
molecules

Article

Potential Development of Tumor-Targeted Oral
Anti-Cancer Prodrugs: Amino Acid and Dipeptide
Monoester Prodrugs of Gemcitabine

Yasuhiro Tsume, Adam J. Drelich, David E. Smith and Gordon L. Amidon *

Department of Pharmaceutical Science, College of Pharmacy, University of Michigan, 428 Church Street,
Ann Arbor, MI 48109-1065, USA; ytsume@umich.edu (Y.T.); ajdrelic@umich.edu (A.J.D.);
smithb@med.umich.edu (D.E.S.)
* Correspondence: glamidon@umich.edu; Tel.: +1-734-764-2464; Fax: +1-734-763-6282

Received: 26 July 2017; Accepted: 5 August 2017; Published: 10 August 2017

Abstract: One of the main obstacles for cancer therapies is to deliver medicines effectively to target
sites. Since stroma cells are developed around tumors, chemotherapeutic agents have to go through
stroma cells in order to reach tumors. As a method to improve drug delivery to the tumor site,
a prodrug approach for gemcitabine was adopted. Amino acid and dipeptide monoester prodrugs
of gemcitabine were synthesized and their chemical stability in buffers, resistance to thymidine
phosphorylase and cytidine deaminase, antiproliferative activity, and uptake/permeability in HFF
cells as a surrogate to stroma cells were determined and compared to their parent drug, gemcitabine.
The activation of all gemcitabine prodrugs was faster in pancreatic cell homogenates than their
hydrolysis in buffer, suggesting enzymatic action. All prodrugs exhibited great stability in HFF
cell homogenate, enhanced resistance to glycosidic bond metabolism by thymidine phosphorylase,
and deamination by cytidine deaminase compared to their parent drug. All gemcitabine prodrugs
exhibited higher uptake in HFF cells and better permeability across HFF monolayers than gemcitabine,
suggesting a better delivery to tumor sites. Cell antiproliferative assays in Panc-1 and Capan-2
pancreatic ductal cell lines indicated that the gemcitabine prodrugs were more potent than their
parent drug gemcitabine. The transport and enzymatic profiles of gemcitabine prodrugs suggest
their potential for delayed enzymatic bioconversion and enhanced resistance to metabolic enzymes,
as well as for enhanced drug delivery to tumor sites, and cytotoxic activity in cancer cells. These
attributes would facilitate the prolonged systemic circulation and improved therapeutic efficacy of
gemcitabine prodrugs.
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1. Introduction

Gemcitabine, 2′,2′-difluoro-2′-deoxycytidine, dFdC (Gemzar™) is a cancer drug that is clinically
used as a first line treatment for pancreatic cancer and other cancers [1,2]. Gemcitabine is incorporated
into DNA synthesis to inhibit cell growth. Like most anticancer drugs, gemcitabine, which is an
antimetabolite like floxuridine, is administered intravenously and has a broad spectrum to treat various
cancers [3]. However, the adverse effects associated with those chemotherapeutic agents remain severe
and many efforts have been made to minimize adverse effects and maximize therapeutic efficacy.
Prodrug strategies have been employed to overcome unfavorable physicochemical properties of the
drug for the improvement of oral bioavailability and/or the minimization of toxic side effects. Amino
acid and dipeptide monoester prodrugs of poorly permeable anticancer and antiviral drugs have been
developed and investigated for their improved oral bioavailability and metabolic disposition [4–21].
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Amino acid ester prodrugs and nucleoside analogs have been shown to be substrates for
uptake transporters for PEPT1, PEPT2, ATB0,+, ENT1, and CNT in the small intestine and other
tissues, respectively, and their improved oral bioavailability is attributed by those carrier-mediated
mechanisms [22–36]. Even though PEPT1 is stereoselective and exhibits greater affinity for
L-enantiomers of amino acids than D-enantiomers, PEPT1 still improves the membrane permeability
and overall oral absorption of prodrugs with D-amino acids [37,38]. Amino acid monoester prodrugs
like valacyclovir significantly enhanced the oral bioavailability of their parent, acyclovir, and several
reports suggest that absorption improvement was attributed by oligopeptide transporters [35,36,39,40].
Nucleoside analogs like gemcitabine and floxuridine are mainly transported through nucleoside
transporters into the cell, and those transporters are highly expressed in tumor tissues [1,28]. Amino
acid ester prodrugs of nucleotide analogs may facilitate enhanced delivery to pancreatic ductal cancer
cells such as Panc-1 and Capan-2, since these cells express potential target transporters at high
levels [28,41].

Gemcitabine is systematically converted to triphosphated gemcitabine by enzymes after being
transported into cells and inhibits DNA synthesis [3]. However, gemcitabine is rapidly converted to
dFdU in many tissues, including the liver, by the enzyme cytidine deaminase (CDA), while floxuridine,
which has similar structure to gemcitabine, is rapidly converted to 5-fluorouracil (5-FU) by the enzyme
thymidine phosphorylase (TP) [28,42–44]. As a consequence, higher doses of nucleoside analogs
are required to display clinical efficacy, which leads to greater toxicity. Therefore, protection of the
deamination and glycosidic bond of gemcitabine and floxuridine is required to maintain the high
potency of these drugs and to direct the robust inhibition of DNA synthesis. Improving the chemical
and enzymatic stability of nucleoside analogs to CDA and TP by prodrug approaches could enhance
its therapeutic efficacy and obviate toxicity concerns.

Although amino acid monoester prodrugs of gemcitabine have exhibited enhanced
PEPT1-mediated transport, as well as enzymatic activation in pancreatic cancer surrogate cell systems,
gemcitabine prodrugs have to improve their stability because they still need to cross a number of tissue
barriers including stromal cells to targeted tumors [16,38,45,46]. D-Amino acid monoester prodrugs of
gemcitabine may be delivered to a greater extent at the target site by carrier-mediated transporters and
permeated through tumor stroma more than L-amino acid monoester prodrugs due to the elongated
systemic circulation time [47,48]. In this report, we describe the stability, membrane permeability,
and proliferative activity of gemcitabine prodrugs with stereospecific, L-/D-amino acids, and the
dipeptide L-phenylalanyl-L-tyrosine in surrogate cell systems, including the stromal environment.
Uptake and permeability of gemcitabine prodrugs were evaluated with HFF cells, a surrogate for
stroma cells, to determine the feasibility to deliver drugs to tumors and the advantage/disadvantage
of gemcitabine prodrugs over the parent drug gemcitabine. The chemical/enzymatic stability and the
enzymatic activation of the prodrugs in Panc-1 and Capan-2 cell homogenates were also evaluated to
determine the effects of the amino acid/dipeptide promoiety structure on enzyme-mediated activation.
The feasibility of antiproliferative action of selective amino acid/dipeptide gemcitabine prodrugs was
also explored using cancer cells that overexpress PEPT1 as well as non-tumoral epithelial cells (MDCK
cells) to evaluate the possibility of improved therapeutic efficacy at tumor sites.

2. Results

2.1. Chemical and Enzymatic Stability Studies

The experiments concerning prodrug stability were performed at 37 ◦C in pH 7.4 phosphate
buffer, in HFF and MDCK cell homogenates, and in pancreatic cancer cell homogenates, Panc-1 and
Capan-2 cells. The estimated half-lives (t1/2) obtained from linear regression of pseudo-first-order plots
of prodrug concentration vs. time for Gem prodrugs in pH 7.4 phosphate buffers alone, and in MDCK,
Panc-1, and Capan-2 cell homogenates, are listed in Table 1 along with previously reported results for
the comparison purpose. No significant degradation of Gem and gemcitabine prodrugs was observed
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in HFF cell homogenate over 120 min (data not shown). Prodrug metabolites such as Gem and cytosine
were monitored along with prodrug disappearance in this experiment. However, mass balance was not
achieved because cytosine was metabolized even further (Figure 1). 5′-D-valyl-gemcitabine exhibited
the highest stability in all media tested and 5′-L/D-valyl-gemcitabine did not metabolize in MDCK cells.
The dipeptide prodrug, 5′-L-phenylalanyl-tyrosyl-gemcitabine, was chemically less stable compared to
amino acid prodrugs, due to the possible formation of diketopiperazine by a dipeptide promoiety, and
exhibited 4-fold faster metabolism/activation in cell homogenates compared to one in buffer (pH 7.4).
All prodrugs exhibited 4- to 87-fold shorter half-lives in cell homogenates than in pH 7.4 phosphate
buffer, suggesting enzyme-catalyzed hydrolysis. The composition of the amino acids in 5′ position
exerted a profound effect on the stability of the ester bond, especially gemcitabine prodrugs, with an
unnatural form (D-) of amino acid enzymatically more stable than one with natural form (L-) of amino
acid (Table 1).
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Table 1. Stability of gemcitabine prodrugs in pH 7.4 Buffer and pancreatic cancer cell homogenates.
(Mean ± S.D., n = 3).

Prodrug Buffer pH 7.4
t1/2 (min)

Panc-1 Cell
Homogenates

t1/2 (min)

Capan-2 Cell
Homogenates

t1/2 (min)

MDCK Cell
Homogenates

t1/2 (min)

Gemcitabine >120 * >120 # 5.2 ± 2.4 72.9 ± 29.1

Mono amino acid prodrugs
5′-L-Phenylalanyl-gemcitabine >120 * 9.8 ± 1.2 1.4 ± 0.1 4.8 ± 1.2
5′-D-Phenylalanyl-gemcitabine >120 * 29.2 ± 5.7 14.2 ± 0.4 94.9 ± 15.7
5′-L-Valyl-gemcitabine >120 * 23.9 ± 0.7 4.8 ± 1.3 >120
5′-D-Valyl-gemcitabine >120 * >120 >120 >120

Dipeptide prodrugs
5′-L-Phenylalanyl-L-tyrosyl-
gemcitabine 33.6 ± 1.4 30.2 ± 1.1 # 8.0 ± 2.3 60.2 ± 2.3

* Previously reported in [38]; # Previously reported in [16].

2.2. Thymidine Phosphorylase Activity against Gemcitabine and Gemcitabine Prodrugs

The metabolic stability of Gem and Gem prodrugs was assessed using the pure enzyme,
thymidine phosphorylase. The results shown in Table 2 indicate that Gem was rapidly degraded to
the less active metabolite, cytosine, by thymidine phosphorylase. The amino acid and dipeptide
monoester prodrugs of Gem were found to be quite resistant to degradation by thymidine
phosphorylase. Gem prodrugs were, at least, 5- to 10-fold more stable than Gem to degradation
by thymidine phosphorylase. The half-lives of 5′-D-phenylalanyl-gemcitabine, 5′-L-valyl-gemcitabine,
and 5′-D-valyl-gemcitabine were in excess of 120 min, reflecting their superior resistance to metabolic
degradation by thymidine phosphorylase.

Table 2. Stability of gemcitabine and gemcitabine prodrugs in the presence of thymidine phosphorylase
(mean ± S.D., n = 3).

Prodrug/Drug t1/2 (min)

Gemcitabine 6.0 ± 1.8 *

Mono amino acid prodrugs

5′-L-Phenylalanyl-gemcitabine 31.9 ± 5.0 *
5′-D-Phenylalanyl-gemcitabine >120 *
5′-L-Valyl-gemcitabine >120 *
5′-D-Valyl-gemcitabine >120 *

Dipeptide prodrugs

5′-L-Phenylalanyl-L-tyrosyl-gemcitabine 63.0 ± 0.3
3′-L-Valyl-gemcitabine 56.0 ± 6.9

* Previously reported [38].

2.3. Cytidine Deaminase Activity against Gemcitabine and Gemcitabine Prodrugs

The metabolic stability of Gem and Gem prodrugs was assessed using the pure enzyme, CDA.
The results shown in Table 3 indicate that Gem was rapidly deaminated to the less active metabolite,
dFdU, by CDA. The amino acid and dipeptide monoester prodrugs of Gem were found to be quite
resistant to deamination by CDA. Gem prodrugs were, at least, 15-fold more stable than Gem
to degradation by CDA. The half-lives of 5′-D-phenylalanyl-gemcitabine, 5′-L-valyl-gemcitabine,
5′-D-valyl-gemcitabine, and 5′-L-phenylalanyl-L-tyrosyl-gemcitabine were in excess of 120 min,
reflecting their superior resistance to metabolic degradation by CDA.
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Table 3. Stability of gemcitabine and gemcitabine prodrugs in the presence of cytidine deaminase
(mean ± S.D., n = 3).

Prodrug/Drug t1/2 (min)

Gemcitabine <3

Mono amino acid prodrugs

5′-L-Phenylalanyl-gemcitabine 44.6 ± 18.8
5′-D-Phenylalanyl-gemcitabine >120
5′-L-Valyl-gemcitabine >120
5′-D-Valyl-gemcitabine >120

Dipeptide prodrugs

5′-L-Phenylalanyl-L-tyrosyl-gemcitabine >120

2.4. [3H]Gly-Sar Uptake Inhibition

The IC50 values of Gem and Gem Prodrugs for the intake transporters, PEPT1, determined using
inhibition of Gly-Sar uptake in Caco-2 cells, are summarized in Table 4. All Gem prodrugs exhibited
greater affinity for the intake transporter than their parent, Gem. Gem exhibited minimal inhibitory
activity of Gly-Sar uptake into Caco-2 cells and the IC50 value was 26.8 ± 9.3 mM. All gem prodrugs
exhibited an 8- to 38-fold better IC50 value than Gem. Among them, 5′-L-phenylalanyl-gemcitabine
exhibited the highest affinity (IC50 value 0.7± 0.3 mM). The promoieties (phenylalanyl- and valyl-) with
an unnatural amino acid (D-) exhibited slightly lower affinity to transporters than the corresponding
promoieties with a natural amino acid (L-).

Table 4. [3H] Gly-Sar uptake inhibition of gemcitabine and gemcitabine prodrugs in Caco-2 cells
(mean ± S.D., n = 3).

Prodrug/Drug IC50 Caco-2 (mM)

Gemcitabine 26.8 ± 9.3

Mono amino acid prodrugs

5′-L-Phenylalanyl-gemcitabine 0.7 ± 0.3
5′-D-Phenylalanyl-gemcitabine 3.4 ± 0.7
5′-L-Valyl- gemcitabine 1.6 ± 0.6
5′-D-Valyl- gemcitabine 2.8 ± 1.1

Dipeptide prodrugs

5′-L-Phenylalanyl-L-tyrosyl-gemcitabine 1.6 ± 0.3

2.5. Uptake Study of Gem and Gem Prodrugs in HFF Cells

The uptake of mono amino acid/dipeptide monoester prodrugs of Gem and parent, Gem, was
determined at 37 ◦C in HFF cell. The uptake amount of all Gem prodrugs in HFF cells was 1.1- to
3.8-fold higher than their parent, Gem (Figure 2). The amounts of Gem prodrugs in HFF cells correlated
with their logP values (Table 5).

Table 5. Amino acid ester prodrugs of gemcitabine.

Prodrug LogP a

5′-L/D-Valyl-gemcitabine −0.37
5′-L/D-Phenylalanyl-gemcitabine 0.42
5′-L-Phenylalanyl-L-tyrosyl-gemcitabine 1.04

a Calculated using ChemDraw.
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2.6. HFF Cell Permeability of Gem and Gem Prodrugs

The apical-to-basolateral permeability of mono amino acid/dipeptide monoester prodrugs of
Gem and parent, Gem, was determined at 37 ◦C in HFF cell monolayers. Table 6 shows the permeability
values. With the exception of 5′-L-valyl-gemcitabine, the permeability of all Gem prodrugs across HFF
monolayers was 2- to 4-fold higher than their parent, Gem. All prodrugs displayed better membrane
permeability in the HFF cell monolayer.

Table 6. Apparent permeability coefficients (Papp) of gemcitabine and monoester prodrugs of
gemcitabine in the apical-to-basolateral direction across HFF monolayers (mean ± S.D., n = 3).

Prodrug/Drug Papp, HFF (×10−6 cm/s)

Gemcitabine 1.6 ± 0.1

Mono amino acid prodrugs

5′-L-Phenylalanyl-gemcitabine 2.7 ± 0.3
5′-D-Phenylalanyl-gemcitabine 3.9 ± 0.4
5′-L-Valyl-gemcitabine 1.7 ± 0.3
5′-D-Valyl-gemcitabine 5.1 ± 1.0

Dipeptide prodrugs

5′-L-Phenylalanyl-L-tyrosyl-gemcitabine 5.1 ± 0.3

2.7. Cell Proliferation Assays

GI50 values for Gem and 5′-mono amino acid/dipeptide monoester prodrugs of Gem were
determined in cell proliferation studies with the pancreatic cancer cell lines, Panc-1 and Capan-2,
as shown in Table 7. All prodrugs exhibit enhanced antiproliferative activity in the three cell lines
compared to parent Gem. Thus, the GI50 values of all Gem prodrugs were in the range of 2.8–7.6 mM
in Panc-1 and Capan-2 cells, as opposed to the GI50 value of 8.5 mM for Gem in Capan-2 cells.
The antiproliferative activity of Gem was not observed in Panc-1 cells. These results are consistent with
trends observed in antiproliferative activity in AsPC-1 cells [38]. Interestingly, 5′-L-valyl-gemcitabine,
5′-D-valyl-gemcitabine, and 5′-L-phenylalanyl-L-tyrosyl-gemcitabine did not exhibit any inhibitory
effect while 5′-L-phenylalanyl-gemcitabine, 5′-D-phenylalanyl-gemcitabine, and gemcitabine did
display antiproliferative activity in MDCK cells.
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Table 7. Cell growth inhibition in Panc-1, Capan-2, and MDCK cells (mean ± S.D., n = 3–6).

Prodrug/Drug GI50 Panc-1
(mM)

GI50 Capan-2
(mM)

GI50 MDCK
(mM)

Gemcitabine None * 8.5 ± 0.2 58.9 ± 3.8

Mono amino acid prodrugs

5′-L-Phenylalanyl-gemcitabine 2.8 ± 0.1 7.6 ± 2.3 7.1 ± 2.9
5′-D-Phenylalanyl-gemcitabine 3.0 ± 0.1 6.3 ± 2.0 79.3 ± 3.4
5′-L-Valyl- gemcitabine 3.0 ± 0.3 5.8 ± 0.6 None
5′-D-Valyl- gemcitabine 3.6 ± 0.2 5.5 ± 0.8 None

Dipeptide prodrugs

5′-L-Phenylalanyl-L-tyrosyl-gemcitabine 3.2 ± 0.7 * 3.6 ± 1.3 None

None—No inhibitory activity detected. * Previously reported in [16].

3. Discussion

Prodrug approaches, such as a parent drug coupled with an amino acid, have been widely
employed to improve the intestinal absorption and oral bioavailability of poorly permeable
drugs. The antivirals valacyclovir and valganciclovir [27,49] are the commercially and clinically
successful examples of prodrug strategies with amino acids. The improved oral bioavailability
of these prodrugs [40,50] has been attributed to their enhanced transport by oligopeptide
transporters in the small intestine like Pept1 [5,35,36,39,50,51]. Following intestinal absorption,
those prodrugs would then be efficiently converted to the parent drug by valacyclovirase [52,53].
A variety of substrates for the Pept1 transporter have been investigated to understand substrate
suitability and design for further approaches [22,23,46,54–59]. We have reported the prodrug
synthesis and its evaluation of mono amino acid and the dipeptide monoester prodrugs of
antiviral and anticancer drugs such as floxuridine, gemcitabine, melphalan, acyclovir, oseltamivir,
and 2-bromo-5,6-dichloro-1-(β-D-ribofuranosyl)benzimidazole (BDCRB) [5,6,9–11,14–20,38,39,60–62].
In this report, we describe the chemical and enzymatic stability of gemcitabine prodrugs, their affinity
to transporters in Caco-2 cells, the cellular uptake and transport in HFF cells (a surrogate for stroma
cell transport), and antiproliferative activity in two pancreatic duct cell lines, Panc-1 and Capan-2,
along with MDCK cells. The studies demonstrated that those mono amino/dipeptide monoester
prodrugs generally displayed an enhanced affinity to the PEPT1 transporter, a range of bioactivation
rates, and protection of the glycosidic bond to metabolic enzymes such as thymidine phosphorylase and
cytidine deaminase. Major findings of this study are: (1) enzymes had more specific stereospecificity
for amino acid prodrug esters than transporters, and the promoiety with unnatural form (D-) amino
acids exhibited enhanced enzymatic stability. Gemcitabine prodrugs showed resistance against the
enzymes TP and CDA to maintain their prodrug structures, and the 5′- position of promoieties was
more effective than the 3′- position; (2) amino acid/dipeptide monoester prodrugs of gemcitabine had
better affinity to uptake transporters than their parent Gem and had better membrane permeability in
HFF cells, indicating that gemcitabine prodrugs had the potential to reach tumor sites through stroma
cells more than their parent; and (3) gemcitabine prodrugs displayed better antiproliferative activity
than their parent in pancreatic cancer cells but did not exhibit cytotoxicity growth in the non-tumor
cell line, MDCK cells, suggesting that the toxicity of gemcitabine prodrugs was absent or minimal, and
gemcitabine prodrugs had the potential to improve the therapeutic efficacy, suggesting the necessity of
prodrug activation.

The dipeptide prodrug was chemically less stable in pH 7.4 buffer than the mono amino acid
monoester prodrugs, regardless of the stereochemistry of the amino acids. Since no degradation of
mono amino monoester prodrugs was observed, the dipeptide monoester prodrug likely degraded via
parallel pathways similar to those suggested for Gly-Phe dipeptide alkyl ester prodrugs by Larsen
and colleagues [63]. Additionally, a diketopiperazine cyclization product is also possible due to
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intramolecular condensation of the ester group with the free amino group of the dipeptide monoester
prodrug. This intramolecular aminolysis has been reported, and this reaction would be negligible at
pH values below 6 [63–65]. Indeed, the dipeptide monoester prodrugs were stable, and the formation
of diketopiperizine was not observed at pH values below 6 [16,18].

The enzymatic stability of 5′-D-phenylalanyl-gemcitabine and 5′-D-valyl-gemcitabine was
significantly enhanced compared to prodrugs with the same amino acid (L-) promoiety, suggesting that
the enzymes have high affinity in their substrate specificity and that unnatural form (D-) amino acids
protect the enzyme-catalyzed hydrolysis of the ester linkage. Gemcitabine was quickly metabolized in
the pancreatic cancer cell homogenate of Capan-2 cells, but substantial metabolism of gemcitabine was
not observed in the pancreatic cancer cell homogenate of Panc-1 cells, suggesting different enzyme
expression profiles. All prodrugs displayed resistance to TP and CDA but their parent, gemcitabine,
was quickly metabolized. 3′-L-Valyl-gemcitabine also exhibited resistance to TP but the resistance was
not as effective as 5′-L-valyl-gemcitabine, suggesting that the 5′-site promoiety would have structural
hindrance to protect the glycosidic bond, but the 3′-site promoiety would not have structural hindrance
as strong as the 5′-site (Tables 2 and 3).

Results of affinity studies of Gem and Gem prodrugs in Caco-2 cells were consistent with
the previous report of floxuridine, which has a similar chemical structure to Gem and floxuridine
prodrugs [9,17,19]. The transporter affinities of prodrugs with an unnatural amino acid were lower
than ones with a natural amino acid (Table 4). Since, unlike Caco-2 cells, the protein expression
of transporters in foreskin fibroblasts (HFF) cells is low, the prodrugs would permeate HFF cell
monolayers by simple diffusion [66–68]. The results of uptake studies with gemcitabine prodrugs
correlate with logP values of test drugs (Table 5 and Figure 2). The uptake amounts and permeabilities
of the gemcitabine prodrugs with the natural form (L-) of amino acid were consistently lower in HFF
cells compared to the prodrugs with their corresponding unnatural form (D-) of amino acid (Figure 2
and Table 6). Since 5′-valyl-gemcitabine and 5′-phenylalanyl-gemcitabine should have the same
LogP values regardless of the stereochemistry of amino acid (L-/D-), and those prodrugs exhibited
different uptake amounts and different prodrug/parent drug ratios, it is suggested that the cellular
accumulation of prodrugs with the natural form of amino acids are metabolized to a greater extent
than prodrugs with the unnatural form of amino acids. Indeed, the prodrugs with the unnatural form
of amino acids maintained more prodrug, relative to hydrolyzed drug, than ones with the natural form
amino acids (Figure 2 and Table 1). Overall, these findings indicate an improvement of those prodrugs
over parent drug in both stability and permeability characteristics.

Cell proliferation studies in pancreatic duct cancer cell lines confirmed the enhanced
potency of the amino acid/dipeptide monoester prodrugs compared to the parent gemcitabine.
The activation/metabolism of 5′-D-valyl-gemcitabine in MDCK, Panc-1, and Capan-2 cells was not
observed over 2 h in stability studies, but the prodrug was activated and exhibited antiproliferative
activity in only Panc-1 and Capan-2 cells during 24 h. Especially in Panc-1 cells, all prodrugs exhibited
tumor growth inhibition, while their parent drug, gemcitabine, did not exhibit any inhibitory activities
(Table 7). Those pancreatic cancer cells that highly expressed the Pept1 transporter and amino
acid/dipeptide monoester prodrugs of chemotherapeutic agents exhibited affinity for this uptake
transporter [16–19,38,62]. Therefore, prodrugs are apparently delivered to a greater degree into those
cancer cells, while gemcitabine is delivered to a lesser degree into the cells. Even though gemcitabine
is delivered into the cancer cells, gemcitabine is quickly metabolized to non-toxic metabolites like
cytosine by thymidine phosphorylase and other enzymes, which would reduce the antiproliferative
activity in pancreatic cancer cells [69–71]. L-Amino acid monoester prodrugs exhibited slightly better
GI50 values than D-amino acid monoester prodrugs in Panc-1 cells, while D-amino acid monoester
prodrugs exhibited slightly better GI50 values than L-amino acid monoester prodrugs in Capan-2 cells,
thereby suggesting that varying enzyme expression levels and species differences exist between those
two pancreatic cancer cells. The GI50 values of gemcitabine prodrugs did not exhibit any discernible
correlations with their permeability and/or bioactivation profiles in these cells. The different amino
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acid and stereoisomer promoieties of prodrugs would contribute to the different rates of prodrug
activation inside cancer cells by particular activation enzymes. Therefore, it would be difficult to
discern a meaningful correlation between GI50 values and prodrug uptake/permeabilities with limited
experimental data.

The intracellular anabolism of gemcitabine prodrugs may illustrate that transported drugs and
prodrugs are converted to gemcitabine and cytosine, or dFdU and further metabolites, via a sequential
enzymatic pathway with higher concentrations of TP in tumor tissue and the ubiquitous presence of
CDA (Figure 1). Taken together, our results indicate that the unnatural form amino acid monoester
prodrugs of gemcitabine exhibit the potential for improved oral absorption, improved delivery into
tumor sites, and enhanced antiproliferative activity. Therefore, gemcitabine prodrugs with unnatural
forms of amino acid might possess advantages over ones with the natural form of amino acid for
cancer target delivery, and potentially oral target delivery. Delayed enzymatic activation and enhanced
metabolic resistance, along with oligopeptide transporter affinity, may facilitate the prolonged systemic
circulation and enhanced therapeutic action of gemcitabine prodrugs. By demonstrating enhanced
stability in biological surrogate media and cell homogenates, gemcitabine prodrugs with unnatural
amino acids have potential to be developed as oral drug products with targeting to cancer cells.

4. Materials and Methods

4.1. Materials

Gemcitabine (Gem) was extracted from the lyophilized powder (Gemzar™) supplied
by Eli Lilly Pharmaceuticals (Indianapolis, IN, USA). The tert-butyloxycarbonyl (Boc)
protected amino acids Boc-L-valine, Boc-L-phenylalanine, Boc-D-valine, Boc-D-phenylalanine,
and Boc-L-phenylalanyl-L-tyrosine were obtained from Chem-Impex (Wood Dale, IL, USA).
High-performance liquid chromatography (HPLC) grade acetonitrile was obtained from Fisher
Scientific (St. Louis, MO, USA). N,N-dicyclohexylcarbodiimide (DCC), N,N-dimethylaminopyridine
(DMAP), trifluoroacetic acid (TFA), and all other reagents and solvents were purchased from Aldrich
Chemical Co. (Milwaukee, WI, USA). Cell culture reagents were obtained from Invitrogen (Carlsbad,
CA, USA) and cell culture supplies were obtained from Corning (Corning, NY, USA) and Falcon
(Lincoln Park, NJ, USA). All chemicals were either analytical or HPLC grade.

4.2. Gemcitabine Prodrug Synthesis

The synthesis and characterization of 5′-mono amino acid and dipeptide monoester prodrugs
of Gem have been reported previously and synthesis was used similar to synthase Gem
prodrugs [9,10,17,19,20,29]. Briefly, Boc-protected amino acid or dipeptide, (1.1 mmol), DCC
(1.1 mmol), and DMAP (0.1 mmol) were allowed to react with Gem (1 mmol) in 7 mL of dry DMF for
24 h. The reaction progress was monitored by TLC (ethyl acetate). The reaction mixture was filtered
and DMF was removed under vacuum at 40 ◦C. The residue was extracted with ethyl acetate (30 mL),
and washed with water (2 × 20 mL) and saturated NaCl (20 mL). The organic layer was dried over
MgSO4 and concentrated under vacuum. The reaction yielded a mixture of 3′-monoester, 5′-monoester,
and 3′,5′-diester Gem prodrugs. The three spots observed on TLC were separated and purified using
column chromatography (dichloromethane (DCM)/methanol, 20:1). Fractions from each spot were
concentrated under vacuum separately. The Boc group was cleaved by treating the residues with
5 mL TFA:DCM (1:1). After 4 h, the solvent was removed and the residues were reconstituted with
water and lyophilized. The TFA salts of amino acid prodrugs of Gem were obtained as white fluffy
solids. The combined yield of Gem prodrugs was ~60%. HPLC was used to evaluate the prodrug
purity. Prodrugs were between 90–99% pure. These prodrugs were easily separated from parent drug
by HPLC. Electrospray ionization mass spectra (ESI-MS) were obtained on a Micromass LCT ESI-MS.
The observed molecular weights of all prodrugs were found to be consistent with that required by their
structure. The structural identity of the prodrugs was then confirmed using proton nuclear magnetic
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resonance spectra (1H-NMR). 1H-NMR spectra were obtained on a 300 MHz Bruker DPX-300 NMR
spectrometer (Billerica, MA, USA).

4.3. Cell Culture

Panc-1 cells (passages 22–30) and Capan-2 cells (passages 31–36) from American Type Culture
Collection (Rockville, MD, USA) were routinely maintained in RPMI-1640 containing 10% fetal bovine
serum. HFF cells (passages 15–26) and MDCK cells (passages 25–32) from American Type Culture
Collection (Rockville, MD, USA) were routinely maintained in DMEM containing 10% fetal bovine
serum, 1% nonessential amino acids, 1 mmol/L sodium pyruvate, and 1% L-glutamine at 5% CO2 and
90% relative humidity at 37 ◦C. Cells were grown in antibiotic-free media to avoid possible transport
interference by antibiotics.

4.4. Hydrolysis Studies

Enzymatic Stability. Confluent HFF, MDCK, Panc-1, and Capan-2 cells were rinsed with saline
twice. The cells were washed with 5 mL of pH 7.4 phosphate buffer (10 mmol/L), lysed by
ultrasonication (Micro ultrasonic cell disrupter Model KT40, Kontes, Vineland, NJ, USA), and pelleted
by centrifugation for 5 min at 1000× g. The protein amount was quantified with Bio-Rad (Hercules, CA,
USA) DC Protein Assay using bovine serum albumin as a standard. The protein amount was adjusted
to 500 µg/mL and the hydrolysis reactions were carried out in 96-well plates (Corning). HFF, MDCK,
Panc-1, and Capan-2 cell suspensions (250 µL) were placed in triplicate wells, the reactions started
with the addition of substrate, and cells were incubated at 37 ◦C for 120 min. At the desired time point,
sample aliquots (35 µL) were removed and added to 150 µL of acetonitrile (ACN) containing 0.1% TFA.
The mixtures were filtered with a 0.45 µm filter at 1000× g for 10 min at 4 ◦C. The filtrate was then
analyzed via reverse-phase HPLC.

Chemical stability. The nonenzymatic hydrolysis of the prodrugs was determined as described
above, except that each well contained pH 7.4 phosphate buffer (10 mmol/L) instead of cell homogenate
or human plasma.

Resistance to metabolism of gemcitabine and its prodrugs by thymidine phosphorylase. The stability of
Gem and Gem prodrugs in the presence of thymidine phosphorylase (TP) was assessed by incubating
the desired substrates (200 µM) with TP (2.0 ng/µL) in phosphate buffer (pH 7.0) at 37 ◦C. Aliquots
of the incubation mixture were sampled at 0, 1, 3, 5, 10, 30, 60, and 120 min, and quenched with
cold acetonitrile (ACN) with 0.1% TFA, filtered through 0.45 µm membrane, and analyzed for the
concentrations of Gem prodrugs and Gem by HPLC.

Resistance to metabolism of gemcitabine and its prodrugs by cytidine deaminase. The stability of Gem and
Gem prodrugs in the presence of cytidine deaminase (CDA) was assessed by incubating the desired
substrates (200 µM) with CDA (5.0 ng/µL) in phosphate buffer (pH 6.5) at 37 ◦C. Aliquots of the
incubation mixture were sampled at 0, 3, 5, 10, 30, 60, and 120 min, and quenched with cold acetonitrile
(ACN) with 0.1% TFA, filtered through 0.45 µm membrane, and analyzed for the concentrations of
Gem prodrugs and Gem by HPLC.

4.5. [3H]Gly-Sar Uptake Inhibition

Caco-2 cells at 10 days postseeding were incubated with 10 µmol/L Gly-Sar (9.98 µmol/L
Gly-Sar and 0.02 µmol/L [3H]Gly-Sar (Moravek Biochemicals, Brea, CA, USA)), along with various
concentrations (5–0.05 mmol/L) of Gem and Gem prodrugs for 30 min. After the incubation, the drug
solution was removed. The cells were gently washed three times with ice-cold PBS and solubilized
with 2 mL of scintillation cocktail (ScintiVerse, Fisher Scientific, St. Louis, MO, USA), and the
radioactivity was determined by scintillation counting (Beckman LS-9000, Beckman Instruments,
Fullerton, CA, USA). Inhibitory concentration 50 (IC50) values were determined using nonlinear data
fitting (GraphPad Prism version 6, GraphPad Software, Inc., La Jolla, CA, USA).
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4.6. Uptake Study of Gemcitabine Prodrugs and Gemcitabine in HFF Cells

HFF cells were grown on a 12-well plate for 24 days. Wells were rinsed with MES (pH 6.0) buffer
twice. Fresh MES buffer was reapplied to each well and incubated at 37 ◦C for 15 min. Each drug was
individually tested from freshly prepared solutions in MES buffer (0.1 mM, total 0.3 mL). The solution
was placed in each well and incubated at 37 ◦C for 30 min. Drug solution was removed and 3 mL of
ice-cold PBS was immediately placed in each well. Each well was rinsed with 3 mL of cold-PBS twice
and 0.5 mL of methanol:H2O (1:1) containing 0.1% TFA was placed in each well. The cell suspension
was collected and transferred to a new tube. Those tubes were spun at 1000× g at 4 ◦C for 5 min.
The supernatant was mixed with an equal amount of water with either 0.1% formic acid or 0.1%
ammonium hydroxide for HPLC analysis. The cell pellets were used to determine the protein amount
with the Bio-Rad (Hercules, CA, USA) DC Protein Assay using bovine serum albumin as a standard.

4.7. Transepithelial Transport Studies in HFF Cells

HFF cell monolayers were grown on collagen-coated polytetrafluoroethylene membranes for
28 days. Transepithelial electrical resistance (TEER) was monitored and values above 180 Ω/cm2 in
HFF cells were used in the study. Apical and basolateral sides of the transwell inserts were washed
with MES (pH 6.0) and HEPES (pH 7.4), respectively. Fresh MES and HEPES buffers were reapplied
to transwell inserts and incubated at 37 ◦C for 15 min. A freshly prepared 0.1 mM drug solution in
MES buffer was placed in the donor chamber and the receiver chamber was filled with HEPES buffer.
The volumes of donor and receiver chambers were 0.5 mL and 1.5 mL, respectively. The area of the
exposed monolayer was 1.12 cm2. Sampling from the receiver chamber (100 µL) was conducted up to
a period of 2 h at 15, 30, 45, 60, 75, 90, 105, and 120 min, at 37 ◦C, and replaced with an equal volume of
fresh HEPES buffer to maintain sink conditions in the receiver chamber. All samples were immediately
acidified with 0.1% TFA and analyzed by HPLC.

4.8. Data Analysis

The initial rates of hydrolysis were used to obtain the apparent first-order rate constants and
subsequent half-lives. The apparent first-order degradation rate constants of various Gem prodrugs
at 37 ◦C were determined by plotting the logarithm of the prodrug remaining as a function of time.
The slopes of these plots are related to the rate constant, k, and given by

k = 2.303 × slope (log C vs. time) (1)

The degradation half-lives were then calculated by the equation,

t1/2 = 0.693/k (2)

Statistical significance was evaluated with GraphPad Prism version 6.0 (La Jolla, CA, USA) by
performing a one-way analysis of variance with post-hoc Tukey’s test to compare means.

The apparent permeability (Papp) for the prodrugs was calculated using the following equations:

Flux = Jss = dM/dt (3)

where Jss is the steady state flux, M is the cumulative amount of prodrug, and regenerated mono amino
acid prodrug, drug, and cytosine is in the receiver compartment. The concentrations of Gem and Gem
prodrugs in the receiver and donor compartments were analyzed using HPLC.

4.9. HPLC Analysis

The concentrations of prodrugs and their metabolites were determined with an Agilent HPLC
system (Agilent Technologies, Santa Clara, CA, USA). The HPLC system consisted of Agilent pumps
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(1100 series), an Agilent autosampler (1200 series), and an Agilent UV-Vis detector (1100 series)
controlled by Chemstation® 32 software. Samples were resolved in the Agilent Eclipse XDB-C18

reverse-phase column (3.5 µm, 4.6 × 150 mm), equipped with a guard column for gemcitabine
and gemcitabine prodrugs. The mobile phase consisted of 0.1% TFA/water (Solvent A) and 0.1%
TFA/acetonitrile (Solvent B) with the solvent B gradient changing from 0–56% at a rate of 2%/min
during a 14 min run. Standard curves generated for cytosine, Gem, and Gem prodrugs were utilized
for the quantitation of the integrated area under peaks. The detection wavelength was 254 nm and 280
nm for drug compounds.

4.10. Cell Proliferation Assays

Cell proliferation studies were conducted with MDCK, Panc-1, and Capan-2 cell lines. The cells
were seeded onto 96-well plates at 125,000 cells per well and allowed to attach/grow for 24 h
before drug solutions were added. The culture medium (RPMI-1640 + 10% fetal bovine serum)
was removed and the cells were gently washed once with sterile pH 6.0 uptake buffer. Gem
and Gem prodrugs were serially diluted in pH 6.0 uptake buffer from 5 to 0.25 mmol/L. Buffer
alone was used as 100% viability control. The wash buffer was removed and 25 µL drug solution
per well was added and incubated at 37 ◦C for 4 h with MDCK, Panc-1, and Capan-2 cells in
the cell incubator. After this time period, the drug solutions were removed and the cells were
gently washed twice with sterile uptake buffer. The culture medium was then added to each
well after washing. The cells were allowed to recover for 24 h before evaluating cell viability
via 2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide inner salt (XTT) assays.
A mixture (30 µL) containing XTT in sterile RPMI-1640 without phenol red (1 mg/mL) and phenazine
methosulfate (N-methyl dibenzopyrazine methyl sulfate in sterile PBS, 0.383 mg/mL) reagents were
added to the cells and incubated at 37 ◦C for 1 h for the color to develop. Absorbance readings at
450 nm were recorded. The data were plotted and the GI50 values, with a concentration showing 50%
of the cell growth inhibitory effect, were calculated using GraphPad Prism version 6.0 (La Jolla, CA,
USA) by nonlinear data fitting.
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