with commercial interests, this often precludes sharing of processing

steps and also limits users’ ability to interact with raw data. Establishing a framework for standardized

reporting of image formats and accompanying metadata will empower cross-comparative studies
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acquired using either open-source or commercial platforms (Moore et al. 2021, 2023; Swedlow et al.

2021).

Harmonization of Multiplexed Image Analysis

The image analysis pipeline typically involves domain experts initially annotating the image data,

bioimage analysts processing the image data, and biologists extracting data-derived insights.

Automated image analysis pipelines have been preferred in case of highly multiplexed whole slide

imaging because of the size and scale of the images and associated analysis data (Axelrod et al.

2021; Schapiro et al. 2021; Wang et al. 2021; Windhager et al. 2021; Eng et al. 2022). With such

large data structures, it is often tempting to assess analysis quality only from final measured metrics

and/or proposed regions, but these outputs may often not fully elucidate possible issues with sample

preparation and/or the imaging itself (Vierdag and Saka 2024). Thus, there is a need to make QC an

integral part of those parts of analysis workflows that deal with the multiplexed imaging data.

Some workflows incorporating QC already exist and are being applied on multiplexed imaging data.

Perhaps more so than with other types of image data, QC of any multiplexed image dataset requires

a sampling strategy for performing QC as QC of the complete data is extremely time-consuming. The

extent of required sampling depends on the research question and the heterogeneity of the data.

Additionally, the sampling could be guided by prior information such as annotated regions of interest.

As any sampling strategy still involves visualizing more markers than can be fit on a screen, a

multi-canvas view of the data is required in which multiple groups of markers can be visualized at a

particular location simultaneously without spectral overlap. While some analysis software such as

QuPath (Bankhead et al. 2017) provide such functionality, many tools do not easily permit doing this

for dozens of markers (Vierdag and Saka 2024).

However, setting up this kind of view repeatedly is too time-consuming and not easily reproducible.

Standardized systems for creating view configurations from metadata could encompass both how

images should be rendered as well as the layout for a particular viewer. These could be stored at

either the file level and/or within the particular visualization tool, but while OME-Next Generation File

Format (NGFF) does specify how images should be rendered it does not allow for storing viewer

specific information (Moore et al. 2021, 2023; Swedlow et al. 2021). Additionally, it currently does not

provide a specification for storing multiple view configurations.

Given that the multiplexed spatial omics technologies are relatively nascent, and the image analysis

workflows share common building blocks, now is the ideal time for the community to agree on data
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structure and organization, as well as standardized reporting of methods. Such an effort will help

prevent multiple methods and formats becoming embedded in different locations or fields.

Cryogenic transmission electron microscopy

Cryogenic transmission electron microscopy (cryo-EM) provides images of biological matter in a

frozen-hydrated, near-native state. During the last decade, cryo-EM has grown into the primary

technique for high-resolution structure determination with an exponential use trajectory. Advances in

the field were recognized with the Nobel Prize in Chemistry in 2017. Cryo-EM in conjunction with

Single Particle Analysis (SPA) can provide atomic-resolution volume reconstructions of purified

macromolecular assemblies (Nakane et al. 2020; Yip et al. 2020). Furthermore, cryogenic electron

tomography (cryo-ET) allows imaging of pleomorphic samples such as cells or tissue samples at the

nanometer scale and in three dimensions, in principle enabling the extraction of near-atomic

resolution information of in-situ macromolecular assemblies via sub-tomogram averaging (Tegunov et

al. 2021; Xue et al. 2022).

The cryo-EM field is recognized as a good example of how to effectively accomplish metadata

annotation and stewardship of raw and derived data (Sarkans et al. 2021). To this aim, the field was

able to leverage the existing infrastructure of the Protein Data Bank (PDB) (RCSB Consortium 2019)

which deals with atomic-level descriptions of protein and other biological structures (e.g, DNA and

RNA). The cryo-EM community realized early on that the atomic coordinates must be accompanied

by the corresponding volume data used to derive the model to allow appropriate evaluation of the

model quality. This was initially driven by the observation that the resolution of cryo-EM volumes

generally was well below 1 nm and the assignment of atomic coordinates tended to be quite

ambiguous (Volkmann 2014). While since the "resolution revolution" (Kühlbrandt 2014) near-atomic

resolution reconstructions for well-behaved samples can be routinely achieved by SPA, the value of

density information alongside atomic coordinates is still strongly recognized. Consequently, most

journals demand the deposition of atomic coordinates as well as density information to support

publication. The cryo-EM community also widely agrees that detailed metadata must be made

publicly available alongside the data and that metadata standards need to be reviewed regularly to

ensure fitness and relevance to the evolving community needs (Chiu et al. 2021; Sarkans et al.

2021).

Data sharing of cryo-EM derived density maps and associated metadata is implemented in the

Electron Microscopy Data Bank (EMDB) (EMBL-EBI; Lawson et al. 2011), which is well established,

16

https://paperpile.com/c/2N92w5/Hgyw+n4Xr
https://paperpile.com/c/2N92w5/GDOc+rfTz
https://paperpile.com/c/2N92w5/GDOc+rfTz
https://paperpile.com/c/2N92w5/Ja2H2
https://paperpile.com/c/2N92w5/t321
https://paperpile.com/c/2N92w5/jIss
https://paperpile.com/c/2N92w5/YoTg
https://paperpile.com/c/2N92w5/2pHB+Ja2H2
https://paperpile.com/c/2N92w5/2pHB+Ja2H2
https://paperpile.com/c/2N92w5/UfhV+pT4y


has consistent data formats and metadata schemas and allows easy examination of the densities in

conjunction with the corresponding atomic models via close coupling to the PDB. In turn, the sharing

of raw cryo-EM data is implemented in the Electron Microscopy Public Image Archive (EMPIAR)

(EMBL-EBI; Ludin et al. 2016) which is linked to the EMDB to allow the association of raw data with

the corresponding derived data. As also mentioned in the companion White Paper on Enabling Global

Image Data Sharing in the Life Sciences (Bajcsy et al. 2024), much work remains to be done to

incorporate in EMPIAR more information, primarily based on feedback from depositors and

workshops with community experts (Sarkans et al. 2021). This is particularly important for cellular

tomography data, where the nanoscale structural data often needs to be linked to data from light

microscopy to gain the full picture in correlative light and electron microscopy (CLEM) experiments. It

would also be highly beneficial to enable crosstalk with other spatial information sources such as

spatial proteomics or volume EM. However, the main challenge for the cryo-EM field is its growth

trajectory and the need for scalability, especially for raw data sharing.

As of November 2023, about 800 high-end cryogenic electron transmission microscopes are in use

worldwide (Various Authors 2023). Each of these instruments can produce between 1 to 5 terabytes a

day for a total worldwide of 0.7 and 3.5 petabytes of raw data per day. While not all this data will

contribute to publications or be otherwise worth preserving, the trajectory of data depositions in the

EMDB is exponential with a doubling rate of about two years. By mid-2022, about 5000 cryo-EM

structures were deposited in the EMDB (Halfon et al. 2022). Assuming the current growth trend holds,

the amount of raw data associated with new EMDB depositions will be between 20 and 100 petabytes

by mid-2025, surpassing the exabyte mark as early as 2032. Considering that this estimate

constitutes a lower bound it is clear that for the cryo-EM field the main challenge in sharing data lies

in the sheer scale and expected exponential growth of the data likely to be produced.

Toward Global Image Data Generation and Stewardship

All stakeholders can play a role In all aspects described in the White Paper. For example,

manufacturers can and should actively contribute by making community-defined full technical

descriptions of instruments and QC easier and more automated (Marx 2022a, 2022b). In addition,

funders can help by providing funds to support bioimaging communities, which are conducting largely

unfunded essential tasks, and core facilities personnel and to promote the development of tools,

protocols, and metadata standards. As an example, journals can help by requiring all aspects of
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microscopy metadata (i.e., hardware specifications, image acquisition settings and QC metrics) to be

a part of the data package just like control experiments are required for experimental procedures.

Finally, if these practices are to be universally adopted, the development of resources in multiple

languages need to be encouraged and supported.

In this section we provide detailed steps that could be taken to promote the production and

stewardship of image data that is “FAIR from the start” and ready to be shared and reused. These are

summarized in a to-do list for various stakeholders presented in a text box at the end.

Data Generation

Overcoming challenges related to the generation of image data that is “FAIR from the start” requires

specific solutions that should be planned for and carried out by all interested stakeholders. To guide

the development of these solutions, we provide the following specific recommendations:

● Promote the widespread adoption of persistent identifiers for institutions (e.g., Research

Organization Registry- ROR) (Gould 2023), core facilities (e.g., ROR and Research Resource

Identifier - RRID) (Bandrowski 2022), personnel (e.g., Open Researcher and Contributor ID -

ORCID) (Haak et al. 2012; Shillum et al. 2021), reagents (e.g., RRID) (Bandrowski 2022),

microscope instruments (e.g., PIDINST) (Stocker et al. 2020; Krahl et al. 2021; McCafferty et

al. 2023) and datasets (e.g., Digital Object Identifiers - DOI) as a means to enable the FAIR

description of all entities used in science, to facilitate reporting and reproducibility and to

ensure the recognition of the essential role carried out by research and imaging scientists and

core facilities in the research enterprise (Cousijn et al. 2021; Brown et al. 2022a, 2022b;

McCafferty et al. 2023). This recommendation is supported by recent cost-benefit analyses

(Brown et al. 2022a, 2022b), which demonstrated staggering financial benefits associated with

staff salaries, time spent in tedious data entry and potential technological innovation.

● Promote the use of existing guidelines such as Recommended Metadata for Biological
Images (REMBI) (Sarkans et al. 2021) as a blueprint to guide biomedical scientists on all
required components of image metadata. REMBI consists of eight modules, each providing
minimal information requirements for each of the phases of a typical imaging experiment. Each

module can be extended through consensus-building decision-making processes organized by

bioimaging community efforts and involving research scientists, imaging scientists, microscope

custodians and manufacturers and image analysts. As an example, pro-bono work being

conducted by QUAREP-LiMi (Boehm et al. 2021; Nelson et al. 2021) is expanding the Image
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“Image acquisition” module of REMBI to include the NBO-Q Microscopy Metadata

specifications in close collaboration with instrument manufacturers (Marx 2022a, 2022b).

Additionally, workflows that are being developed

(https://doi.org/10.1038/s41592-023-01846-7) for reporting the validation and application of

complex antibody panels for imaging human tissues could be expanded to other sample types

by integrating them in the “Specimen” module of REMBI. Along the same lines, the MITI

guidelines (Schapiro et al. 2022) could be used to extend multiple REMBI modules. One

solution is for the community to share modular metadata annotation templates based on the

REMBI (Sarkans et al. 2021) guidelines to describe different imaging experiments where

metadata annotation is semantically enriched (Ciavotta et al. 2022; Khurana et al. 2023) using

tools such as ISAtools, RightField, Swate or Cedar (Sansone et al. 2012; Wolstencroft et al.

2012; Bukhari et al. 2018; NFDI4Plants Consortium 2022),

● Promote the collection of full technical descriptions of microscope hardware
specifications, image acquisition settings and QC protocols and metrics (aka Microscopy
Metadata) in compliance with community-defined microscopy metadata 4DN-BINA-OME

(NBO-Q) specifications (Hammer et al. 2021; Huisman et al. 2021) that are being developed

by consensus by imaging scientists and instrument manufacturers (Marx 2022a, 2022b).

These technical descriptions captured in microscopy metadata must become obligatory

aspects of the production of any image data because in their absence image data cannot

reliably be quantified, reproduced and reused and ultimately loses scientific value even when it

is shared. As such Microscopy Metadata to be made transparently available to microscope

users, automatically collected using community tools (Kunis et al. 2021; Rigano et al. 2021;

Ryan et al. 2021; Kunis and Dohle 2022), and encoded using shared metadata frameworks

(Moore et al. 2021, 2023).

● Ensure that instrument maintenance and quality assessment are adequately supported
to ensure that they become a common practice at all core facilities and individual

laboratories utilizing microscopes regardless of local resource availability. Specific funding

mechanisms should be considered to provide the necessary instrumentation, training and

personnel or traveling metrology services for under-resourced areas. This will allow for the

performance of instruments to be evaluated at regular intervals using community-defined

metrology standards and QC procedures that are appropriate for each experimental question

(Gaudreault et al. 2022; Nelson 2022; Abrams et al. 2023). In addition, specific additional

19

https://paperpile.com/c/2N92w5/OP5A+wBxs
https://doi.org/10.1038/s41592-023-01846-7
https://paperpile.com/c/2N92w5/z1qIQ
https://paperpile.com/c/2N92w5/Ja2H2
https://paperpile.com/c/2N92w5/KVPi+akQg
https://paperpile.com/c/2N92w5/EDGI+b4VO+jYT2+Wynz
https://paperpile.com/c/2N92w5/EDGI+b4VO+jYT2+Wynz
https://paperpile.com/c/2N92w5/mXOt+1mR2
https://paperpile.com/c/2N92w5/OP5A+wBxs
https://paperpile.com/c/2N92w5/b4Avz+zCXU+l4qi+XZMV
https://paperpile.com/c/2N92w5/b4Avz+zCXU+l4qi+XZMV
https://paperpile.com/c/2N92w5/6X1k+eQhp
https://paperpile.com/c/2N92w5/XDYJ+7HW5+Pw6f


metrics might need to be collected for types of experimental approaches and desired

outcomes.

● Emphasize large infrastructure investments in core facilities and regional infrastructural
hubs (Budtz Pedersen and Hvidtfeldt 2023) employing trained personnel including imaging

scientists, data stewards, image analysts and research software engineers. Such shared

infrastructure would increase efficiency and reduce costs by maintaining and assessing the

performance of instruments, promote the dissemination of technological advances (hardware

and software), facilitate user training, provide guidance for experimental procedures, data

stewardship and image analysis, and provide image analysis and RDM services to facilitate

the deposition of FAIR data packages containing the appropriate image metadata to

specialized bioimage repositories. This should include legal support to review data, identify

appropriate Creative Commons (CC) and Open-Source Software (OSS) licensing and/or carry

out Personal Information (PI) redaction (human subject data).

● Invest in the development of open-hardware devices (i.e., robotic devices, fluidics systems,
environmental control devices, microscopes, etc.) to carry out all aspects of data generation as

the most appropriate way to ensure democratization of access to advanced technology and the

efficient use of resources.

Data Processing and Analysis

After acquisition, images often have to undergo complex processing, visualization, and analysis steps

to extract quantitative information about the intensity of the signal associated with a given label, as

well as the location, morphological characteristics, association and movement of biological entities. To

ensure that the results of image processing and analysis pipelines are reproducible and ready for

FAIR sharing, community-defined guidelines should be adopted (Aaron and Chew 2021; Miura and

Nørrelykke 2021; Schmied et al. 2023). In particular, the following steps should be adopted:

● Image processing and analysis workflows should ideally be shared in binary containers such as

Docker, Singularity, or Podman that include the complete software environment. This ensures that

all aspects of the pipeline remain identical for all users.

● The processing and analysis workflow should specify what characteristics of the image data can

affect its execution, and should, therefore, be encoded in metadata (i.e., magnification, resolution,

signal intensity, QC metrics).
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● All aspects of the processing and analysis pipeline, including but not limited to data structure and

size, rendering and processing steps, algorithm version and input parameters, as well as

computing and networking requirements, must be documented in both human and

machine-readable manners to ensure interpretability, reproducibility, and downstream reuse. Such

metadata should be captured either in the image data file (e.g., information about image rendering

and processing) or as part of the documentation of the workflow (e.g., algorithm version and input

parameters).

● As such, it is imperative that analysis metadata be captured using community-defined metadata

specifications and storage frameworks to ensure maximal efficiency with which this information

can be extracted and tracked across all steps of the pipeline without the need for time-consuming

repeated interactions with the image data itself.

Data Stewardship

● The everyday stewardship of data and associated metadata throughout the entire lifecycle of

quantitative imaging experiments is essential to ensure rigor, reproducibility and the production of

high-quality image data that can be interpreted and is ready to be reused according to FAIR

principles.

● The generation and stewardship of FAIR image data requires full transparency, management and

reporting of all information related to the conditions used for data generation (i.e., experimental

conditions, sample preparation, and image acquisition) as well as processing and analysis (i.e.,

image analysis and visualization).

● RDM cyberinfrastructure supporting the generation and pre-publication stewardship of high-quality

FAIR image data should be made available to all biomedical researchers using microscopes as an

essential prerequisite for image data sharing and reuse.

● Such imaging RDM cyberinfrastructure needs to include advanced computing and data

repositories that provide integrated data stewardship, metadata annotation, visualization

environments, processing pipelines and analysis routines (including AI/ML). Different components

have to be connected via high-speed networks to expedite upload and download as needed.

● RDM cyberinfrastructure is best supported by easy-to-use, enterprise grade, robust, continually

maintained and supported open-source software to carry out all steps of the imaging pipeline from

experimental procedures (i.e., Laboratory Information Management Systems - LIMS, Electronic

Lab Notebooks - ELNs) to image acquisition (i.e., Micro-Manager, Pycro-Manager, Python
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Microscope, etc.), to image processing, visualization and analysis and processing pipeline (i.e.,

CellProfiler, Fiji, napari, CellPose, etc.).

● When proprietary software and instrumentation have to be used, community-defined standards

must be used to ensure transparency regarding all relevant algorithms and input parameters as

well as instruments’ configuration and performance.

● Collection and reporting of metadata has to be based on community-defined standards and it has

to occur at two highly interconnected levels:

○ Human readable, which is primarily related to Materials and Methods (Marqués et al. 2020;

Heddleston et al. 2021; Montero Llopis et al. 2021; Larsen et al. 2023), might represent a

subset of the information captured in Image Metadata and has to take into account the

capacity of users to understand and describe the imaging experiment.

○ Machine-readable, which is captured in Image Metadata (i.e., all information needed to

understand the lineage - aka provenance - and quality of image data) and represents the

complete technical description to ensure full quality, reproducibility, and reusability (Moore et

al. 2021, 2023; Moore 2022b) .

● To ensure Machine Readability:

○ Metadata should be encoded in community-specified frameworks to be associated with

standardized image data file formats (Moore et al. 2021, 2023; Moore 2022b) or with workflow

documentation, and equipped with easily available software API to facilitate transferring the

information across the different steps of the imaging pipeline. For example, it should be

possible to automatically be put in a SQL database. A potential framework which could fulfill

these requirements is LinkML (Solbrig et al. 2023). It allows for easy authoring of metadata

schemas in the YAML format, which can be exported into other formats. It is also able to

create classes in various programming languages that can serve to validate metadata.

○ It is imperative to use specific annotation tools and automation at all aspects of the

imaging pipeline to ensure that image processing, visualization and analysis pipelines can

leverage metadata. In particular, emphasis should be given to 1) automated processes for

microscope systems and peripheral components, including community-defined QC

procedures to ensure optimal instrument performance (Hammer et al. 2021; Schapiro et al.

2022). 2) automated metadata annotation at all phases of the image-data life cycle (Kunis et

22

https://paperpile.com/c/2N92w5/iDS7+SLAy+0sPK+418N
https://paperpile.com/c/2N92w5/iDS7+SLAy+0sPK+418N
https://paperpile.com/c/2N92w5/6X1k+eQhp+PLLp
https://paperpile.com/c/2N92w5/6X1k+eQhp+PLLp
https://paperpile.com/c/2N92w5/6X1k+eQhp+PLLp
https://paperpile.com/c/2N92w5/hLoXt
https://paperpile.com/c/2N92w5/z1qIQ+mXOt
https://paperpile.com/c/2N92w5/z1qIQ+mXOt
https://paperpile.com/c/2N92w5/b4Avz+zCXU+XZMV


al. 2021; Rigano et al. 2021; Ryan et al. 2021). 3) Integrated image processing, visualization,

and analysis pipelines.

○ Metadata annotations should be backed by ontologies and knowledge graphs.
Ontologies provide descriptions of the hierarchical relationship between concepts and can be

used to make metadata machine-readable. Their role in the harmonization of knowledge and

data in biomedicine is increasingly recognized especially in the context of AI, where they can

provide valuable constraints making ML more efficient (Lomax 2019). As such, tools exist to

aid this process such as the Ontology Look Up Service (OLS) (Côté et al. 2010) that can be

used to locate appropriate ontological terms although further development is needed to help

sort through duplicates and identify which should be used in different contexts.

● Quality, transparency, reproducibility, and reusability require standards defined by the community

of all imaging stakeholders.

○ Recent advancements have made it clear that the community, when organized in bioimaging

organizations, networks, and initiatives, is willing and ready to take on this challenge.

○ However, there is a need for deliberate, directed, targeted funding to ensure that ongoing

standardization efforts can be expanded to cover all essential aspects of the imaging

pipeline.

● In addition to being essential for the generation of standards, the added advantage of community

organizations is that they are the ideal forum for guaranteeing the broad community adoption of

standards through education, training, and outreach.

○ Community organizations are typically run on a volunteer basis

○ However, this is clearly not sustainable, as such an essential endeavor for the advancement

of quantitative imaging and science as a whole cannot be done in people’s free time

● Cyberinfrastructure for RDM is anticipated to have impacts beyond the bioscience research

enterprise. Tested and trusted microscope QC protocols and commonly accepted and

unambiguous reporting criteria will be beneficial to the many applications of quantitative imaging

for cellular analysis, including pathology, cell therapies and regenerative medicine.
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Text Box - A to-do list for various stakeholders
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Supplemental Materials

Supplemental Table 1

A non-exhaustive list of relevant communities and initiatives.

Type Name Link

European FAIR data
and service
infrastructure

European Open Science
Cloud https://www.eosc.eu/

European imaging data
initiative

EUCAIM: EUropean
Federation for CAncer
IMages

https://www.eibir.org/projects/eucaim/

Federation of Scientific
Societies FASEB Dataworks https://www.faseb.org/data-management-and-sharing

German National
Scientific Data
Infrastructure

Multi Disciplinary (Data
Science, BioImage, etc. etc.) https://www.nfdi.de/

International community

ABRF: Association of
Biomolecular Resource
Facilities - Committee on
Core Rigor and
Reproducibility (CCoRRe)

https://www.abrf.org;
https://www.abrf.org/core-rigor-and-reproducibility-cco
rre-

International community African BioImaging
Consortium (ABIC) https://www.africanbioimaging.org/

International community
AI4Life: AI models and
methods for the life sciences
(image data)

https://ai4life.eurobioimaging.eu/

International community

BioImaging North America
(BINA)
Quality Control and Data
Management working group
and AIMM interest working
group

https://www.bioimagingnorthamerica.org/

International community Global BioImaging https://globalbioimaging.org

International
Community

Human BioMolecular Atlas
Program https://portal.hubmapconsortium.org/

International
Community IBEX Imaging Community https://ibeximagingcommunity.github.io/ibex_imaging

_knowledge_base/
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International community Latin American Bioimaging
(LABI) https://labi.lat/

International community

NEUBIAS - Network of
European BioImage
Analysts/SoBIAS - Society for
Bioimage Analysis

https://eubias.org/NEUBIAS/

International community Open Microscopy
Environment (OME) https://www.openmicroscopy.org/

International community QUAREP-LiMi https://quarep.org/
https://quarep.org/working-groups/wg-7-metadata/

International community vEM: Volume Electron
Microscopy https://www.volumeem.org/#/

International imaging
infrastructure (open
access)

Euro-BioImaging ERIC www.eurobioimaging.eu

National/International
community Canada BioImaging https://www.canadabioimaging.org/

National/International
community

I3D:bio - Information
Infrastructure for BioImage
Data initiative (Germany)

https://www.i3dbio.de

National imaging data
initiative

NCI Imaging Data Commons
(USA) https://portal.imaging.datacommons.cancer.gov/

National imaging data
initiative NFDI4BIOIMAGE (Germany) https://nfdi4bioimage.de

National image data
initiative RDM4mic (Germany) https://german-bioimaging.github.io/RDM4mic.github.i

o/
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Supplemental Figure 1

Software tools depend on complex sets of other software and the dependency chain has to be document: napari example
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To Do List Text
● Ensure the long term sustainability of national and international bioimaging communities

(e.g., ABIC, ABRF, BINA, CBI, GBI, LABI and QUAREP-LiMi; see also Table 1 in supplemental
materials) thus enabling recurring gatherings to coordinate (i.e., discuss, recommend, update)
the development of:
❖ Consensus guidelines for quality control procedures and standards to encourage the

implementation and reporting of QC protocols and performance benchmarks, including for
imaging instrumentation.

❖ Shared metadata specifications, exchange frameworks, and tools to minimize barriers
to metadata guideline adoption by academic, government and industry stakeholders.
Specifically, this will empower the annotation of all phases of the image-data lifecycle,
including details about samples, reagents and experimental protocols, instrument hardware
specifications and image acquisition settings, QC protocols and metrics, image data
processing and analysis workflows, and persistent association of metadata and image data.

❖ Shared computational cyberinfrastructure for image data generation and
pre-publication stewardship needs. This consists of well documented and maintained,
enterprise-grade, and high-speed software tools, frameworks, computing and storage
equipment, and networks to carry out all steps of the imaging pipeline from data annotation to
image acquisition, and analysis. To this aim community-defined standards must be used to
ensure transparency regarding all relevant instruments and algorithms.

● Invest in core facilities (aka Shared Research Resources) and their Personnel from all
backgrounds and regions to:
❖ Provide expertise on sample preparation, validation of staining protocols, image acquisition,

and image analysis.
❖ Democratize access through shared resources and the promotion of collaborations to

facilitate access to advanced technology.
❖ Serve as pivotal hubs for the dissemination of expertise and user training on all topics

essential for the preparation of FAIR image data that is ready to be shared and to engender
maximum reuse value, across both resourced and under-resourced regions and communities.

❖ Develop strong connections with software development centers to ensure the usability,
customization, and democratization of cyberinfrastructure for imaging pipeline automation.

● Support the career and recognition of imaging scientists specializing in the generation and
stewardship of FAIR image data. These include core facility personnel, image data stewards and
curators, image analysis experts, and research software engineers.

● In collaborations with vendors, develop and deploy automated methods to capture
harmonized and consistent metadata documenting all steps of the imaging pipeline from
reagents used to generate image data, to microscopy instruments and peripherals.

● Promote the use of Persistent Identifier (PID) for the FAIR description of research resources
(i.e., reagents, instruments, core facilities) and outputs (i.e., datasets), to facilitate, reproducibility,
and reuse, to democratize access to advanced technologies, improve efficiency, and to ensure
that the personnel involved in the research enterprise are appropriately acknowledged.

● Develop metrics that describe the qualities of resultant image data.
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