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New bis-quinoline (Lq) and bis-isoquinoline-based (Liq) ligands have been synthesized,

along with their respective homoleptic [Pd2(Lq or Liq)4]
4+ cages (Cq and Ciq). The

ligands and cages were characterized by 1H, 13C and diffusion ordered (DOSY) NMR

spectroscopies, high resolution electrospray ionization mass spectrometry (HR-ESIMS)

and in the case of the bis-quinoline cage, X-ray crystallography. The crystal structure of

the Cq architecture showed that the [Pd2(Lq)4]
4+ cage formed a twisted meso isomer

where the [Pd(quinoline)4]
2+ units at either end of the cage architecture adopt the

opposite twists (left and right handed). Conversely, Density Functional Theory (DFT)

calculations on the Ciq cage architecture indicated that a lantern shaped conformation,

similar to what has been observed before for related [Pd2(Ltripy)4]
4+ systems (where Ltripy

= 2,6-bis(pyridin-3-ylethynyl)pyridine), was generated. The different cage conformations

manifest different properties for the isomeric cages. The Ciq cage is able to bind, weakly

in acetonitrile, the anticancer drug cisplatin whereas the Cq architecture shows no

interaction with the guest under the same conditions. The kinetic robustness of the

two cages in the presence of Cl− nucleophiles was also different. The Ciq cage was

completely decomposed into free Liq and [Pd(Cl)4]
2− within 1 h. However, the Cq cage

was more long lived and was only fully decomposed after 7 h. The new ligands (Liq
and Lq) and the Pd(II) cage architectures (Ciq and Cq) were assessed for their cytotoxic

properties against two cancerous cell lines (A549 lung cancer and MDA-MB-231 breast

cancer) and one non-cancerous cell line (HDFa skin cells). It was found that Lq and Cq

were both reasonably cytotoxic (IC50S ≈ 0.5µM) against A549, whileCiq was slightly less

active (IC50 = 7.4µM). Liq was not soluble enough to allow the IC50 to be determined

against either of the two cancerous cell lines. However, none of the molecules showed

any selectivity for the cancer cells, as they were all found to have similar cytotoxicities

against HDFa skin cells (IC50 values ranged from 2.6 to 3.0µM).
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INTRODUCTION

Metallosupramolecular architectures (MSAs) (Cook and Stang,
2015) have been attracting increasing attention over the past
two decades due to their many potential applications including
catalysis (Yoshizawa et al., 2009; Yoshizawa and Fujita, 2010;
Martí-Centelles et al., 2018), storage (Mal et al., 2009), and
sensing (Wang et al., 2011). Inspired by the success of cisplatin
and other metallodrugs (Mjos and Orvig, 2014) there is emerging
interest in exploiting MSAs for biomedical purposes (Cook et al.,
2013; Therrien, 2015; Casini et al., 2017; Zhou et al., 2017).
Several groups have examined MSAs as drug delivery vectors
(Therrien et al., 2008; Schmitt et al., 2012; Yi et al., 2012; Zheng
et al., 2015; Samanta et al., 2016, 2017; Bhat et al., 2017; Xu et al.,
2017;Wang J.-F. et al., 2018; Yue et al., 2018). Additionally, MSAs
have been shown to bind DNA (Oleksy et al., 2006; Garci et al.,
2017; Zhao et al., 2017) and RNA (Phongtongpasuk et al., 2013;
Malina et al., 2015), interact with proteins (Li et al., 2014;Mitchell
et al., 2017) and have anticancer (Hotze et al., 2008; Faulkner
et al., 2014; Grishagin et al., 2014; Dubey et al., 2015; Zheng et al.,
2016; Allison et al., 2018) and antibacterial (Richards et al., 2009;
Howson et al., 2012; Wang H. et al., 2018) properties.

Since the pioneering work ofMcMorran and Steel (McMorran
and Steel, 1998) interest in [M2(L)4]n+ cage-type structures has
burgeoned (Schmidt et al., 2014). Some time ago nowwe reported
that a [Pd2(Ltripy)4]4+ cage (where Ltripy = 2,6-bis(pyridin-3-
ylethynyl)pyridine) could host two molecules of the anticancer
drug cisplatin within the cavity of the cage (Lewis et al., 2012),
and thus had potential as a drug delivery vector. Disappointingly,
the binding event, which was governed mainly by hydrogen
bonding interactions, was weak (Preston et al., 2015). The
host-guest complex formed in acetonitrile (CH3CN) and
dimethylformamide (DMF) but unfortunately, in more hydrogen
bond competitive solvents such as water and dimethyl sulfoxide
(DMSO) no host-guest interaction was observed. Additionally,
the parent Pd(II) based cage decomposed rapidly in the presence
of nucleophiles (Lewis et al., 2012; McNeill et al., 2015). Thus,
in order to exploit these [Pd2(L)4]4+ cages as cisplatin delivery
vehicles these issues need to be addressed. We and others have
examined a range of modifications to the parent [Pd2(L)4]4+ cage
system in order to improve the solubility (Lewis and Crowley,
2014; Preston et al., 2015; Han et al., 2017) and other properties
(Lewis et al., 2013, 2014; Kaiser et al., 2016; Schmidt et al., 2016a)
of the cage. Efforts have also been made to enhance the strength
of the host-guest interaction (Kim et al., 2015) and the stability
of the cages in the presence of biologically revelant nucleophiles
(Preston et al., 2016). However, while some improvements
have been made these [Pd2(L)4]4+ cages still require further
modifcations in order to be useful drug delivery vectors.

The [Pd2(L)4]4+ cages have also been examined for their
cytotoxic properties. We showed that the parent [Pd2(Ltripy)4]4+

was modestly cytotoxic (IC50 values range from 40 to 70µM)
against a range of cancer cell lines but was less active than related
bis-1,2,3-triazole [Pd2(L)4]4+ helicates (McNeill et al., 2015).
We also examined the cytotoxicity of related amino substituted
[Pd2(L)4]4+ cages against the same panel of cancer cells and
found that they exhibited similar cytotoxic properties as the

parent systems (Preston et al., 2016). Casini, Kühn and co-
workers (Kaiser et al., 2016; Schmidt et al., 2016b) have measured
the cytotoxicity of a series of related [Pd2(L)4]4+ cages and
observed similar IC50 values (10–70µM). Additionally, they
have measured the cytotoxicity of mixtures of the cages and
cisplatin and unsurprisingly have found that those mixtures are
more cytotoxic than cage alone (IC50 = 2–13µM). Yoshizawa,
Ahmedova and co-workers have also found that [M2(L)4]4+ (M
= Pd2+ or Pt2+) cages with similar, but more hydrophobic,
dipyridyl anthracenyl ligands (Lanthracene) display high anticancer
activity (IC50 values range from 0.9 to 37.4µM against HL-60,
HL-60/Dox, HT-29, T-24, SKW-3 cancer cell lines) (Ahmedova
et al., 2016; Anife et al., 2016).

The majority of the [Pd2(L)4]4+ cages examined to date
feature pyridyl donors, as part of our efforts to improve
the biological properties of these systems herein we describe
the use of isoquinoline and quinoline-derived ligands for the
assembly of two new [Pd2(L)4]4+ cages.While is well-known that
isoquinoline and quinoline ligands can bind with palladium(II)
and platinum(II) (Bondy et al., 2004) their use as donor
systems in ligands for the generation MSAs has not been
extensively explored (Bloch et al., 2016, 2017). These quinoline
derived systems feature different electronic and steric properties
compared to the parent pyridyl systems thus we also examine
the effect these changes have on the host-guest chemistry with
cisplatin, the stability of the cages in the presence of nucleophiles
and the antiproliferative properties of the cages.

RESULTS AND DISCUSSION

The synthesis of the new quinoline (Lq) and isoquinoline
(Liq) based ligands was facile (Supplementary Material). Using
sequential Sonogashira carbon-carbon cross coupling reactions
from commercially available building blocks the ligands were
generated in good yields (Lq = 86% and Liq = 78%). 1H
and 13C NMR spectroscopic data were consistent with the
formation of the ligands which was supported by high-resolution
electrospray mass spectrometry (HR-ESIMS) (Figure 1 and
Supplementary Material). Peaks corresponding to protonated
and sodiated ligand were observed at m/z = 382.1320 and
404.1132, respectively, for Liq and similar peaks were observed
for Lq (Supplementary Material).

With the ligands in hand, the complexation with
[Pd(CH3CN)4](BF4)2 in acetonitrile was examined (Figure 1).
The cage formation was monitored using 1H NMR spectroscopy
(CD3CN, 298K) and showed that mixing [Pd(CH3CN)4](BF4)2
and the Liq ligand at room temperature (RT) in a 1:2 ratio led to
the rapid (<2min) and quantitative formation of the expected
Ciq cage (Figure 1), similar to what was observed with the parent
Ltripy system (Lewis et al., 2012). Interestingly, the behavior of
Lqwith [Pd(CH3CN)4](BF4)2 at room temperature was very
different. After 5min at RT the reaction mixture displayed
multiple proton resonances, none of which were due to free
ligand, consistent with the formation of a mixture of different
cage isomers. The reaction was monitored using 1H NMR
spectroscopy for 24 h at RT however little to no changes were
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FIGURE 1 | (A) General scheme for formation of [Pd2(L)4]
4+ cages (Cq and

Ciq) and partial 1H NMR spectra (400 MHz, CD3CN, 298K) of (B) Lq and Cq,

and (C) Liq and Ciq.

observed after the first hour and the spectrum still displayed
multiple proton resonances. A 1H DOSY experiment (CD3CN,
298K) on the mixture showed that all the different proton
resonances had the same diffusion co-efficient consistent with
the postulate that the reaction mixture contains a series of cage
isomers (Supplementary Material).

The assembly reaction between Lqwith [Pd(CH3CN)4](BF4)2
was then carried out at 65◦C, in CD3CN and again monitored
using 1H NMR spectroscopy (Figure 2). After 5min the same
complicated series of proton resonance were observed. However,
with continued heating this slowly resolved into a single series
of resonances (after 7 h), consistent with the formation of
a single cage isomer (Figure 2). Pleasingly, both cages (Ciq

and Cq) could be isolated by adding diethyl ether into the
acetonitrile reactionmixtures providing the cages as colorless/tan
precipitates in 88% (Ciq) or 92% (Cq) yield, respectively. 1H
NMR spectroscopy (CD3CN, 298K) exhibited the expected
downfield shifts of the signals pertaining to protons Ha, Hb
and Hf as well as the anticipated downfield shifts of the
rest of the isoquinoline and quinoline protons resonances
(Figure 1). HR-ESIMS data also supported the formation of
the cages, showing ions corresponding to the loss of 2, 3 and
4 tetrafluoroborate (BF−4 ) counterions (m/z = 956.1610 (2+),
608.4424 (3+), and 434.5832 (4+), Supplementary Material). 1H
DOSY experiments (CD3CN, 298K) on the ligands (Diffusion
coefficients (D) = 13.1 (Lq) and 15.0 (Liq) x 10−10 m2 s−1) and

cages (D = 4.1 (Cq) and 4.3 (Ciq) × 10−10 m2 s−1 were also
consistent with the formation of the larger [Pd2(L)4]4+ cages
(Supplementary Material).

Crystals of Cq suitable for X-ray diffraction formed during
the cooling of an acetonitrile solution of the cage from 65◦C to
room temperature. The structure was solved in the tetragonal
space group P4/mnc with the asymmetric unit containing one
eighth of the cage and one quarter of a BF−4 counterion (Figure 3
and Supplementary Material). The other BF−4 anions and some
acetonitrile molecules could not be modeled sensibly thus the
SQUEEZE routine was employed to account for the diffuse
electron density (Supplementary Material). The data revealed
the expected [Pd2(Lq)4]4+ cage structure. The Pd-N bond lengths
(Pd1-N2 2.045 Å) were similar to what have been previously
observed for the related [Pd2(Ltripy)4]4+ cages where the Pd-N
bond lengths range from 2.016 to 2.027 Å (Lewis et al., 2012;
Lewis and Crowley, 2014). The Lq ligands of the cage are twisted
giving a V-shaped conformation where the terminal quinoline
and central pyridyl heterocyclic units are not co-planar which
is quite different to what was observed with the [Pd2(Ltripy)4]4+

cages. In X-ray structures of the parent [Pd2(Ltripy)4]4+ cages
the Ltripy ligands were found in a linear conformation with the
heterocyclic units coplanar. The twisting also alters the Pd1-
Pd1

′

distance within Cq related to the [Pd2(Ltripy)4]4+ cages.
The Pd1-Pd1

′

distances for the parent [Pd2(Ltripy)4]4+ cages

range from 11.49 to 12.24 Å, whereas the Pd1-Pd1
′

distance was
found to be longer (12.506 Å) suggesting that the Cqcage has
a larger cavity despite featuring the same 2,6-diethynylpyridine
linker units. The [Pd(quinoline)4]2+ units at the top and bottom
of Cq are twisted in opposite directions, the top cationic unit
has a right handed twist while the bottom cationic unit has a
left handed twist giving an overall meso structure (Figures 3B,C
and Supplementary Material). Despite extensive efforts we were
unable to obtain X-ray diffraction quality single crystals of
Ciq. Thus, to gain further insight into the structure of Ciq

we modeled the cage using Density Functional Theory (DFT)
calculations (Figures 3D,E). Energy minimization of Ciq (DFT,
BP86 def2-SVP, acetonitrile solvation, Supplementary Material)
showed that the cage adopted a lantern shape similar to
what was previously observed for [Pd2(Ltripy)4]4+ cages (Lewis
et al., 2012; Lewis and Crowley, 2014). The calculated Pd – N
bond distances (2.049 Å) and the Pd-Pd

′

distance (11.758 Å)
match well with those observed crystallographically for the
related [Pd2(Ltripy)4]4+ cages. The Liq ligand adopts a linear
conformation with all the heterocyclic units coplanar. The DFT
calculations indicated that the Ciq is structurally very similar to
the parent [Pd2(Ltripy)4]4+ cages whereas the Cq is more twisted
and provided a cavity of different size and shape to the parent
cages and the Ciq system.

We and others have previously shown that other similar
[Pd2(Ltripy)4]4+ cages can encapsulate cisplatin through
hydrogen bonding interactions in CH3CN and DMF solvents
(Lewis et al., 2012, 2013, 2014; Kaiser et al., 2016; Preston et al.,
2016, 2017; Schmidt et al., 2016b). Therefore, we examined the
ability of Ciq and Cq to interact with cisplatin in CH3CN using
1H NMR spectroscopy. Addition of an excess of cisplatin to a
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FIGURE 2 | Partial 1H NMR (500 MHz, CD3CN, 338K) spectra showing the formation of Cq over time at 65◦C. (A) Lq, (B) initial complexation (t = 0), (C) t = 30min,

(D) t = 1 h, (E) t = 2 h, (F) t = 3 h, (G) t = 4 h, (H) t = 5 h, (I) t = 6 h, (J) t = 7 h, (K) isolated Cq.

CD3CN solution of the Ciq cage resulted in a downfield shift
and broadening (1δ = 0.03 ppm) of the internally directed cage
proton Ha (Figures 4A,B) indicative of cisplatin binding within
the cage cavity, albeit weakly. A similar 1H NMR experiment
was carried out with the Cq cage (Figures 4C,D). However,
with the Cq cage no shifts were observed for any of the cage
proton resonances in the presence of an excess of cisplatin
suggesting that the more twisted Cq cage does not interact with
the anticancer agent. The behavior was similar to what has
been observed with a related twisted [Pd2(L2Atripy)4]4+ cage
(where L2Atripy = 2,6-bis[2-(6-amino-3-pyridinyl)ethynyl]-4-
pyridinemethanol) (Preston et al., 2016). The [Pd2(L2Atripy)4]4+

cage did not bind cisplatin in DMF solvent and the lack of
binding was ascribed to the twisted cage cavity which was
not as preorganised as those of the related lantern shaped
[Pd2(Ltripy)4]4+ cages. Presumably the different sized cavity and
different spatial arrangement of the hydrogen bond donors and
acceptors caused by the twisting observed in the crystal structure
of Cq impedes the cisplatin-Cq interaction in this case.

The kinetic robustness of the related [Pd2(Ltripy)4]4+

architectures in the presence of common biological nucleophiles
(chloride (Cl−), histidine and cysteine) has been determined
using 1H NMR competition experiments. When the parent
[Pd2(Ltripy)4]4+ architectures were treated with 8 equivalents
of tetrabutylammonium chloride the pyridyl substituted cages
were rapidly and quantitatively decomposed (in <5min). To
examine the effect of substituting the pyridyl donor units
for quinoline heterocycles time-course 1H NMR competition
experiments were carried out in d6-DMSO where 2mM
solutions of each cage (Cqor Ciq) were treated with 8 equivalents
of tetrabutylammonium chloride at 298K (Figure 5 and

Supplementary Material). Within 30 s of adding Cl− to the
Ciq cage, there were multiple species observed in the 1H NMR
spectrum. These were attributed to the Ciq cage, [Cl⊂Ciq]3+,
the [Pd2(Liq)2Cl4] macrocycle and free ligand based on our own
previous results (Preston et al., 2015) and related literature. After
50min, only uncoordinated ligand was visible in the 1H NMR
spectrum (Supplementary Material).

Under the same conditions, Cq was stable for 1 h before
showing signs of decomposition (Figure 5). After 3 h, there
was no evidence of the Cq cage, and the 1H NMR spectrum
displayed peaks corresponding to free ligand and a second
metal-containing species, which based on the observed chemical
shifts was most likely the neutral [Pd2(Lq)2Cl4] macrocycle
(Figure 5H). This degradation behavior has been seen before
with the [Pd2(Ltripy)4]4+ system in DMF (Preston et al.,
2015). After 7 h, only free ligand could observed in the 1H
NMR spectrum indicating that all the ligand containing
metal complexes had been completely decomposed into
[Pd(Cl)4]2−(Figure 5J).

In comparison to the previously reported [Pd2(Ltripy)4]4+

cage (τ1/2 = 2min), the isoquinoline cage displayed an
identical half-life (τ1/2 = 2min), whereas the quinoline system
was considerably more robust (τ1/2 = 2 h). Presumably the
observed results reflect the different steric profiles of the two
quinoline substituted cages (Cqor Ciq). The Cq cage has the
quinoline moieties protecting the external face of the palladium,
providing more impediment to nucleophilic attack from that face
(Figure 6). The Ciq does not feature the same steric impediment
as the benzene units of the isoquinoline heterocycles do not block
the top face of the Ciq cage as much as they do in the quinoline
Cq(Figure 6).
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FIGURE 3 | Molecular structures of Cq and Ciq. X-ray structure of Cq: (A) ellipsoid side view, (B) tube side view, and (C) tube top view showing paddle-like array of

quinoline panels over palladium(II) center. Solvent molecules and counterions have been omitted for clarity. Ellipsoids are shown at 50% probability. DFT optimized

(BP86 def2-SVP) model of Ciq; (D) side view and (E) top view showing lantern-shaped structure. Colors: carbon gray, nitrogen blue, palladium magenta, hydrogen

white.

FIGURE 4 | Partial 1H NMR (500 MHz, CD3CN, 298K) stacked plot of (A) Ciq (B) Ciq + cisplatin (10 eq.) (C) Cq, and (D) Cq + cisplatin (10 eq.).
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FIGURE 5 | Partial 1H NMR (500 MHz, d6-DMSO, 298K) spectra showing the stability of Cq in the presence of 8 eq. Cl− anions. (A) Lq, (B) Cq, (C) Cq with 8 eq.

Cl− (t = 2min), (D) t = 10min, (E) t = 20min, (F) t = 30min, (G) t = 1 h, (H) t = 3 h, (I) t = 5 h, (J) t = 7 h.

FIGURE 6 | Top down views of (A) and (B) the DFT optimized model of Ciq,

and (C) and (D) the X-ray structure of Cq.

To assess biological activity, the cytotoxic effect (as half-
maximal inhibitory concentrations (IC50)) of the ligands
and cages were determined against three different cell lines:
cisplatin resistant MDA-MB-231 (breast cancer) (Lehmann

et al., 2011), A549 (lung cancer) and non-cancerous primary
cells: adult human dermal fibroblasts (HDFa) (Table 1 and
Supplementary Material). The ligands Lq and Liq exhibited
limited solubility, and so data above the concentration of 1µM
was unattainable. Below this threshold, Liq displayed minimal
cytotoxic activity against both cell lines, while Lq was shown
to be cytotoxic against A549 (IC50 = 0.5µM). Both cages were
observed to be cytotoxic against the malignant cell lines, with Cq

showing the same level of toxicity as its ligand against lung cancer
cells (IC50 = 0.5µM).Cq was slightly less cytotoxic againstMDA-
MB-231 (IC50 = 1.7µM), whereas Ciq was less cytotoxic than
the quinoline analog, with the IC50 values ranging from 4.0
to 7.4µM against the cancer cells. Both quinoline cages were
found to be considerably more active than the related parent
[Pd2(Ltripy)4]4+ cage system (IC50 = 41.4 and 56.7µM against
A549 andMDA-MB-231, respectively) (McNeill et al., 2015). The
quinoline cages were also more active than cisplatin against the
two cancer lines examined (cisplatin IC50 values = 41.2 and
9.4µM, against MDA-MB-231 and A549, respectively) (Lo et al.,
2015; McNeill et al., 2015). The quinoline cages Cq and Ciq were
more cytotoxic than all the [Pd2(Ltripy)4]4+ cage systems reported
in the literature (IC50 values for the Ltripy based systems ranged
from 10 to 100µM) (McNeill et al., 2015; Kaiser et al., 2016;
Schmidt et al., 2016b). Additionally, Cq was also more active,
albeit against different cancer cell lines (HL-60, HL-60/Dox, HT-
29, T-24, SKW-3), than the hydrophobic [Pd2(Lanthracene)4]4+

cages of Yoshizawa and Ahmedova (IC50 values ranged from
0.9 to 37.4µM) (Ahmedova et al., 2016; Anife et al., 2016).
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TABLE 1 | Half-maximal inhibitory concentrations (IC50) of ligands Lq and Liq, and cages Cq and Ciq architectures at 24 h.

Compound ICa
50

(µM)

MDA-MB-231 A549 HDFa MCF-10Ab

Lq >1c 0.5 ± 0.1 >1c –

Cq 1.7 ± 0.1 0.5 ± 0.1 2.6 ± 0.4 –

Liq >1c >1c >1c –

Ciq 4.0 ± 0.3 7.4 ± 1.0 3.0 ± 0.4 –

Lhextrz (McNeill et al., 2015) 89.8 ± 10.7 28.5 ± 2.6 – 18.1 ± 3.1

Chextrz (McNeill et al., 2015) 6.0 ± 0.6 6.9 ± 0.9 – 8.1 ± 1.2

Ltripy (McNeill et al., 2015) >100 95.3 ± 9.7 – >100

Ctripy (McNeill et al., 2015) 56.7 ± 2.2 41.4 ± 3.9 – 71.4 ± 3.9

cisplatin(Lo et al., 2015; McNeill et al., 2015) 41.2 ± 3.9 9.4 ± 0.3 – –

Ltripy, Ctripy, Lhextrz, Chextrz and cisplatin (Lo et al., 2015) have been added for comparison (McNeill et al., 2015).
a IC50 values are given as mean ± SE.
bThe Ctripy and Chextrz cages were tested against MCF-10A as a non-cancerous control.
cSolubility limited the range of concentrations to below 1µM. “ – “ = Not determined.

Cq was also more cytotoxic than a hydrophobic bis-hexyl-
1,2,3-triazole substituted [Pd2(Lhextrz)4]4+ helicate, Chextrz, we
developed previously (IC50 values = 6.9 and 6.0µM against
A549 and MDA-MB-231, respectively) (McNeill et al., 2015). We
presume that the favorable combination of high hydrophobicity
and the kinetic robustness against biological nucleophiles leads
to the higher observed activity of Cq relative to the other
[Pd2(L)4]4+ architectures. Disappointingly, neither of the cages
(Cq and Ciq) showed any selectivity for the cancer cells, they
were all found to have similar cytotoxicity against HDFa skin cells
(IC50 values ranged from 2.6 to 3.0µM).

CONCLUSION

We have herein reported the synthesis, characterization, cisplatin
binding, kinetic robustness and cytotoxicity of two new
bis-isoquinoline and bis-quinoline derived [Pd2(L)4]4+ cage
complexes. The crystal structure of Cq architecture showed that
the [Pd2(L)4]4+ cage formed a twisted meso isomer where the
[Pd(quinoline)4]2+ units at either end of the cage architecture
adopt the opposite twists (left and right handed). Conversely,
Density Functional Theory (DFT) calculations on the Ciq cage
architecture indicated that a lantern shaped conformation similar
to what has been observed before for related [Pd2(Ltripy)4]4+

systems was generated. The different cage conformations resulted
in different properties for the isomeric cages. The Ciq cage is
able to bind, weakly in acetonitrile, the anticancer drug cisplatin
whereas the Cq architecture shows no interaction with the guest
under the same conditions. The kinetic robustness of the two
cages in the presence of Cl− nucleophiles was also different.
The Ciq cage was completely decomposed into free Liq and
[Pd(Cl)4]2−within 1 h. However, theCq cage was more long lived
and was only fully decomposed after 7 h. The ligands (Liq and
Lq) and cages (Ciq and Cq) were assessed for their cytotoxic
properties against two cancerous cell lines (A549 lung cancer cells
and MDA-MB-231 breast cancer cells) and one non-cancerous
cell line (HDFa skin cells). It was found that Lq and Cq were
both reasonably cytotoxic against A549, while Ciq was slightly

less active. The higher observed cytotoxicity of Cq relative to
the other [Pd2(L)4]4+ architectures was presumed to be due the
favorable combination of high hydrophobicity and the kinetic
robustness against biological nucleophiles. However, none of the
new molecules showed any selectivity for cancer cells, they were
all found to have similar cytotoxicity against HDFa skin cells.
A range of [Pd2(L)4]4+ cage systems have now been shown to
be cytotoxic. However, in order to advance this class of MSA
as anticancer agents more in depth mode of action/mechanistic
studies on the origins of the cytotoxic activity are required.
Studies to this effect are now underway.
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