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Abstract 

Background: Distractibility and attentiveness are cognitive states that are expressed through 

observable behavior. The effective use of behavior observed in videos to diagnose periods of 

distractibility and attentiveness is still not well understood. Video-based tools for classifying 

cognitive states from behavior have high potential to serve as versatile diagnostic indicators of 

maladaptive cognition. 

New method: We describe an analysis pipeline that classifies cognitive states using a 2-camera 

set-up for video-based estimation of attentiveness and screen engagement in nonhuman primates 

performing cognitive tasks. The procedure reconstructs 3D poses from 2D labeled DeepLabCut 

videos, reconstructs the head/yaw orientation relative to a task screen, and arm/hand/wrist 

engagements with task objects, to segment behavior into an attentiveness and engagement score.  

Results: Performance of different cognitive tasks were robustly classified from video within a 

few frames, reaching >90% decoding accuracy with ≤3min time segments. The analysis 

procedure allows setting subject-specific thresholds for segmenting subject specific movements 

for a time-resolved scoring of attentiveness and screen engagement.  
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Comparison with existing methods: Current methods also extract poses and segment action units; 

however, they haven't been combined into a framework that enables subject-adjusted 

thresholding for specific task contexts. This integration is needed for inferring cognitive state 

variables and differentiating performance across various tasks. 

Conclusion: The proposed method integrates video segmentation, scoring of attentiveness and 

screen engagement, and classification of task performance at high temporal resolution. This 

integrated framework provides a tool for assessing attention functions from video.  

 

1. Introduction 

A goal of behavioral neuroscience is to distinguish cognitive states from behavior. One approach 

to achieve this goal is to use video to detect and understand behavioral patterns that are 

diagnostic for maladaptive cognition. Such an action understanding from video requires analysis 

procedures for extracting behavioral patterns from video while subjects engage in cognitive 

demanding tasks (Vogg et al., 2025). Recent examples have showcased the potential clinical 

value of evaluating of maladaptive cognitive states with video based analysis, ranging from 

classifying behavioral grooming abnormities in animals with fragile X syndrome (Marshall et al., 

2021), to the video-based detection of drug induced changes in behavioral speed in mice 

(Wiltschko et al., 2020). These advances have been enabled by video-based machine learning 

tools that allow segmenting natural behavior into action units such as DeepLabCut (Mathis et al., 

2018), OpenMonkeyStudio (Bala et al., 2020; Bain et al., 2021), MacaquePose (Labuguen et al., 

2020), LightPose (Biderman et al., 2024), Deepercut  (Insafutdinov et al., 2016), SLEAP (Pereira 

et al., 2022), or Convolutional 'Deep' Pose Machine (Wei et al., 2016). While these tools have 
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optimized the 3D reconstruction of behavioral patterns it has remained rare to relate free-ranging 

behaviors of subjects to specific cognitive factors such as the degree of attentiveness or the 

sustained attentional engagement with differently demanding tasks (Marshall et al., 2022). 

Consequently, it has remained a challenge to individualize video-based behavioral analysis that 

quantifies cognitive factors in nonhuman primates (Vogg et al., 2025). 

 

Here, we set out to establish an integrated analysis procedure that combines video-based machine 

learning segmentation of head, shoulder, arm, wrist, and hand of rhesus monkeys with a subject-

specific evaluation of attentiveness and screen engagement during performance of multiple 

cognitive tasks. Attentiveness describes the vigilance and sustained attention subjects show 

during goal-directed behavior. Quantifying attentiveness has highest clinical significance because 

it is affected not only in attention-deficit disorders (Fuermaier et al., 2022), but across all major 

neuropsychiatric disorders (Millan et al., 2012; Grant and Chamberlain, 2023). Evaluating 

attentiveness from video requires measuring the consistency of head and gaze orientation 

towards task-relevant stimuli. Previous studies have inferred gaze and head orientation from 

video in marmosets using ear and face landmarks (Xing et al., 2024), head-mounted gaze 

tracking devices (Kano and Tomonaga, 2013; Singh et al., 2025), or by using boxes that restrict 

the field of view (Ryan et al., 2019). These approaches have been used to characterize the rich 

gaze behavior of animals with high-resolution foveal (Singh et al., 2025), but this sensorimotor 

variables of head and gaze orientation have not been used to infer cognitive variables. The 

potential to infer more cognitive variables has been documented by the rodent field where gaze 

and head behavioral patterns have been linked to decision making (Redish, 2016), reward-based 

learning (Ottenheimer et al., 2020), or multi-sensory integration (Keshavarzi et al., 2022). Here, 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2025. ; https://doi.org/10.1101/2025.05.31.657183doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.31.657183
http://creativecommons.org/licenses/by-nc/4.0/


 4

we aimed at using head, arm and body orientation to quantify an attentiveness score and 

determine how it varies over time when NHPs engage with multiple tasks with varying cognitive 

demands.  

 

A second aim of this study is to distinguish cognitive engagement in different tasks. Engagement 

corresponds to the degree of interacting with task-relevant stimuli, which requires wrist and hand 

movements towards a screen. Previous studies in primates succeeded to segment such hand and 

digit movements during the manipulation of reward boxes (Voloh et al., 2023), during nut 

cracking and buttress drumming (Bain et al., 2021), feeding behaviors (Vogg et al., 2025), 

precision grasping (North et al., 2021; Li et al., 2023; Liu et al., 2025), or as part of standard sets 

of daily activity together with sitting, walking or climbing behaviors (Brookes et al., 2024). 

While these studies use hand or digit reconstruction, they have not yet been applied to 

touchscreen engagement during different cognitive tasks.  

 

Here, we address the open questions on how task engagement and attentiveness can be tracked 

from video in individual monkeys in order to distinguish their performance of different cognitive 

tasks. We report of an integrated analysis pipeline that uses state-of-the-art pose estimation 

together with custom reconstruction of head, arm and hand orientation towards a touchscreen in 

order to derive a frame-by-frame estimate of attentiveness and task engagement. We show that 

these cognitive scores allow distinguishing which of three different cognitive tasks are performed 

by NHPs in a touchscreen Kiosk setting in their home cage. 
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2. Methods and Analysis 

2.1. Experimental set-up  

All animal and experimental procedures complied with the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals and the Society for Neuroscience Guidelines and 

Policies and were approved with the approval number M1700198 by the institutional review 

board Vanderbilt University Institutional Animal Care and Use Committee (IACUC). The 

experiment involved four nonhuman primates (NHPs, rhesus monkeys, 11.5-12.5 kg) who 

performed cognitive tasks using a touchscreen kiosk station that was mounted to the home cage. 

The kiosk station, described in detail in (Womelsdorf et al., 2021), was equipped with two video 

cameras and a reward pump connected to a stainless steel sipper tube placed ~30’’ in front of the 

touchscreen. The cognitive tasks were controlled by the Multi-task Suite for Experiments (M-

USE), an open source unity-based behavioral task platform designed to control the timing of 

visual stimuli, registering responses of subjects and deliver fluid reward (Watson et al., 2023).  

2.2. Cognitive task paradigms  

In ~96 min long daily experimental sessions, subjects engaged with five separate cognitive tasks 

in a fixed temporal order: (1) Maze-Learning task part 1 (MZ1, ~18 min), (2) delayed match-to-

sample Working Memory task part 1 (WM1, ~20 min), (3) Effort Control task (EC, ~20 min), (4) 

delayed match-to-sample Working part 2 (WM2, 20 min), and (5) Maze-Learning task part 2 

(MZ2, ~18 min). The tasks are described in detail in (Watson et al., 2023). In brief, the first task, 

the Maze-Learning task, presented a 6x6 grid of tiles in which subjects were required to find an 

invisible path with 3-4 turns and a length of 12-14 tiles between a start tile to an end tile. The 

start and end tiles were colored yellow and blue, respectively, while all other tiles were grey and 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2025. ; https://doi.org/10.1101/2025.05.31.657183doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.31.657183
http://creativecommons.org/licenses/by-nc/4.0/


 6

only transiently changed for 0.3 s to green or black when they were touched and either part of the 

correct path (green) or else were not on the path (black). To identify the correct sequence (path) 

of tiles that connect start and end tile subjects followed two rules: (1) choose among the next 

right, left, up, or down tiles relative to the last correctly identified tile of the path, and (2) after 

each wrong choice, re-touch the last correct tile of the path. Subjects learned by trial-and-error 

which tiles were part of the hidden path. They received immediate visual feedback and a 

progress step of a slider bar for correct touches (transient green coloring of the tile, forward 

slider step) and for incorrect touches (transient black coloring of a tile, backward slider step). 

Subjects received fluid reward when they completed 5 correct tiles and when the path was 

completed. To complete a path, subject had a maximum of 120 s but always completed them 

before the maximal allowed time. Each maze (i.e. each path) was repeated eight times to track 

how subjects learned the path by reducing erroneous choices (Watson et al., 2023). 

 

The second task was a delayed match-to-sample working memory (WM) and involved 120 

separate trials and has been validated in (Wen et al., 2025). In each trial a sample stimulus was 

shown for 0.5 s followed by a variable delay of 0.5-5 s void of visual stimuli, and a 0.5 s display 

of three objects and randomly assigned positions, one of which was the probe object. When 

subjects correctly chose the probe object that matched the sample object, they received visual 

feedback (a yellow halo around the object) and a visual token (a green coin symbol) that was 

added to a token bar on top of the screen). Incorrect choices resulted in a cyan colored halo and 

no change of tokens. Each trial used a novel set of multidimensional 3D-rendered so-called 

Quaddle objects that had unique body shapes, body patterns, arm types and colors (Watson et al., 

2019).  
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The third task was an effort control task (EC) involving 60 separate trials. Each trial had an early 

decision phase that presented one ballon outline on the left, and on outline on the right side of the 

screen. The number of outlines within each balloon differed and indicated how often the balloon 

outline needed to be touched to virtually inflate the balloon to its full extent. The number of 

touches correspond to the effort the subjects must exert to inflate the balloon. On top of each 

ballon there were different amounts of gold-colored token coins visible that corresponded to the 

amount of water drops subjects would receive when the ballon below the tokens was chosen and 

inflated to its full extend. Once subjects chose one of the ballons by touching in its inside, that 

balloon was moved to the center of the screen and the other nonchosen option was removed from 

the screen. The subjects had to repeatedly touch inside the ballon to inflate and virtually pop the 

ballon to receive fluid reward. The task assesses how much reward (number of tokens) is needed 

to motivate subjects to choose the balloon that required more effort (i.e. more touches) to fully 

inflate. 

 

Following the effort control task, the fourth task in each experimental session was the working 

memory task with another 120 trials. The fifth task of the session was the same Maze-Learning 

task as at the beginning of these session with three novel and two repeated mazes. Subjects 

performed all five tasks in a fixed order in every session. Individual session lasted ~96 min. The 

behavioral performance was stable across all sessions analyzed in this study.  

2.3. Video monitoring set-up 
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Subjects were video monitored with two e3Vision cameras (White Matter LLC, n.d.). The 

resolution was set to 1600 x 1200, recording at a rate of 30 frames per second. Two cameras 

were set up in stereo configuration at the top of the kiosk, with one on the left and one on the 

right. The lens attached to the cameras was the SL183 Lens (Theia’s SL183/ML183 LOT Lenses - 

Theia Technologies, n.d.), developed by Theia Tech. Camera synchronization signals were 

provided through external TTL pulses from the M-USE Unity control software to synchronize 

the camera with the monitor frames during cognitive task performance. The cameras were 

calibrated to find their intrinsic and extrinsic parameters. The calibration was done with 

MATLAB’s Stereo Camera Calibrator Toolbox (Stereo Camera Calibrator, n.d.). Fifteen 

checkerboard images with unique positions were selected manually and inputted into the 

application. The application returned a stereo parameter with the intrinsic and extrinsic 

parameters, ready to be triangulated.  

2.4. 3D reconstruction of physical environment 

Subjects engaged with the cognitive tasks in front of a touchscreen and a reward sipper tube. 

This task engagement environment was reconstructed in 3D to validate the intrinsic and extrinsic 

parameters of the calibration step and to provide landmarks and boundaries for analysis (Suppl. 

Figure S1). Code for reconstruction and analysis is provided freely online (see Appendix). Pixel 

coordinates of three points on the reward tube (tip, curve point, and base of the reward sipper 

tube) were manually extracted from the left and right camera footage and triangulated to obtain 

the coordinate points of the reward sipper tube. The pixel coordinates of the corners of the flat 

surface under the reward sipper tube were also extracted. These pixel coordinates were 

triangulated, and the distances between each point were calculated to compare to real-world 

measurements. The differences between the calculated and the measured points were minimal, 
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confirming the validity of the parameters. The touchscreen dimensions were measured and 

plotted in relation to the reward sipper tube and base of the Kiosk surface (Suppl. Figure S1). 

The kiosk environment and camera angles did not vary over the course of the experiment.  

2.5. Pose estimation and extraction of 3D coordinates of subjects  

Step 1 of the data analysis was the pose estimation (Figure 1A). Pose estimation of NHP body 

parts such as the nose, eyes, elbows, wrists, and fingers was performed using DeepLabCut, a 

deep learning tool that enables markerless tracking of user-defined features from video data 

(Mathis et al., 2018). The version of DLC employed in the analysis was 2.3.10. A comprehensive 

DLC training pipeline was created for robust analysis (Figure 1B). Two DLC neural networks 

were created for pose estimation from the left camera and the right camera to reconstruct the 

NHP in a 3D space. Specifically, around 180 frames from 4 to 5 unique videos of each of 4 

NHPs were labeled for both the left and the right camera, resulting in 360 frames per camera. 11 

body parts were labeled, including the nose, left eye, right eye, left elbow, right elbow, left wrist, 

right wrist, left center knuckle, right center knuckle, left pointer finger, and right pointer finger. 

95% of the frames were split for training. A ResNet-50-based neural network was trained for 

30,000 iterations with Google Colab’s L4 GPU. To improve network accuracy, 50 outlier frames 

were extracted, relabeled, and fed back into the training. Over 3 iteration cycles, the right camera 

had a training error of 3.08 pixels and a test error of 9.72 pixels with pcutoff of 0.6, while the left 

camera had a train error of 3.9 pixels and a test error of 8.32 pixels with pcutoff of 0.6. Thereby, 

the errors are given by the average distances between the labels by DLC and the scorer. An 

example frame of labeled vs DLC predicted is shown in Supplementary Figure S2A-B.  
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Step 2 of the analysis pipeline was the 3D reconstruction of the NHP subjects, illustrated in 

Supplementary Figure S2. The exported CSV data for each camera first underwent 2D post-

processing in MATLAB. Low confidence data (likelihood < 0.4) was filtered out and outliers (z-

score >2.5) were removed for each body part. The filtered data was then interpolated with shape-

preserving piecewise cubic interpolation (pchip). The 2D data then was filtered by velocity 

(maximum 40 pixels/frame) and interpolated again with pchip. The 2D post-processing 

eliminates sudden jumps in coordinates, dropouts, and inconsistent estimations, enhancing the 

robustness of the data. However, the resulting data may still have erroneous segments due to the 

limit of interpolation. Therefore, 3D post-processing was applied. The data from the left and 

right cameras were triangulated with parameters obtained in the camera calibration step, 

transforming the data from 2D-pixel data into 3D coordinate data. The 3D data were first filtered 

by boundary, where points outside of the set boundary and trajectory to those points are removed 

and interpolated. The 3D data then was filtered by velocity (maximum 40 millimeters /frame) 

and interpolated with pchip. The resulting 3D coordinate data and the 3D reconstructed subject is 

illustrated in Supplementary Figure S2C-F. 

2.6. Classification of attentiveness 

Step’s 3 and 4 of the analysis-pipeline establishes the classification of attentiveness and screen 

engagement from the 3D frame coordinates. The classification of attentiveness and screen 

engagement was based on NHPs’ head orientation and movement. The primary features used for 

this classification include the pitch, yaw, and roll angles derived from the pose estimation of the 

NHP’s face (Bala et al., 2020). Specifically, the plane formed by the eyes and nose is utilized to 

measure the relative position of the head to the screen. These angles were computed frame-by-

frame to capture dynamic changes in the NHP’s orientation. For attentiveness classification, the 
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pitch, up and down head movement, and the yaw, left and right head movement, are the key 

indicators. When the pitch and yaw angles remain within specific thresholds, the NHP is 

classified as attentive, assuming it is looking directly at the screen. Conversely, when these 

angles exceed the set thresholds, the NHP is classified as inattentive, which corresponds to the 

subject looking away from the screen. The thresholds were adjusted individually for each NHP 

based on their unique behavior patterns observed during the study. This individualized approach 

accounts for variability in head movements and improves the accuracy of the attentiveness 

classification. Figure 2A illustrates an example analysis of an NHP’s attentiveness over a 2-

minute video segment. In this analysis, the yaw angle (indicated by the black line) serves as the 

primary feature for determining attentiveness, with the red horizontal lines representing the left 

and right yaw thresholds. These thresholds served as the cutoff points to distinguish between 

attentive and inattentive states. In the figure, segments where the yaw angle (black line) remain 

within the threshold bounds indicate that the NHP is oriented toward the screen, suggesting 

attentiveness. These periods are marked as green shaded areas. When the yaw angle exceeds the 

set thresholds, the NHP is classified as inattentive. The image sequence provides snapshots from 

specific frames corresponding to key moments in the yaw angle trace (Figure 2A). For example, 

frames 640, 650, and 660 show the NHP transitioning from looking at the screen to looking away. 

In contrast, frames 740, 750, and 760 display the NHP not attentive. Similarly, frames 2680 to 

2700 capture the NHP’s head turning sharply to the left, which is reflected in the yaw trace 

crossing the left threshold and transitioning to the grey bar. 

2.7. Classification of screen engagement 

Screen engagement was assessed by analyzing the NHP’s head and arm movements in relation to 

the screen. Engagement is classified based on the calculated distance between the labeled joints 
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of the arms and the hand relative to the screen. When the hand and arm movements cross a set 

threshold, the NHP is considered engaged with the screen. An example analysis is shown in 

Figure 2B over a 30-second video segment. The classification is based on the analysis of the 

NHP’s right wrist’s proximity to the touchscreen, represented by the black line tracing the 

distance of the wrist to the screen over time. The red horizontal line marks the touch threshold. 

When the black line falls below the red threshold line, the distance between the wrist and the 

screen indicates physical contact or near-touch interaction. These moments are classified as 

periods of active screen engagement and are highlighted by the green bars along the time axis. 

Conversely, when the black line remains above the red threshold, the NHP is considered 

disengaged from the screen, as its wrist is too far away to indicate an interactive gesture. The 

example frames illustrate specific moments that align with significant features of the distance 

trace (Figure 2B). For instance, frames 35, 38, and 40 show the NHP moving its hand toward the 

screen, corresponding to a decline in the black line towards the threshold, indicating the initiation 

of engagement. Frames 60, 64, and 69 capture the NHP moving his hand away from the screen, 

indicating a loss of engagement. In contrast, frames 248, 250, and 252 display the NHP’s hand 

engaging with the screen, indicating engagement with the screen. 

2.8. Time course and task-specificity of attentiveness and screen engagement 

The behavioral classification determines for each time frame of the video if the NHP is attentive 

or not and is engaged with the screen or not (Figure 3B). We analyzed this binary classification 

across time for different temporal window durations as well as across tasks that subjects 

performed during individual sessions (Figure 3A). The percentage of time being attentive and 

engaging with the screen can be directly translated into a score for the two metrics.  
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For example, on a shorter time scale, attentiveness remained high over a ~3 min epoch with only 

two smaller lapses (Figure 3B), while over a whole 90 min session, attentiveness scores 

systematically shifted varied, moving up when the first working memory task started, moving 

down when the effort control task started, and moving back up again when the second working 

memory task started (Figure 3C). This overall pattern was somewhat discernable but less 

apparent when we averaged the attentiveness scores for each task epoch across 31 experimental 

sessions Figure 3D. A more apparent task specificity was evident in the screen engagement 

scores (Figure 3E). Consistent with the higher rate of choices when performing the Maze-

Learning task (each tile of a path had to be touched) and the effort control task (inflating the 

balloon required multiple touches per trial) the screen engagement was higher during these tasks 

compared to the working memory task (which required one choice per trial) (Figure 3E). 

 

To quantify how well attentiveness and screen engagement scores distinguished NHP’s behavior 

during the performance of the different tasks we decoded the task labels using an unsupervised 

(k-means) clustering approach and a supervised (Random Forest) classifier (Figure 4A). K-

means clustering is an unsupervised machine learning algorithm used to partition data into k 

distinct clusters based on feature similarity (Hartigan and Wong, 1979). It operates iteratively by 

assigning each data point to the nearest cluster centroid, recalculating centroids, and refining 

cluster assignments until convergence is reached. One of the key advantages of k-means is its 

efficiency in handling datasets with well-separated clusters, making it a popular choice for 

exploratory data analysis. The clustering was performed using Euclidean distance as the 

similarity metric. Random Forest is a supervised machine learning algorithm that operates as an 

ensemble of decision trees (Breiman, 2001). It works by constructing multiple decision trees 
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during training and aggregating their predictions to improve accuracy and reduce overfitting. 

Each tree in the forest is trained on a random subset of the data using a technique known as 

bagging, and at each node, only a random subset of features is considered for splitting. This 

introduces diversity among trees, preventing over-reliance on specific patterns and enhancing the 

model’s generalizability. One advantage of Random Forest is its ability to handle overlapping 

and non-linearly separable data. Unlike the k-means clustering approach, which relies on 

predefined assumptions about the shape or density of data distributions, Random Forest builds 

multiple decision boundaries that adapt to complex feature interactions. When data points from 

different task categories exhibit significant overlap in attentiveness and engagement scores, 

individual decision trees may struggle to classify them correctly. However, by averaging 

predictions across many trees, Random Forest smooths out biases and effectively distinguishes 

patterns that may not be apparent in any single decision tree.  

 

We applied the classification to the reconstructed attentiveness and screen engagement time 

courses from 31 experimental sessions of one NHP. Before classification, the raw attentiveness 

and screen engagement data were preprocessed to ensure comparability across different sessions. 

Features were scaled and normalized using z-score normalization to account for inter-session 

variability. The dataset was parsed by the task type the NHP performed which were MZ, WM, 

and EC. To determine the optimal temporal window size to differentiate between task behaviors 

and evaluate the effect that window sizes have on classification accuracy we decoded the tasks 

using by averaging attentiveness and screen engagement scores at different temporal windows, 

ranging from single frames (30 ms) to 600 frames (20 sec) durations (Figure 4B). For the best 

decoding result, a feature importance analysis was used to evaluate the relative contribution of 
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the screen engagement and attentiveness to the overall classification of the different tasks 

(Figure 4D).  

 

3. Results  

3.1. Attentiveness and screen engagement vary between cognitive tasks. 

Across thirty-one experimental sessions the attentiveness and screen engagement could be 

reliably extracted from video-captured performance of the cognitive tasks. Attentiveness scores 

remained high over extended periods of time (Figure 3B) and remained similarly high across 

tasks (one factorial ANOVA with the three tasks as factor, F= 1.45, p=0.221). In example 

sessions we observed that attentiveness scores remained high for ~90% of the time during the 

initial maze task, increasing during the working memory task, dropping below 90% of the time 

during the effort control task, increasing to >90% during the second working memory task period, 

and leveling back to ~90% using the second maze task at the end of the experimental session 

(Figure 3C). This temporal variation of attentiveness was evident across sessions, which 

quantifies that NHPs remained attentive towards the touchscreen throughout the sessions (Figure 

3D).  

 

A larger variability was seen for screen engagement, which quantified whether NHPs directed 

their hands and arms towards the screen. Screen engagement varied significantly across tasks 

(one factorial ANOVA, F= 9.98, p=3.476E-07) (Figure 3E). Screen engagement scores exceeded 

50% of the total time in the maze tasks (proportion of time with high screen engagement in MZ1: 

0.640, SE: 0.030; MZ2: 0.682, SE: 0.035), which involved touching continuously through the 

tiles of the path, and in the effort control task (EC: 0.588, SE: 0.038), which involved 
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continuously touching the screen to inflate a virtual balloon in order to receive reward (Figure 

3E). Screen engagement fell below 50% of the time during the working memory tasks (WM1: 

0.411, SE: 0.043; WM2: 0.463, SE:0.037), which involved initiating individual trials and making 

one choice per trial after a variable short-term memory delay.  

 

3.2 Classification of performing different cognitive tasks 

We next used the attentiveness and screen engagement scores to quantify the temporal window 

that was needed to distinguish which cognitive task was performed (Figure 4). Decoding the 

tasks using k-means clustering showed a peak decoding accuracy of 57.5% (chance performance: 

33%) at a time window size of 450 frames (15 s), with only subtle variations across 2-20 s time 

windows. Confusion matrices obtained at the time window with peak decoding performance 

(450 frames) showed that the WM task had the highest classification accuracy, the Maze-

Learning task had the second highest and the Effort Control task the lowest classification 

accuracy (Figure 4C). 

 

In contrast to moderate k-means clustering decoding of cognitive tasks, the Random Forrest 

classification steadily increased from ~40-50% accuracy at high temporal resolution (e.g. 2 s, 60 

frames) to above 90% decoding accuracy of the tasks when a time window of 18 s (540 frames) 

was used to average attentiveness and screen engagement scores (Figure 4B). A feature 

importance analysis at peak performance (91%, 540 frames) showed that the screen engagement 

scores were three times more important than the attentiveness scores for predicting which task 

was being performed (importance of 0.778 vs. 0.222, Figure 4D). Cross-validation by randomly 

selecting different percentages of the dataset was performed to validate the feature importance 
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values (STD: 0.007). Analysis of the confusion matrix showed the highest accuracy for the 

Maze-Learning task, followed by the WM task and the Effort Control task (Figure 4E). 

 

4. Discussion 

Here, we introduced an integrated analysis and classification pipeline for time-resolved 

extraction of attentiveness and screen engagement scores of subjects performing different 

touchscreen based cognitive tasks. We found that that attentiveness and screen engagement 

scores reliably distinguished at >90% accuracy which of three tasks were performed. While tasks 

were classified above chance already at ~ 2 sec temporal resolution, the maximal reliable 

classification required averaging attentiveness and screen engagement scores within 18 s (Figure 

4B).   

 

These findings establish a tool to empirically quantify cognitive variables from video by 

combining (1) state-of-the art pose estimation using DeepLabCut, (2) the 3D reconstruction of 

the task assessment environment, (3) a subject-specific thresholding of head/yaw orientation and 

arm/wrist/hand distance to the screen, and (4) time-resolved classification of attentiveness’ and 

screen engagement. The results shows that a 3D reconstruction of the head orientation and left 

and right yaw angle towards the screen serves as a robust signal to estimate subjects’ attention 

toward the screen. Attentiveness stayed at a high ~90% throughout the duration of the task 

performance within the session and varied only moderately within a ~5% range between tasks 

with low variability across sessions (Figure 3D). These characteristics suggest that attentiveness 

scores will be suited to distinguish subjects with different degrees of attentiveness’, the same 

subjects in different states, or subjects that are treated with pharmacological compounds that 
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influence attentiveness (Millan et al., 2012; Azimi et al., 2020; Hassani et al., 2023). While our 

goal was to estimate attentiveness towards the screen, future studies could combine the head/yaw 

orientation information with gaze reconstruction to infer which objects on the screen were 

looked at. Recent progress in reconstructing gaze in monkeys suggest that such an approach will 

be viable with special tracking devices mounted on the subject (Singh et al., 2025).   

Another insight from out study is that the combination of shoulder, arm, and wrist reconstruction 

provides a robust signal for evaluating the hand distance to the screen. We inferred screen 

engagement of the subject using this distance measure and showed that it is an informative 

marker for how often and how long subjects engaged with objects on the screen in tasks with 

varying requirement to engage with task elements like tile of a maze (Maze-Learning task), 

ballon outlines (Effort Control task), or individual objects (Working Memory task). We chose to 

estimate the wrist distance to the screen because it was less variable and less noisy than tracking 

knuckles of the individual digits and because it was more easily generalizable across subject 

whose specific touch patterns varying from using individual digits to multiple digits. The 

proposed quantification of screen engagement promises to be a versatile marker for the degree of 

cognitive engagement and cognitive processing speed, which are important variables varying 

with age and cognitive state, amongst others (Millan et al., 2012). One possible future extension 

towards developing behavioral markers of cognitive states is the integration of the video-based 

estimate of screen engagement with the behavioral accuracy and choice reaction times of the 

performed task. While our goal was to quantify how well tasks can be distinguished from video 

alone, future studies may be able to relate the vigor, precision, or consistency of screen 

engagement with the behavioral accuracy of performing different cognitive tasks, with the 

neuronal encoding of task relevant information, or with the specific effects of pharmacological 
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intervention, electrical or optogenetic stimulation (Schweihoff et al., 2021). Such an integration 

of video-based behavioral analysis into a comprehensive neuro-behavioral assessment 

framework is a major goal of large-scale efforts to understand how brain circuits organize goal 

directed natural behavior (Voloh et al., 2023). 

 

Taken together, our study introduced an analysis tool for assessing cognitive variables in NHPs 

from video alone. The adoption of real-time pose estimation tools like DeepLabCut in this study 

reflects recent advancements in behavioral neuroscience, which have enabled precise tracking of 

animal movements for cognitive analysis (Kane et al., 2020). By providing a quantitative and 

scalable method for behavioral assessment, the provided analysis framework opens new avenues 

for neurobehavioral research, facilitating a deeper understanding of cognition in NHPs across 

various experimental conditions. 
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Appendix: 

The full codebase used for this study, including video preprocessing, 3D reconstruction, 

DeepLabCut pose estimation, behavioral classification, and data visualization, has been made 

publicly available to promote transparency and reproducibility. The repository includes 

MATLAB and Python scripts, documentation, and example datasets required to replicate the 

analysis pipeline described in this paper. The code for this project can be accessed at: 

https://github.com/ansencheung/Video-Analysis-and-Decoding-Pipeline.git 
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Figure 1 | Procedural Pipelines. (A) Workflow for 3D pose estimation and classification using
DeepLabCut and MATLAB/Python. Pose estimation from left and right cameras is processed via
DeepLabCut, followed by 2D data extraction, triangulation, and 3D data post-processing in
MATLAB. Attentiveness and screen engagement are classified, with results visualized and
analyzed using Python/MATLAB. (B) Pipeline for pose estimation of rhesus macaques using
DeepLabCut. Video frames (n=4 subjects) are extracted using k-means clustering (20
frames/video, 5 videos/camera, 360 frames/side). Eleven body parts are labeled, and a training
dataset is created. The ResNet50 network is trained (30,000 iterations, learning rate 0.005/0.002)
until loss plateaus. Outlier frames are extracted, relabeled, and used to export pose estimation for
video analysis. 
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Figure 2 | Example Classification of Attentiveness and Screen Engagement. (A) Analysis of
NHP attentiveness over a 2-minute video segment using yaw angle as the primary feature. The
black line represents the yaw angle, with red horizontal lines indicating left and right thresholds
for attentiveness. Green bars denote attentive periods (yaw within thresholds), while grey bars
indicate inattentive periods (yaw beyond thresholds). Image sequences at frames 640–660 and
2680–2700 show transitions from attentive to inattentive states, while frames 740-760 capture
the NHP not being attentive. (B) Screen engagement analysis over a 30-second segment, based
on the right wrist’s proximity to the touchscreen. The red horizontal line denotes the engagement
threshold. Green bars highlight active engagement (distance below threshold), while distances
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above the threshold indicate disengagement. Frames 35–40 show the NHP initiating engagement,
frames 60–69 depict disengagement, and frames 248–252 capture active screen engagement. 

 
Figure 3 | Visualization of Attentiveness and Screen Engagement Scores. (A) Schematic of
the data processing pipeline for cross-trial analysis, summarizing attentiveness and screen
engagement scores (0s and 1s) across frames, either by window size or by task (WM1, M1, EC,
M2, WM2). (B) Example attentiveness score over a 5000-frame video segment, showing binary
classification (attentive vs. inattentive). (C) Screen engagement score over a 90-minute session,
averaged over 300 second windows, with red lines denoting transition between tasks. (D) Mean
attentiveness scores per task (n = 31 sessions), with standard error bars representing variability
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across trials (E) Mean screen engagement scores per task (n = 31 sessions), with standard error
bars representing variability across trials. 
 

 
Figure 4 | Task Classification Using Attentiveness and Screen Engagement Metrics. (A)
Pipeline for task classification (Working Memory [WM], Maze [M], Effort Control [EC]) using
attentiveness and screen engagement scores via supervised and unsupervised classifiers. (B)
Classification accuracy versus window size, with Random Forest (black), K-Means (green), and
chance (red dashed line); red circles mark peak accuracies. (C) Confusion matrix for K-Means at
450-frame window size, with accuracy of 0.575. (D) Feature importance for Random Forest at
540-frame window size, with attentiveness (0.222 ±0.007) and screen engagement (0.778
±0.007). (E) Confusion matrix for Random Forest at 540-frame window size, with accuracy of
0.910. 
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Supplementary Figure S1 | Static Kiosk Environment 3D Reconstruction. (A) Calibration of
MATLAB Stereo Vision Toolbox with checkerboard. (B) Evaluation of calibration results of 11
checkerboard frames. (C) Left (bottom) and right (top) view of the old kiosk environment.  (D)
Left (bottom) and right (top) view of the new kiosk environment. (E) 3D reconstruction of the
old kiosk environment with relative camera position, screen, base, and reward tube plotted. (F)
3D reconstruction of the new kiosk environment with relative camera position, screen, base, and
reward tube plotted. 
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Supplementary Figure S2 | NHP 3D Reconstruction. (A) Manual labeled (11 body parts) of
NHP (B) DLC Predicted (11 body parts) of NHP (C) Reference Frame for D, E, and F (D) 3D
reconstruction of NHP head using predicted nose, left eye, and right eye 3D coordinates of NHP
from reference frame. The three points create the blue plane. Head center and are estimated
based on interpupillary distance. (E) 3D reconstruction of NHP torso based on head center
location and screen position, assuming NHP is always facing screen. (F) 3D reconstruction of
NHP arms and hands based on DLC predicted body parts. 
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