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Herein we introduce the constellation plots as a general approach that merges different

and complementary molecular representations to enhance the information contained

in a visual representation and analysis of chemical space. The method is based on a

combination of a sub-structure based representation and classification of compounds

with a “classical” coordinate-based representation of chemical space. A distinctive

outcome of the method is that organizing the compounds in analog series leads to

the formation of groups of molecules, aka “constellations” in chemical space. The novel

approach is general and can be used to rapidly identify, for instance, insightful and “bright”

Structure-Activity Relationships (StARs) in chemical space that are easy to interpret. This

kind of analysis is expected to be especially useful for lead identification in large datasets

of unannotated molecules, such as those obtained through high-throughput screening.

We demonstrate the application of the method using two datasets of focused inhibitors

designed against DNMTs and AKT1.
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INTRODUCTION

The concept of chemical space is broadly used in drug discovery because of its multiple
potential applications; for instance, in library design, compound or dataset classification,
compound selection, exploration of structure-activity relationships (SAR), and navigation though
structure-property relationships (SPR) in general. However, a precise unique definition of
chemical space is not simple. An even more challenging task is the visual representation of this
subjective concept.

Chemical space is usually defined as the set of all possible organic compounds (Lipinski and
Hopkins, 2004). It is widely recognized that the virtual chemical space is more than astronomically
large, as not even all atoms in the universe would suffice to synthesize a single molecule from each of
all the 1063 possible organic compounds of a size up to 30 atoms (Clayden et al., 2012). Nevertheless,
massive efforts have been undertaken to enumerate billions of hypothetical organic compounds,
thus allowing large virtual screening campaigns to take place (Reymond, 2015; Lyu et al., 2019).

Along with the increasing size of the mapped chemical space, the interest of applying
cartographic methods to visualize the space has expanded (Oprea and Gottfries, 2001). As a
result, numerous visualization and conceptualization approaches into chemical space have emerged
(Larsson et al., 2007; Osolodkin et al., 2015; Naveja and Medina-Franco, 2017). A cornerstone
and key aspect of all proposed methods is the molecular representation and parameters used to
define the space where the compounds will reside. Chemical space visualizations have to reduce
the dimensionality of the problem of comparing molecular structures, which can be done through
algorithms such as principal components analysis and t-distributed stochastic neighbor embedding
(see Osolodkin et al., 2015).
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In most chemical space approaches, it is desirable that
chemical analogs are closer to each other than unrelated and
dissimilar molecules since this allows machine learning methods
to identify clusters of structurally-related molecules (Medina-
Franco et al., 2008; Naveja and Medina-Franco, 2015; Naveja
et al., 2016, 2018a). In addition, clustering analog series would
allow, at least in principle, to map SAR/SPR into that space.
However, due to the vast amplitude of the chemical space and
the inevitable loss of information with an initially large space
projected into lower dimensions, it is expected that non-analog
compounds will end up in the same cluster. Also, when many
points in the chemical space are considered at once, visualizations
become harder to interpret. To address this issue, approaches
such as virtual reality have emerged (Probst and Reymond, 2018).

In parallel to such chemical space approaches based
on coordinates, scaffold analysis is a more consistent and
chemically-intuitive approach for exploring and identifying
collections of analogs (Hu et al., 2011). Ever since the pioneering
work by Bemis and Murcko (1996), computational identification
of chemical scaffolds has been refined. In this line, Stumpfe
et al. (2016) recently introduced the analog series-based scaffold
(ASBS), a revolutionary scaffold concept that is more flexible
and chemically sound than its predecessors. In fact, the ASBS
has proven to yield more biologically meaningful structure-
activity/property relationships (SA/PR) than other scaffold
definitions (Dimova et al., 2016; Kunimoto et al., 2017; Bajorath,
2018; Dimova and Bajorath, 2018).

Although the chemical space of single analog series can
be effectively explored and used, for instance, to guide lead
optimization programmes (Vogt et al., 2018), methods for
analyzing the relationship among scaffolds of different analog
series remain to be explored. Of note, a difficulty in this
regard emerges as analog-series based scaffolds tend not to
be as consistent as Bemis-Murcko scaffolds, since they result
from the retrospective analysis of analog series (Bajorath, 2018).
Accordingly, a core framework inspired in the design of the ASBS
avoids the shortcoming of inconsistency by allowing molecules
to be annotated with more than one putative core (Naveja
et al., Submitted). Hence, large libraries containing analogs can
be condensed into fewer cores. In this way, SA/PR can be
preferentially analyzed for the most explored regions of the
chemical space: analog series.

Herein, we present a general methodology for applying
the putative core framework to produce more concise and
meaningful representations of the chemical space. To our
understanding, this is the first method designed for charting
multiple analog series into a coordinate-based chemical space,
thus combining in a single plot two general and useful approaches
of molecular representation and mapping. Of note, since within
this framework cores may share analogs (i.e., analog series are
allowed to share compounds), such cores can be connected,
thus resembling constellations in the chemical space. Therefore,
we termed the resulting graphics “constellation plots.” As it
will be discussed, activity data (or any property of interest)
can be mapped into the constellation plot allowing to explore
SA/PRs in the space and quickly identify interesting regions in
the space. The rest of this methodological paper is organized

as follows: first, the concept scheme is presented and the
formalism explained through a toy example; thereafter, two case
studies using exemplary datasets are presented; finally, we discuss
the conclusions and perspectives of this novel approach for
combining the scaffold and the chemical space concepts.

METHODS

Datasets Used in the Examples
For illustrating the application of constellation plots in
two different context of analysis, we used two benchmark
datasets that have been previously explored with other analysis
approaches. One set was a group of 827 AKT1 inhibitors
extracted and curated from ChEMBL (Gaulton et al., 2017;
Naveja et al., 2018b). The second dataset was a collection
of 286 compounds tested as inhibitors of DNMT (DNA
methyltransferases). This second data set was integrated from
multiple sources of information as described in Naveja and
Medina-Franco (2018). Since this dataset integrates qualitative
(such as those containing crystallographic data) and quantitative
databases (such as those containing experimental determination
of inhibition curves), for this dataset, we use a categorical
classification of activity in “active” or “inactive.” The files of the
two datasets are included as Supplementary Information.

Chemical Space and Analog Series
As mentioned above, constellation plots fuse two ligand-based
concepts: chemical space and core analysis. Standard chemical
space analysis is carried out by computing descriptors for a
collection of molecules (e.g., physicochemical properties and/or
structural features) and then applying dimensionality reduction
approaches (Rosén et al., 2009; Osolodkin et al., 2015; González-
Medina et al., 2016; Prieto-Martínez et al., 2016; Naveja and
Medina-Franco, 2017; Borrel et al., 2018). As a result, every data
point represents a single molecule (see Figure 1). This can render
many visualizations hard to read and analyze by the naked eye.
Furthermore, the numerous descriptors used are combined, such
that every axis in the visualization turns out to have a quite
abstract meaning. Herein, for the purpose of charting chemical
space, t-distributed stochastic neighbor embedding (t-SNE) is
used. This methodology reduces the number of data points in
the center of the map as compared to other approaches and has
been used successfully in chemical space charting (Maaten and
Hinton, 2008; Lewis et al., 2015). However, other coordinate-
based representations of chemical space can be used in this
general approach.

In contrast to chemical space, standard scaffold and analog
series analysis aims toward a clear and consistent picture of the
relationships among compounds. For instance, a scaffold is a
substructure shared by all compounds annotated with it. A state-
of-the-art approach for defining analog series-based scaffolds
was proposed by Stumpfe et al. (2016). They have reasoned
that for a scaffold to be relevant in medicinal chemistry, it
should not only be a substructure of a molecule, but it also
has to comply with three additional criteria: (i) be a major
component of the whole molecule, (ii) be derived from the
molecule through retrosynthetic rules, and (iii) summarize an
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FIGURE 1 | A hypothetical example of a typical chemical space representation based on coordinates. The axes represent the chemical space and have abstract

meanings regarding a combination of descriptors. In this case, t-SNE using Morgan fingerprints was applied. Every dot represents a single molecule. In activity

landscape modeling, color is used to indicate a property (potency in a particular biological endpoint).

analog series in a particular dataset. A number of computational
approaches for obtaining ASBS have been proposed (Dimova
et al., 2016; Stumpfe et al., 2016; Bajorath, 2018; Naveja et al.,
2019). Within these approaches, an analog series is defined as
a subnetwork connected by matched molecular pairs (MMPs)
(Griffen et al., 2011).

Chemical space analysis of individual analog series has
been carried out to measure progression in lead optimization
and saturation of analog series (Kunimoto et al., 2018; Vogt
et al., 2018; Yonchev et al., 2018). Nevertheless, the fact that
assumption (iii) makes analog series inconsistent in as much as
the scaffold definition is dependent on the dataset used (Bajorath,
2018) is a limitation for the exploration of chemical space of
multiple analog series at once. In a recent study (Naveja et al.,
Submitted), we discussed that by removing assumption (iii) two
effects take place: first, every molecule is allowed to be annotated
to more than a single core (equivalent to the term “scaffold”); and
second, complete consistency is achieved as no core annotations
are ever omitted for any molecule (see Figure 2). It is within this
general core framework that we propose using constellation plots.

Summarizing Analog Series Information in
a Dataset Within the General Core
Framework
Since the general core framework can assign multiple cores
to single molecules, a useful step prior to mapping cores in
the chemical space would be summarizing analog series in the
smallest number of cores possible. As illustrated in Figure 3, in
some instances it is possible to summarize a whole analog series
in a single core structure, while in other cases this cannot be done
without loss of information. Hence, for avoiding such situations,
we did not discard cores unless only one compound mapped to
it. Furthermore, if two or more cores mapped to exactly the same
compounds, then only the largest core was kept and the others
were disregarded from the analysis.

Constellation Plots
After processing a collection of compounds under the general
core framework, information is obtained in multiple regards,
namely: (a) the chemical structure of every core; (b) the sets of
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molecules mapping to each core; (c) the molecules annotated
to multiple cores; and (d) the analog series to which each
compound and core are annotated. We propose a visualization

FIGURE 2 | Two examples of putative cores computed for two molecules.

Note that in this approach the same chemical structure can be its own core

(structures at the bottom). After RECAP fragmentation, hydrogens are added

to the core structure to avoid invalid valence (marked in red).

methodology summarizing these four dimensions in a single
graphic: the constellation plot that is schematically illustrated
in Figure 4.

Essentially, in a constellation plot, the chemical structure of
representative cores in a database (for example, those annotated
with a predefined minimum number of compounds) is used
to find descriptors and map them into a chemical space as
if they were single molecules. The size of the circles is used
to represent the relative number of compounds annotated to
each core. Cores sharing compounds are connected by lines
forming “constellations” in the chemical space. Every circle is
labeled with an identifier for the analog series to which each

core belongs. Additionally, a color scale can be used to represent

an average of a given property or activity of the compounds
annotated with each core, thereby turning constellation plots

useful for activity landscape modeling (Waddell and Medina-
Franco, 2012). Of note, the activity can be, for instance, measured

for a single molecular target. However, the property could also be
a representative measure of the selectivity or promiscuity profile

of all the compounds sharing a core across multiple biological
endpoints (see section Conclusions and Perspectives).

Figure 4, as opposed to Figure 1, is able to summarize a
larger number of compounds than points depicted and contains
information about actual analogs. For instance, analog series I,
J, and L form separate clusters, but the cluster top right has
multiple chemotypes of distinct analog series. This could not be
inferred from clustering algorithms applied to the chemical space
information only.

FIGURE 3 | Examples of two analog series with multiple compounds and cores. (A) Analog series that can be summarized in a single core; (B) Analog series formed

by multiple cores. In case (B) a single core is not enough for summarizing all information in an analog series.
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FIGURE 4 | Schematic representation of a general form of a constellation plot. Every circle in the plot represents a core; the axes comprise the coordinates of the

chemical structure of the core projected into a 2D representation of the chemical space as computed by any of the standard approaches (e.g., generated using

continuous properties or molecular fingerprints and applying t-SNE or principal components analysis); the size of the circles indicates the “n” number of compounds

annotated to a given core; connected circles are cores sharing compounds; the labels indicate the analog series every point belongs to; the color scale represents the

average of a property/activity of the compounds mapping to the core.

Implementation
All scripts required for producing the data herein reported
use free Python code and are made freely available in
Supplementary Information. RDkit was used for computing
fingerprints and manipulation of chemical structures (http://
www.rdkit.org). Scikit-learn was used for computing t-SNE
(Pedregosa et al., 2011).

RESULTS AND DISCUSSION

The construction of constellations plots and exemplary
applications are illustrated with two case studies of general

interest in drug discovery. As mentioned in the section
Methods, the first example consists of a dataset of 827 AKT1
inhibitors obtained from ChEMBL (Gaulton et al., 2017)
and cheminformatically described in Naveja et al. (2018b). The
second example employs a data set of 286DNAmethyltransferase
(DNMT) inhibitors obtained from the integration of several
databases as described in Naveja and Medina-Franco (2018).

Case Study 1: AKT1 Inhibitors
Analogs in this library could be summarized in 144 cores as
discussed in the section Methods. The cores were organized in
79 analog series and contained 440 compounds (about half of the
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FIGURE 5 | General constellation plot for a dataset of AKT1 inhibitors. It is possible to navigate this map, as observed in Figure 6, where the constellation framed

within dashed lines is further explored.

initial dataset). Figure 5 is the constellation plot for these data,
where it becomes apparent that chemical space and chemical
substructure information play simultaneous roles in describing
the SAR. For instance, although some inactive cores are close to
active cores in chemical space, they are not usually contained in
the same analog series. Therefore, these could be categorized as
“scaffold cliffs” rather than simple activity cliffs conceptualized
as two small molecules with similar structures and very different
activities (Maggiora, 2006). In this case, collections of molecules,
rather than single molecules, are being compared.

Figure 6 is a zoomed-in picture into a single “bright” (or
predominantly active) constellation comprising five analog series
and 55 compounds. As it is readily observed, analog series close
in the chemical space have only slight dissimilarities within
their scaffolds; in this case, they all share a naphthyridine or
naphthyridinone scaffold. Constellation plots allow for a more

precise visual SAR analysis and generation of hypotheses. For
instance, the core associated to analog series 62 has only a
different position for the nitrogens in the rings as well as
where substitutions occur. Structural studies could then be
conducted to elucidate which are the most relevant features
for this kind of scaffolds to be active against AKT1. In this
regard, a recent publication co-crystallizing 1,6-naphthyridinone
derivatives similar to those in analog series 20 has shown that
this scaffold is relevant in forming a π-π stacking interaction
with the side chain of Trp80 of the PH-domain (Uhlenbrock
et al., 2019). Nonetheless, variation of the position of nitrogen
atoms in the scaffold were not considered in the cited study.
Indeed, previous SAR studies of these analogs have found
the position of the nitrogen atoms in these scaffolds to
be critical for the activity against AKT (Zhao et al., 2005;
Bilodeau et al., 2008).
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FIGURE 6 | “Zoom-in” into the constellation plot for AKT1 inhibitors selected from Figure 5. The core in analog series 62 is not as active as the nearby cores in

analog series 2 and 12. Few structural differences can be noted for the compounds in this constellation.

Case Study 2: DNMT Inhibitors
Analogs in this library could be summarized in 23 cores following
the procedure discussed in the section Methods. The cores were
organized in 13 analog series and contained 46 compounds
(about 16% of the initial dataset). Compounds in this library have
annotated activity with DNMT1, DNMT3A, and/or DNMT3B.
Figure 7 shows three constellations plots, where chemical space
is the same and colors change to represent the activities against
each DNMT. As elaborated on the section Methods, each circle
in the plot represents a core in which coordinates in the 2D graph
is given by similarity measurements computed from Morgan
fingerprints using t-SNE for dimensionality reduction. Labels
indicate the analog series to which cores belong. The color
represents the percentage of active compounds sharing that
core using a continuous color scale from red (less active cores)
to yellow (more active cores). For this example of use of the
constellation plots, the definition of “active” was determined from
integrating qualitative and quantitative data sources as described
in Naveja and Medina-Franco (2018). Circles in gray indicate
cores with no reported activity for that particular DNMT. The
size of the circle indicates the number of compounds sharing the
core. Connected circles are cores sharing compounds. Figure 7
also shows the chemical structures of representative cores.

The constellation plots for DNMT inhibitors in Figure 7

allow for rapidly getting several interesting insights of the SAR.
For instance, cores at the top left part of the plot from analog
series “A” are a bright constellation against DNMT1, i.e., a region
in chemical space with active analogs. However, these analogs
have not been tested against the other DNMT isoenzymes,
which would help determine whether these inhibitors
are selective.

Of note, there is a “dark” (or predominantly inactive)
constellation in the chemical space of DNMT1 formed by six
cores from analog series “D.” This dark constellation, however,
is more active overall against DNMT3A and appears to be active
against DNMT3B. Furthermore, not all cores in this constellation
have been tested against DNMT3A and DNMT3B, where they
have greater chances of being active.

The plot also reveals a constellation of nucleoside analogs
from series “B” at the bottom-right region of the plot that
is, overall, selective toward DNMT3B vs. DNMT1. This series
has not been tested against DNMT3A yet. Moreover, most of
the cores have been tested in DNMT1 only, thus hindering
discussions on selectivity. In this regard, analysis of constellation
plots is visually helpful in guiding multitarget drug discovery
campaigns and in finding opportunities for selectivity.
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FIGURE 7 | Constellation plots for a dataset of DNA methyltransferase (DNMT) inhibitors tested with DNMT1, DNMT3A, and DNMT3B.

CONCLUSIONS AND PERSPECTIVES

We introduced a novel approach for combining chemical space
and analog series methodologies into a single descriptive analysis
that can be summarized in a constellation plot. Adding the analog
series concept into the chemical space facilitates discussions of

regions in the space, as every point summarizes a collection of
analogs. A so-called “constellation in chemical space” can be

conceptualized as those regions in chemical space formed by
core scaffolds with similar structure (as defined by a coordinate-

based projection). Mapping activity on the plot readily uncovers
active and inactive zones, e.g., bright or dark regions, in chemical
space. Of note, constellation plots would be useful for exploring
virtually any chemical property, such as biological activity (as
demonstrated with two case studies), but also physicochemical
properties, complexity or selectivity statistics. In this regard,
constellation plots are a flexible approach with multiple potential

applications in academia and industry, aiding in the quest
of finding potential leads from large collections of screening
data (e.g., such as that produced by high-throughput screening
campaigns). One of the next steps of this work is the application
of the constellations plots to navigate through cell selectivity data
of a comprehensive screening dataset. Results will be disclosed in
due course.
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