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Abstract: An effective strategy for successful chemotherapy relies on creating compounds with high
selectivity against cancer cells compared to normal cells and relatively low cytotoxicity. One such
approach is the discovery of critical points in cancer cells, i.e., where specific enzymes that are potential
therapeutic targets are generated. Triazine is a six-membered heterocyclic ring compound with three
nitrogen replacing carbon-hydrogen units in the benzene ring structure. The subject of this review
is the symmetrical 1,3,5-triazine, known as s-triazine. 1,3,5-triazine is one of the oldest heterocyclic
compounds available. Because of its low cost and high availability, it has attracted researcher attention
for novel synthesis. s-Triazine has a weak base, it has much weaker resonance energy than benzene,
therefore, nucleophilic substitution is preferred to electrophilic substitution. Heterocyclic bearing a
symmetrical s-triazine core represents an interesting class of compounds possessing a wide spectrum
of biological properties such as anti-cancer, antiviral, fungicidal, insecticidal, bactericidal, herbicidal
and antimicrobial, antimalarial agents. They also have applications as dyes, lubricants, and analytical
reagents. Hence, the group of 1,3,5-triazine derivatives has developed over the years. Triazine is not
only the core amongst them, but is also a factor increasing the kinetic potential of the entire derivatives.
Modifying the structure and introducing new substituents makes it possible to obtain compounds
with broad inhibitory activity on processes such as proliferation. In some cases, s-triazine derivatives
induce cell apoptosis. In this review we will present currently investigated 1,3,5-triazine derivatives
with anti-cancer activities, with particular emphasis on their inhibition of enzymes involved in the
process of tumorigenesis.

Keywords: 1,3,5-triazine; s-triazine; anticancer; enzyme inhibitory activity

1. Introduction

As far as we know, tumors are the most serious cause of death in the world. Cancers
with the highest mortality rates in 2018 were lung cancer (2.1 million new cases and
1.8 million deaths), breast cancer (million new cases and 880 thousand deaths), prostate
cancer (1.3 million new cases and 360 thousand deaths), and stomach cancer (1 million new
cases and 783 thousand deaths) [1].

The fight against cancer has consumed huge amounts of money to find the cure with
little effect. Nevertheless, it cannot be defined as a failure. As Napoleon Hill said, “every
adversity, every failure, every heartache carries with it the seed of an equal or greater
benefit”. Following this thought, we would like to highlight two aspects of the fight
against cancer. First, decades of research lead to more and more precise descriptions of the
mechanisms taking place in cancer cells, it is possible to determine the most effective aim
in targeted therapies. Second and equally important, the development of small molecules.
The development of more active, selective and less cytotoxic drugs is due to designing
chemical compounds based on a structure-activity relationship (SAR) [2]. In this search,
the leading linker is 1,3,5-triazine, a symmetrical heterocyclic aromatic ring enabling the
expansion of the structure in a multi-vector manner. Decades of research have revealed a

Pharmaceuticals 2022, 15, 221. https://doi.org/10.3390/ph15020221 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph15020221
https://doi.org/10.3390/ph15020221
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0002-8407-081X
https://orcid.org/0000-0002-3479-0480
https://doi.org/10.3390/ph15020221
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph15020221?type=check_update&version=2


Pharmaceuticals 2022, 15, 221 2 of 19

wide range of properties of s-triazine derivatives. In this review we will present currently
investigated 1,3,5-triazine derivatives with anti-cancer activities.

This review presents the current state of knowledge on 1,3,5-triazine derivatives, their
structures and anticancer activity, as well as their ability to inhibit different enzymes or their
DNA-binding potential. This data could be helpful in the development of new drugs and
therapeutic methods. By analysing the presented approach, a series of compounds with
high potency and low toxicity can be designed, synthesized, characterized and evaluated
for desired pharmacological activity. The collected data are presented in summary Table 1.

Table 1. Promising effects of 1,3,5-triazine derivatives on cell lines and/or enzymes. N/A; not available.

No. Cancer Cells/Effects Targets/Effects Reference Substance Ref.

1 N/A DNA topoisomerase IIα
(IC50 = 57.6 µM)

Etoposide: DNA topoisomerase IIα
(IC50 = 59.2 µM) [3]

2
A549 (IC50 = 0.20 µM)
MCF-7 (IC50 = 1.25 µM)
Hela (IC50 = 1.03 µM)

PI3Kα (IC50 = 7.0 nM)
mTOR (IC50 = 48 nM)

GDC-0941: A549 (IC50 = 1.21 µM),
MCF-7 (IC50 = 1.47 µM), Hela
(IC50 = 3.72 µM), PI3Kα

(IC50 = 6.0 nM), mTOR
(IC50 = 525 nM);
PI-103: PI3Kα (IC50 = 5.1 nM),
mTOR (IC50 = 21 nM)

[4]

3

MDA-MB321 (IC50 = 15.83 µM)
MCF-7 (IC50 = 16.32 µM)
Hela (IC50 = 2.21 µM)
HepG2 (IC50 = 12.21 µM)

mTOR (IC50 = 8.45 nM)
PI3Kα (IC50 = 3.41 nM)

Gedatolisib:
mTOR (IC50 = 2.5 nM)
PI3Kα (IC50 = 6.04 nM)

[5]

7

leukemia (GI50 = 1.96 µM)
colon cancer (GI50 = 2.60 µM)
CNS (GI50 = 2.72 µM)
melanoma (GI50 = 1.91 µM)
ovarian (GI50 = 4.01 µM)
renal (GI50 = 3.03 µM)
prostate (GI50 = 4.40 µM)
breast (GI50 = 2.04 µM)

hDHFR (IC50 = 0.002 µM)

Triazine–Benzimidazole:
leukemia (GI50 = 3.71 µM)
colon cancer (GI50 = 2.76 µM)
CNS (GI50 = 1.86 µM)
melanoma (GI50 = 2.70 µM)
ovarian (GI50 = 2.41 µM)
renal (GI50 = 1.89 µM)
prostate (GI50 = 2.75 µM)
breast (GI50 = 2.58 µM)
MTX: hDHFR (IC50 = 0.02 µM)

[6]

8
HCT116 (IC50 = 0.88 µM)
A549 (IC50 = 0.07 µM)
HL-60 (IC50 = 0.33 µM)

hDHFR (IC50 = 0.00746 µM)

MTX:
HCT116 (IC50 = 0.75 µM)
A549 (IC50 = 0.25 µM)
HL-60 (IC50 = 1.09 µM)
HepG2 (IC50 = 0.41 µM)
MDA-MB-234 (IC50 = 9.49 µM)
hDHFR (IC50 = 0.00667 µM)

[7]

9
HCT116 (IC50 = 1.61 µM)
A549 (IC50 = 0.5 µM)
HL-60 (IC50 = 0.87 µM)

hDHFR (IC50 = 0.00372 µM)

10

HCT116 (IC50 = 0.02 µM)
A549 (IC50 = 0.74 µM)
HL-60 (IC50 = 0.35 µM)
HepG2 (IC50 = 1.4 µM)
MDA-MB-234 (IC50 = 0.44 µM)

hDHFR (IC50 = 0.00646 µM)

11

HCT116 (IC50 = 0.001 µM)
A549 (IC50 = 0.21 µM)
HL-60 (IC50 = 0.33 µM)
HepG2 (IC50 = 1.38 µM)
MDA-MB-234 (IC50 = 0.06 µM)

hDHFR (IC50 = 0.00408 µM)

12 HCT116 (GI50 = 0.026 µM)
MCF-7 (GI50 = 0.08 µM)

hDHFR (IC50 = 0.0061 µM)
rat TrxR (IC50 = 4.6 µM)

MTX:
hDHFR (IC50 = 0.0079 µM)
HCT116 (GI50 = 0.015 µM)
MCF-8 (GI50 = 0.024 µM)

[8]

13 HCT116 (GI50 = 0.116 µM)
MCF-8 (GI50 = 0.127 µM)

hDHFR (IC50 = 0.0026 µM)
rat TrxR (IC50 = 5.9 µM)
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Table 1. Cont.

No. Cancer Cells/Effects Targets/Effects Reference Substance Ref.

14 HeLa (IC50 = 16 µM)
HaCaT (IC50 = 61 µM)

hCAI (KI = 733.3 nM)
hCAII (KI = 160.8 nM)
hCAIX (KI = 41.1 nM)
hCAXII (KI = 77.6 nM)

AAZ:
hCAI (KI = 250 nM)
hCAII (KI = 12.1 nM)
hCAIX (KI = 25.8 nM)
hCAXII (KI = 5.7 nM)
MZA:
hCAI (KI = 780 nM)
hCAII (KI = 14 nM)
hCAIX (KI = 27 nM)
hCAXII (KI = 3.4 nM)
EZA:
hCAI (KI = 25 nM)
hCAII (KI = 8 nM)
hCAIX (KI = 34 nM)
hCAXII (KI = 22 nM)
DCP:
hCAI (KI = 1200 nM)
hCAII (KI = 38 nM)
hCAIX (KI = 50 nM)
hCAXII (KI = 50 nM)

[9]

15 N/A
hCAI (KI = 16.7 nM)
hCAII (KI = 7.4 nM)
hCAIX (KI = 0.4 nM)

[10]

16 N/A
hCAI (KI = 2679.1 nM)
hCAII (KI = 380.5 nM)
hCAIX (KI = 27.0 nM)

17 N/A
hCAI (KI = 394.9 nM)
hCAII (KI = 3.1 nM)
hCAIX (KI = 0.91 nM)

[11]

18 N/A

hCAI (KI = 441.7 nM)
hCAII (KI = 152.9 nM)
hCAIX (K = 14.6 nM)
hCAXII (KI = 44.4 nM)

[12]

19

HeLa (IC50 = 39.7 µM)
MCF-7 (IC50 = 41.5 µM)
HL-60 (IC50 = 23.1 µM)
HepG2 (IC50 = 31.2 µM)

EGFR-TK
(Inhibition rate = 94.3%;
C = 10 µM)

Cisplatin:
HeLa (IC50 = 32.5 µM)
MCF-7 (IC50 = 24.4 µM)
HL-60 (IC50 = 12.3 µM)
HepG2 (IC50 = 25.9 µM)
Erlotinib:
EGFR-TK (Inhibition rate = 100%;
C = 10 µM);

[13]

20 N/A EGFR-TK (IC50 = 2.54 µM) Dacomitinib:
EGFR-TK (IC50 = 0.06 µM) [14]

21

HeLa (IC50 = 44.5 µM)
MCF-7 (IC50 = 52.2 µM)
HL-60 (IC50 = 40.3 µM)
HepG2 (IC50 = 56.4 µM)

EGFR-TK
(Inhibition rate = 96.3%;
C = 10 µM)

Cisplatin:
HeLa (IC50 = 31.3 µM)
MCF-7 (IC50 = 22.5 µM)
HL-60 (IC50 = 14.3 µM)
HepG2 (IC50 = 26.4 µM)
Erlotinib:
EGFR-TK (Inhibition rate = 100%;
C = 10 µM)

[15]

22

HeLa (IC50 = 32.4 µM)
MCF-7 (IC50 = 32.3 µM)
HL-60 (IC50 = 26.3 µM)
HepG2 (IC50 = 45.3 µM)

EGFR-TK
(Inhibition rate = 90.5%;
C = 10 µM)

26

U-87MG (IC50 = 0.42 µM)
HCT-116 (IC50 = 0.13 µM)
MDA-MB-231 (IC50 = 0.14 µM)
PC-3 (IC50 = 0.63 µM)

FAK (IC50 = 50 nM)

TAE-226:
U-87MG (IC50 = 0.19 µM)
HCT-116 (IC50 = 0.23 µM)
MDA-MB-231 (IC50 = 1.9 µM)
PC-3 (IC50 = 0.26 µM)
FAK (IC50 = 7 nM)

[16]
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Table 1. Cont.

No. Cancer Cells/Effects Targets/Effects Reference Substance Ref.

27

HT-29 (IC50 = 9.5 µM)
H1299 (IC50 = 11 µM)
A549 (IC50 = 14.6 µM)
MDA-MB-231 (IC50 = 2.5 µM)
OV90 (IC50 = 8 µM)
A2780 (IC50 = 7.1 µM)
MCF-7 (IC50 = 6 µM)

Rad6
ubiquitin conjugating enzyme
(nd)

TZ9: HT-29 (IC50 = 8.3 µM)
H1299 (IC50 = 45 µM)
A549 (IC50 = 7.2 µM)
MDA-MB-231 (IC50 = 4.6 µM)
OV90 (IC50 = 60 µM)
A2780 (IC50 = 7.8 µM)
MCF-7 (IC50 = 5 µM)

[17]28

HT-29 (IC50 = 5.8 µM)
H1299 (IC50 = 5 µM)
A549 (IC50 = 10.8 µM)
MDA-MB-231 (IC50 = 4.2 µM)
OV90 (IC50 = 12 µM)
A2750 (IC50 = 6.3 µM)
MCF-7 (IC50 = 7.2 µM)

29

HT-29 (IC50 = 5.2 µM)
H1299 (IC50 = 22 µM)
A549 (IC50 = 11.6 µM)
MDA-MB-231 (IC50 = 3.5 µM)
OV90 (IC50 = 5 µM)
A2750 (IC50 = 3.6 µM)
MCF-7 (IC50 = 4.2 µM)

30 MCF-7 (IC50 = 2.95 µg/mL)
HepG2 (IC50 = 3.7 µg/mL) N/A

Doxorubicin:
MCF-7 (IC50 = 2.98 µg/mL)
HepG2 (IC50 = 3.82 µg/mL)

[18]

31

MCF-7 (IC50 = 4.8 µM)
MDA-MB-231 (IC50 = 48.3 µM)
HT-29 (IC50 = 9.8 µM)
HGC-27 (IC50 = 15.1 µM)

N/A

ZSTK474:
MDA-MB-231 (IC50 = 10.8 µM)
HT-29 (IC50 = 25.1 µM)
HGC-27 (IC50 = 1.11 µM)

[19]

32

MCF7 (IC50 = 5 µM)
MDA-MB-231 (IC50 = 15 µM)
HepG2 (IC50 = 21.1 µM)
LoVo (IC50 = 8.4 µM)
K-562 (IC50 = 5.9 µM) Arrest cell proliferation in S and

G2/M phase. None lethal for
zebrafish embryos.

N/A [20]

33

MCF7 (IC50 = 7.5 µM)
MDA-MB-231 (IC50 = 14 µM)
HepG2 (IC50 = 17.5 µM)
LoVo (IC50 = 6.1 µM)
K-562 (IC50 = 9.8 µM)

34
MCF-7 (IC50 = 0.82 µM)
MDA-MB-231 (IC50 = 9.36 µM)
HCT-116 (IC50 = 17.89 µM)

Arrest of MCF-7 cells in the
G2/M stage(36.8%). Mortality
response of zebrafish
embryos—na.

Tamoxifen:
MCF-7 (IC50 = 5.12 µM)
MDA-MB-231 (IC50 = 15.01 µM)
HCT-116 (IC50 = 26.41 µM)

[21]

35 MG-MID (GI50 = 2.68 µM;
TGI = 11 µM; LC50 = 32.3 µM)

BSA
(distance in complex = 7.9 nm)

N/A [22]
36 MG-MID (GI50 = 1.38 µM;

TGI = 3.15 µM; LC50 = 8.63 µM)
BSA
(distance in complex = 6.61 nm)

37 MG-MID (GI50 = 2.37 µM;
TGI = 7.16 µM; LC50 = 7.88 µM)

BSA
(distance in complex = 7.62 nm)

38 MG-MID (GI50 = 0.72 µM;
TGI = 1.8 µM; LC50 = 4.88 µM)

BSA
(distance in complex = 7.98 nm)
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Table 1. Cont.

No. Cancer Cells/Effects Targets/Effects Reference Substance Ref.

39 A549 (IC50 = 53 µM) N/A Floxuridine: A549 (IC50 = 5.8 µM) [23]

40

DAN-G (IC50 = 2.14 µM)
A-427 (IC50 = 1.51 µM)
LCLC-103H (IC50 = 2.21 µM)
SISO (IC50 = 2.6 µM)
RT-4 (IC50 = 1.66 µM)

Ct-DNA (potencial target)

Cisplatin: DAN-G (IC50 = 0.73
µM)A-427 (IC50 = 1.96 µM)
LCLC-103H (IC50 = 0.90 µM)
SISO (IC50 = 0.24 µM)
RT-4 (IC50 = 1.61 µM)

[24]

41 UO-31 (GI50 = 1.54 µM)

N/A N/A [25]
42 RXF 393 (GI50 = 0.569 µM)

HS 578 (GI50 = 0.644 µM)

43 SF-539 (GI50 = 1.35 µM)

44 SF-539 (GI50 = 1.18 µM)

45

MDA-MB-231 (IC50 = 4.3 µg/mL)
HeLa (IC50 = 2.21 µg/mL)
KG1a (IC50 = 6.45 µg/mL)
Jurkat (IC50 = 28.33 µg/mL)
SiHa (IC50 = 1.34 µg/mL)
CaSki (IC50 = 4.56 µg/mL)
DoTc2 (IC50 = 2.15 µg/mL)

Increase concentration of
C-caspase-3, C-caspase-9 and
Bcl-2. Decrease of Bax. Tumor
reduction in nude mouse
(C = 10 µM).

Erlotinib:
MDA-MB-231 (IC50 = 0.16 µg/mL)
HeLa (IC50 = 0.21 µg/mL)
KG1a (IC50 = 0.18 µg/mL)
Jurkat (IC50 = 22.43 µg/mL)
SiHa (IC50 = 0.25 µg/mL)
CaSki (IC50 = 0.34 µg/mL)
DoTc2 (IC50 = 0.28 µg/mL)

[26]

46 N/A TNF-α (IC50 = 29 µM)

N/A [27]
47 PC-3 (IC50 = 43.3 µM)

TNF-α (IC50 = 13 µM), inducing
cell-cycle arrest at the G0/G1
phase (J774 cell line).

48 DU145 (GI50 = 3.43 µM)

N/A
Nilotinib:
DU145 (GI50 = 6.35 µM) [28]

49 DU145 (GI50 = 4.01 µM)

50 DU145 (GI50 = 2.38 µM)

51 DU145 (GI50 = 0.67 µM)

52
MDA-MB231 (GI50 = 0.007 µM)
SKBR-3 (GI50 = 0.3 µM)
MCF-7 (GI50 = 12.5 µM) N/A

MTX:
MDA-MB231 (GI50 = 0.01 µM)
MCF-7 (GI50 = 5.79 µM)
Nilotinib:
MDA-MB231 (GI50 = 0.04 µM)
SKBR-3 (GI50 = 9.6 µM)

[29,30]

53 MDA-MB231 (GI50 = 0.001 µM)
SKBR-3 (GI50 = 0.21 µM)

54 MCF-7 (IC50 = 14.85 µM)
TPC-1 (IC50 = 9.23 µM)

Phosphorylated TK
(Inhibition rate = 94.4%;
C = 10 µM) Vandatinib:

MCF-7 (IC50 = 10.42 µM)
TPC-1 (IC50 = 7.63 µM)
Phosphorylated TK
(Inhibition rate = 98.6%; C = 10 µM)

[31]55 MCF-7 (IC50 = 12.5 µM)
TPC-1 (IC50 = 7.16 µM)

Phosphorylated TK (Inhibition
rate = 96.4%; C = 10 µM)

56 MCF-7 (IC50 = 14.43 µM)
TPC-1 (IC50 = 8.8 µM)

Phosphorylated TK (Inhibition
rate = 94.3%; C = 10 µM)

57
LN-18 (IC50 = 46 µM)
LN-229 (IC50 = 50 µM)
LBC3 (IC50 = 40 µM)

N/A N/A [32]

58 DLD-1 (IC50 = 13.71 µM)
HT-29 (IC50 = 17.78 µM) BAX (increase); Bcl-2 (decrease) 5-FU: DLD-1 (IC50 = 27.22 µM)

HT-29 (IC50 = 21.72 µM) [33]
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Table 1. Cont.

No. Cancer Cells/Effects Targets/Effects Reference Substance Ref.

59

HCT-116 (Inhibition = 115.53%)
SW-620 (Inhibition = 95.06%)
SF-539 (Inhibition = 89.27%)
OVCAR-4 (Inhibition = 94.39%)
PC786-0 (Inhibition = 93.76%)
ACHN (Inhibition = 86.27%)
MCF-7 (Inhibition = 94.82%)

CDK2 (Inhibition rate = 82.38%;
C = 10 µM; IC50 = 1.85 µM) Roscovitine:

CDK2 (Inhibition rate = 89.6%;
C = 10 µM)

[34]

60
ATCC (Inhibition = 90.02%)
NCI-H460 (Inhibition = 83.66%)
OVCAR-4 (Inhibition = 92.27%)

CDK2 (Inhibition rate = 81.96%;
C = 10 µM; IC50 = 2.09 µM)

61 SKMEL-103 (IC50 = 25 µM) PI3K (decrease)AMPK (decrease) N/A [35]

62
NCI-H460 (Growth Percent = −50%)
MDA-MB468
(Growth Percent = −20.7%)

N/A N/A [36]

63

HCC-2998
(Growth Percent = −82.1%)
RXF 393 (Growth Percent = −68%)
NCI-H460
(Growth Percent = −58.3%)
ACHN (Growth Percent = −57%)
MDA-MB-468
(Growth Percent = −52.3%)

64

HCC-2998
(Growth Percent = −69.3%)
RXF 393 (Growth Percent = −66%)
NCI-H460
(Growth Percent = −64.8%)
ACHN (Growth Percent = −45%)

65

HCC-2998 (Growth Percent = −77%)
RXF 393 (Growth Percent = −74.4%)
NCI-H460
(Growth Percent = −49.4%)
MDA-MB-468
(Growth Percent = −47%)

66

HCC-2998
(Growth Percent = −53.7%)
RXF 393 (Growth Percent = −55%)
NCI-H460
(Growth Percent = −54.7%)
ACHN (Growth Percent = −52.8%)
NCI-H322M
(Growth Percent = −50.5%)

67 A549 (IC50 = 144.1 µg/mL)
Bel7402 (IC50 = 195.6 µg/mL) N/A N/A [37]
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Table 1. Cont.

No. Cancer Cells/Effects Targets/Effects Reference Substance Ref.

68

leukemia (Mean GI50 = 0.96 µM)
colon cancer (Mean GI50 = 1.64 µM)
CNS (Mean GI50 = 1.80 µM)
melanoma (Mean GI50 = 1.62 µM)
ovarian (Mean GI50 = 2.12 µM)
renal (Mean GI50 = 1.66 µM)
prostate (Mean GI50 = 1.75 µM)
breast (Mean GI50 = 1.59 µM)

N/A N/A [38]69

leukemia (Mean GI50 = 2.55 µM)
colon cancer (Mean GI50 = 1.92 µM)
CNS (Mean GI50 = 2.09 µM)
melanoma (Mean GI50 = 3.4 µM)
ovarian (Mean GI50 = 2.67 µM)
renal (Mean GI50 = 1.80 µM)
prostate (Mean GI50 = 1.2.22 µM)
breast (Mean GI50 = 2.03 µM)

70

leukemia (Mean GI50 = = 4.14 µM)
colon cancer (Mean GI50 = 1.92 µM)
CNS (Mean GI50 = 3.13 µM)
melanoma (Mean GI50 = 7.84 µM)
ovarian (Mean GI50 = 6.05 µM)
renal (Mean GI50 = 3.28 µM)
prostate (Mean GI50 = 4.54 µM)
breast (Mean GI50 = 3.42 µM)

2. Results
2.1. Topoisomerase Inhibitors

Topoisomerases are a group of enzymes involved in replication, they are responsible
for the degree of twist of the double helix. Topoisomerases convert the chemical energy
from ATP into the energy of the torsion tension of a molecule with a superhelical structure.
In vivo, topoisomerases unravel the DNA double helix, thus providing a template for the
replication or transcription of enzymes. Depending on the number of phosphodiester
bonds to be broken at one time, there are two types of enzyme. Topoisomerase I hydrolyses
one bond, cuts one strand and is responsible for removing superstrands from the DNA
molecule (relaxation). Topoisomerase II hydrolyses two bonds, cuts both strands and is
responsible for adding supercoils to the DNA molecule [39].

Human topoisomerase II inhibitory properties were shown by 4-(benzylthio)-6-((3-
chlorobenzyl)thio)-1,3,5-triazin-2(1H)-one 1 (Figure 1), giving an IC50 of 57.6 µM. Addition-
ally, the binding of compound 1 with the htIIα ATPase domain was proved via microscale
thermophoresis (MST) and molecular dynamics (MD) [3].
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2.2. Dual Phosphoinositide 3-Kinase and Mammalian Target of Rapamycin Inhibitors

The phosphoinositide 3-kinase (PI3K) enzymes show a two-way activity including the
activity of the lipid kinase and the activity of the protein kinase. They play a crucial role in
processes such as proliferation, migration, differentiation, survival, and trafficking. The
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PI3K family contains eight isoforms divided into three distinct classes (I, II, and III) which
may be different in terms of cellular responsibility [40].

The function of the mammalian target of rapamycin (mTor) is to regulate growth,
proliferation and cell traffic, and the processes of translation and transcription. The mTOR
catalyzes the phosphorylation ribosomal protein S6 kinase β-1 (S6K1), eukaryotic transla-
tion initiation factor 4E binding protein 1 (4E-BP1), Akt, protein kinase C (PKC), and type-I
insulin-like growth factor receptor (IGF-IR), thereby regulating protein synthesis, nutrient
metabolism, growth factor signaling, cell growth, and migration [41].

The construction of compounds with dual inhibitory effects contributes to obtaining a
more selective effect. Potential anti-cancer drugs that inhibit PI3K and mTor at the same
time showed greater efficiency and reduced the likelihood of inducing drug resistance [42].

Substituted 2-(thiophen-2-yl)-1,3,5-triazine derivative 2 (Figure 2) exhibited excellent
anti-cancer potency for A549, MCF-7 (breast cancer) and Hela (cervical cancer) cell lines
with IC50 values of 0.20 µM, 1.25 µM, and 1.03 µM, respectively. Western blot analysis
proved drivative 2 could suppress the phosphorylation of AKT. The degree of inhibition
(%) demonstrated selective inhibition of PI3Kα/mTOR, unlike epidermal growth factor
receptors (EGFR, c-Met, VEGFR-2, and EGFRL858R/T790M) [4].
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From the new series of 1,3,5-triazine derivatives rich in morpholine moiety, 4-((4-(4-
morpholino-6-((2-morpholinoethyl)amino)-1,3,5-triazin-2-yl)piperazin-1-yl)sulfonyl)phenol
3 (Figure 2) showed the highest cytotoxic activity against MDA-MB321 (breast cancer),
MCF-7, HeLa, and HepG2 (human hepatocellular carcinoma) cells with IC50 values of
15.83 µM, 16.32 µM, 2.21 µM, and 12.21 µM, respectively. Kinase inhibitory activity (IC50)
of derivative 3 was equal to 3.41 nM for PI3K, and 8.45 nM for mTor [5].

2.3. Dihydrofolate Reductase Inhibitors

Dihydrofolate reductase (DHFR) is an enzyme responsible for reducing dihydrofolic
acid to tetrahydrofolic acid by catalyzing the transfer of hydride from NADPH, generating
the oxidized form of NADP+ [43]. Inhibiting DHRF induces an amount reduction of
tetrahydrofolate (THF), consequently decreasing the synthesis of purines, amino acids, and
thymidylate, which are crucial in cell growth and proliferation [44].

Singa et al. demonstrated synthesized triazine-benzimidazole analogs 4–7 (Figure 3)
appointed with a hydrogen bond interaction domain, a polar hydrophilic substituent and an
intercalating group. The median growth inhibitory (GI50) values for these compounds were
measured relative to leukemia, non-small cell lung cancer, colon cancer, central nervous
system (CNS) tumor, melanoma, ovarian cancer, renal cancer, prostate cancer, and breast
cancer cells with values in the range of 1.91–2.72 µM. The 50% inhibitory concentration
value of DHRF activity was lowest for derivative 7 and was 0.002 µM, which was equivalent
to methotrexate (MTX) (IC50 = 0.02 µM) [6,45].

Zhou et al. reported hDHFR inhibiting activity in four 1,3,5-triazine analogs bearing
a heteroatom (O/S) spiro-ring. Structures 8–11 (Figure 3) presented hDHFR inhibitory
activity with IC50 values of 7.46 nM, 3.72 nM, 6.46 nM, and 4.08 nM, compared with MTX.
An in vivo study demonstrated that compound 8 significantly inhibited tumor growth in a
nude mouse [7].
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A hybrid of 4,6-diamino-1,2-dihydro-1,3,5-triazine and chalcone led to the generation
of 15 new compounds as potential DHFR and TrxR (thioredoxin reductase) inhibitors. The
greatest results were exhibited by compounds 12 and 13 (Figure 3). Both acted cytotoxic
against HCT116 (human colorectal carcinoma) (GI50 = 0.026 µM; GI50 = 0.116 µM) and
MCF-7 (GI50 = 0.080 µM; GI50 = 0.127 µM) cancer cell lines. In addition, studies have shown
strong in vitro inhibitory activities against recombinant human DHFR (IC50 = 0.0061 µM;
IC50 = 0.0026 µM) and rat TrxR (IC50 = 4.6 µM; IC50 = 5.9 µM) enzymes [8].

2.4. Carbonic Anhydrase Inhibitors

Carbonic anhydrases (CAs), metalloenzymes from the lyase group, are responsible for
pH homeostasis and catalyzing the reversible reaction of the formation of the bicarbonate
ion HCO−3 from water and carbon dioxide [46].

Among the numerous isoforms we can distinguish the ubiquitous variants CA I and
CA II in mammals. In a pathological condition such as hypoxia, increased expression of
CA IX and CA XII is observed. These enzyme forms are involved in the regulation of pH
homeostasis and intercellular communication and ion transport. 2-[4-Chloro-5-methyl-2-
(naphthalen-1-ylmethylthio)-benzenesulfonyl]-1-[4-chloro-6-(4-sulfamoylphenylamino)-1,3,5-
triazin-2-ylamino]guanidine 14 (Figure 4) acted with strongest selectivity toward hCA IX
versus hCA I (hCA I/hCA IX = 18) and hCA II (hCA II/hCA IX = 4). Compound 14
showed prominent cytotoxicity towards HeLa cancer cells (IC50 = 17 µM) and did not
exhibit toxicity to the non-cancerous HaCaT cells (IC50 = 61 µM) [9].

Research conducted by Havránková et al. considered the interaction of CA I, II and IX
with 1,3,5-triazine derivatives incorporating piperazine, aminoalcohol and sulfonamide.
The results showed that 1,3,5-triazines with a 4-hydroxyaniline substituent achieved the
highest ratio of selective inhibition (hCA IX/hCA II): compound 15 (18.50); compound 16
(14.09) (Figure 4) [10].

Based on the structure of SCL-0111, new 1,3,5-triazine derivatives 17 and 18 were
synthesized (Figure 4) and their ability to inhibit CA I, II, IX, and XII was investigated. The
most promising result was the selective inhibition of CA IX by compound 17 with a KI
value = 0.91 nM [11], while compound 18 had a KI value of 14.6 nM [12].
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2.5. Epidermal Growth Factor Receptor Inhibitors

The role of the epidermal growth factor receptor (EGFR) in the pathogenesis process
is an important topic of scientific research. As a result, it was discovered that mutations
leading to overexpression of EGFR genes (e.g., increased regulation or amplification) are
significantly associated with many cancers: lung granuloma (40% of cases), rectal tumors,
glioblastoma (50%), and epithelial carcinomas of the head and neck (80–100%) [47,48].

Through the “one pot” reaction, 15 novel monastrol-1,3,5-triazine derivatives were
obtained and investigated for anti-cancer properties and cytotoxicity. Derivative 19 sub-
stituted by 3-fluorphenylamino groups (Figure 5) presented highest IC50 against cancer
cell lines [HeLa—39.7 µM; MCF-7—41.5 µM; HL-60 (human pro-myelocytic leukemia
cell)—23.1 µM; HepG2—31.2]. This compound was nontoxic to normal epithelial cells
MCF-12A while at a concentration of 10 nM the inhibition of EGFR-TK by 19 was equal
96.4% [13].

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 5. Structure of EGFR inhibitors. 

2.6. Vascular Endothelial Growth Factor 
Vascular endothelial growth factor (VEGF) production can be induced in a cell that 

does not receive enough oxygen [26]. When a cell is deficient in oxygen, it produces hy-
poxia induced factor (HIF). HIF stimulates the release of VEGF (including the modulation 
of erythropoiesis). Circulating VEGF then binds to VEGF receptors on endothelial cells, 
triggering a tyrosine kinase pathway leading to angiogenesis [27]. Expression of angio-
poietin-2 in the absence of VEGF leads to endothelial cell death and vascular regression. 
VEGF acts as the central mediator of tumor angiogenesis, stimulating the growth of new 
blood vessels from nearby capillaries and allowing tumors to access the oxygen and nu-
trients they need to grow [28].  

Quinazoline-1,3,5-triazine derivatives 23, 24, and 25 (Figure 6) demonstrated anti-
tumor activity against HeLa, MCF-7, HL-60, and HepG2 with IC50 values in range of 6–16 
µM. In addition, they were non-toxic against the normal cell line of HFF (human foreskin 
fibroblasts). Molecular docking results demonstrated the high potency of derivatives 23, 
24 and 25 to bind the hydrophobic pocket of the N-terminal chain in the ATP binding site 
of VEGFR [29]. 

 
Figure 6. Structure of VEGF inhibitors. 

2.7. Focal Adhesion Kinase Inhibitors 
Focal Adhesion Kinase (FAK) is a 125-kDa cytoplasmic tyrosine kinase. Deregulation 

of FAK-dependent processes such as cell adhesion, growth, survival, and mobility are a 
significant component of tumor progression. Overexpression of FAK leads to the inhibi-
tion of apoptosis and an increase in the incidence of metastatic tumors [30]. 

Dao et al. showed that compound 26 (Figure 7) is the strongest FAK inhibitor (IC50 = 
0.05 µM). Growth inhibitory activity on human glioblastoma (U-87MG), human colon car-
cinoma (HCT-116), MDA-MB-231, and human prostate cancer (PC-3) by compound 26 
obtained the following results 0.42 µM, 0.13 µM, 0.14 µM, and 0.63 µM compared to TAE-
226 (0.19 µM, 0.23 µM, 1.9 µM, and 0.26 µM). Furthermore, compound 26 turned out to 
fit well into the ATP binding site of the FAK via molecular docking [31]. 

Figure 5. Structure of EGFR inhibitors.

Analysis of molecular modelling and Lipinski’s rule of five allowed us to select four
compounds that were tested for anti-breast cancer activity. The strongest action with
respect to EGFR-TK was observed for 3-(4,6-bis((3-chlorophenyl)amino)-1,3,5-triazin-2-
yl)thiazolidine-2,5-dione 20 (Figure 5) (IC50 = 2.54 µM). An in vitro study against MDA-MB-
21, BT-474 (breast tumor) and MCF-7 showed an increase of apoptosis rates. In addition, a
significant decline expression of β-catenin was noticed in MDA-MB-21 cell lines [14].

Bhat et al. took a closer look at 4-aminoquinoline-1,3,5-triazine derivatives. Com-
pounds 21 (Figure 5) presented IC50 values of 44.5 µM, 52.2 µM, 40.3 µM, and 56.4 µM
against HeLa, MCF-7, HL-60, and HepG2. Derivative 22 (Figure 5) showed IC50 values of
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32.4 µM, 32.3 µM, 26.3 µM, and 45.3 µM against HeLa, MCF-7, HL-60, and HepG2. Both
molecules did not reveal cytotoxicity to MCF-12A cells. The activity of derivatives 21 and
22 inhibiting EGFR-TK was 96.3% and 90.5%, respectively [15].

2.6. Vascular Endothelial Growth Factor

Vascular endothelial growth factor (VEGF) production can be induced in a cell that
does not receive enough oxygen [49]. When a cell is deficient in oxygen, it produces hypoxia
induced factor (HIF). HIF stimulates the release of VEGF (including the modulation of
erythropoiesis). Circulating VEGF then binds to VEGF receptors on endothelial cells, trig-
gering a tyrosine kinase pathway leading to angiogenesis [50]. Expression of angiopoietin-2
in the absence of VEGF leads to endothelial cell death and vascular regression. VEGF acts
as the central mediator of tumor angiogenesis, stimulating the growth of new blood vessels
from nearby capillaries and allowing tumors to access the oxygen and nutrients they need
to grow [51].

Quinazoline-1,3,5-triazine derivatives 23, 24, and 25 (Figure 6) demonstrated antitumor
activity against HeLa, MCF-7, HL-60, and HepG2 with IC50 values in range of 6–16 µM.
In addition, they were non-toxic against the normal cell line of HFF (human foreskin
fibroblasts). Molecular docking results demonstrated the high potency of derivatives 23, 24
and 25 to bind the hydrophobic pocket of the N-terminal chain in the ATP binding site of
VEGFR [52].
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2.7. Focal Adhesion Kinase Inhibitors

Focal Adhesion Kinase (FAK) is a 125-kDa cytoplasmic tyrosine kinase. Deregulation
of FAK-dependent processes such as cell adhesion, growth, survival, and mobility are a
significant component of tumor progression. Overexpression of FAK leads to the inhibition
of apoptosis and an increase in the incidence of metastatic tumors [53].

Dao et al. showed that compound 26 (Figure 7) is the strongest FAK inhibitor
(IC50 = 0.05 µM). Growth inhibitory activity on human glioblastoma (U-87MG), human
colon carcinoma (HCT-116), MDA-MB-231, and human prostate cancer (PC-3) by com-
pound 26 obtained the following results 0.42 µM, 0.13 µM, 0.14 µM, and 0.63 µM compared
to TAE-226 (0.19 µM, 0.23 µM, 1.9 µM, and 0.26 µM). Furthermore, compound 26 turned
out to fit well into the ATP binding site of the FAK via molecular docking [16].
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2.8. Ubiquitin Conjugating Enzyme Inhibitors

RAD6, an E2 ubiquitin-conjugating enzyme, is overexpressed in many cancer cells
and is responsible for the positive regulation of β-catenin, its stabilization and activity.
N’-phenyl-4,6-bis(arylamino)-1,3,5-triazine-2-carbohydrazides derivatives 27–29 (Figure 8)
were evaluated for their ability to inhibit Rad6B ubiquitin conjugation in the human cancer
cell lines: OV90 (ovarian cancer), H1299 (human non-small cell lung carcinoma), A549,
MCF-7, MDA-MB231, and HT-29 (colon cancer). For all of the examined compounds lower
than for TZ9 IC50 values were obtained (3.3–22 µM) (Figure 8) [17].
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2.9. Primary Anticancer Studies

Compound 30 (Figure 9) obtained via the click chemistry method showed higher
potency than doxorubicin. Derivative 30 exhibited an IC50 against MCF-7 and HepG2 cells
of 2.95 µg/mL and 3.70 µg/mL, respectively, and showed no toxic activity against the
growth of normal HFB4 cells [18].
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Interesting results have emerged from the comparison of the antitumor properties of
the two groups of 1,3,5-triazine derivatives. The groups differed only in one substituent,
the first group contained chlorine and the second group contained morpholine. In the
second case, a noticeable increase in cytotoxic activities was observed. According to cancer
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cell lines MCF-7, MDAMB-231, HT-29, HGC-27 the derivative 31 (Figure 9) proved to be
most potent with IC50 values of 4.8 µM, 8.3 µM, 9.8 µM, and 15.1 µM [19].

Pyrazolyl-1,3,5-triazine derivatives were tested in vitro against MCF 7, MDA-MB-231,
HepG2, LoVo (colorectal carcinoma) and K-562 (leukemia). Compounds 32 and 33 (Figure 9)
demonstrated IC50 values within the range of 5 to 9 µM. An in vivo test on a zebrafish
proved the non-toxicity of compounds 32 and 33 [20].

Trisubstituted s-triazine derivatives containing morpholine/piperidine, anilines, and
dipeptides were evaluated for their anticancer activity against MCF-7 and MDA-MB-
231. Among the 15 synthesized compounds, analog 34 (Figure 9) elicited the highest
inhibitory properties against MCF-7 (IC50 = 0.82 µM). Moreover MCF-7 cells were signifi-
cantly arrested in the G2/M stage. An in vivo studies of 34 in zebrafish presented non-toxic
properties [21].

A novel series of triazine-benzimidazole analogs were synthesized and their an-
tiproliferative activity against 60 human cancer cell lines was evaluated. Screening data
revealed that triazine substituted with piperidine 35, phenyl 36, 4-fluorophenyl 37, and
4-chlorophenyl 38 (Figure 9) presented the highest inhibiting potency [22].

4-Phenethylthio-2-phenylpyrazolo[1,5-a][1,3,5]triazin-7(6H)-one 39 (Figure 10) was
designed and synthesized as a potential anticancer agent. An in vitro evaluation of its
antiproliferative activity against A549 and MDA-MB231 confirmed the assumption. The
test results were not good enough. On the other hand, modifications of the obtained
structure may contribute to the improvement of anti-cancer properties [23].
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The series of novel hybrid molecules formed from 2,4-diamino-1,3,5-triazine and 2-
iminocoumarin were tested toward the human pancreatic cancer cell line DAN-G, human
A-427, human non-small cell lung cancer cell line LCLC-103H, human cervical cancer cell
line SISO, and human urinary bladder cancer cell line RT-4. Compound 40 (Figure 10)
presented the following values IC50: 2.14 µM, 1.51 µM, 2.21 µM, 2.60 µM, and 1.66 µM [24].

Moreno et al. designed and synthesized 28 1,3,5-triazine-based 2-pyrazolines. In vitro
tests were conducted against 58 different human tumor cell lines. The first stage of re-
search checked mean growth and growth inhibition, and identified four compounds 41–44
(Figure 10) with the lowest value (%). In the next step, the inhibitory activity of compounds
41–44 in terms of GI50 and LC50 was verified, determining the most susceptible carcinoma
cell lines [25].
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Wang et al. presented 16 compounds containing a phenylhydrazine and a thiazole
moiety. Halogen-containing compound 45 (Figure 11) showed an uttermost inhibitory
effect against MDA-MB-231, HeLa, KG1a (acute myelogenous leukaemia), and Jurkat
(T-cell leukaemia) cancer cells. Subsequently cervical cancer cells (SiHa, CaSki, DoTc2)
were treated with compound 45, and the obtained IC50 values were in the range from
1.34 µg/mL to 4.56 µg/mL. An in vivo test on the nude mouse xenograft model revealed
inhibition potency of compound 45 by the reduction of tumor volume [26].
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The 2-(fluorophenylamino)-4,6-disubstituted 1,3,5-triazine induced inhibition of in-
flammation and cancer growth. SAR studies underlined the important role of 3- and
4-fluorphenylamino moiety 46 and 47 (Figure 11). Compound 47 significantly reduced
tumor tissue in several animal models and decreased PC-3 proliferation with an IC50 value
of 20 µM. This analog also arrested PC-3 cells in stage G0/G1 [27].

Via three-components one spot condensation 110 new of 1,3,5-triazine derivatives
were obtained. Antiproliferative activity of the most potent compounds 48–51 (Figure 11)
identified in the screening against DU145 prostate-cancer cells had GI50 values of 3.43 µM,
4.01 µM, 2.38 µM and 0.67 µM, respectively [28]. Subsequent studies generated further
derivatives that were tested for three breast tumors. Evaluation led to the determination
that the most active structures are 52 and 53 (Figure 11) and indicated that the group of
derivatives were more active against triple negative breast cancer MDA-MB231 [29,30].

Derivatives based on quinazoline combined with a 1,3,5-triazine ring via urea bridge
presented antitumor activity against TPC-1 cells (thyroid cancer), MCF-7. Corresponding
to the normal cell line (human foreskin fibroblasts), compounds 54–56 (Figure 11) were
non-toxic. In addition, these structures showed the best IC50 values against carcinoma cells,
and demonstrated tyrosine kinase inhibitory potency [31].

Mono-, di- and tri-2-chloroethylamine-1,3,5-triazine derivatives were confronted with
glioblastoma cells. An in vitro study detailed trisubstituted triazine 57 (Figure 12) was
the most relevant cytotoxic molecule with IC50 values equal 46 µM, 50 µM, and 40 µM
for LBC3, LN-18 and LN-229 cell lines, respectively [32]. Anticancer activity of mono-
2-chloroethylamine-1,3,5-triazine derivatives bearing dipeptide were proven on DLD-1
and HT-29 cell lines. The most perspective structure was 58 (Figure 12), which presented
IC50 values of 13.71 µM and 17.78 µM, for DLD-1 and HT-29, respectively. 5-fluorouracil
exhibited lower activity as a reference. Compound 58 increased the expression of BAX and
decreased the amount of Bcl-2 both in DLD-1 and in HT-29 [33].
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A total of thirty-four novel pyrazolo[1,5-a][1,3,5]triazine derivatives were screened
against 60 cancer cell lines. Results suggested that the most antiproliferative compounds
were 59 and 60 (Figure 12). Analog 59 exhibited% inhibition ranging from 40% to 115%,
and 82.38% for CDK2, and derivative 60 exhibited% inhibition ranging from 43% to 92%,
and 81.96% for CDK2 [34].

Hybrid molecule containing 1,4-naphthoquinone, 1,3,5-triazine and morpholine 61
(Figure 12) turned out to be strongly complexed with PI3Kγ and AMPK (5′ AMP-activated
protein kinase) during docking studies. Analog 61 had an IC50 value of approximately
25 µM when exposed to the SKMEL-103 (N-RAS mutated) cell line. A Western blot
determined the decreased expression of both PI3Kγ and AMPK [35].

Screening studies of 2-(dichloromethyl)pyrazolo[1,5-a][1,3,5]triazines 62–66 (Figure 13)
showed potential anticancer properties against non-small cell lung cancers, colon cancers,
renal cancer, etc. [36].
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Figure 13. Structures of compounds 61–70.

Prepared 4-amino-1,2,4-triazole Schiff base derivative 67 (Figure 13) was verified as an
antitumor agent. The IC50 value of 67 was equal to 144.1 µg/mL for A549 and 195.6 µg/mL
for the human hepatoma cell line (Bel7402) [37].
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From the series of novel chalcone- and pyrazoline-based 1,3,5-triazines derivatives,
compounds 68–70 (Figure 13) demonstrated the best potent in vitro anticancer activity with
GI50 values significantly lower than reference drug 5-FU. Chalcone 68 showed GI50 values
in the range of 0.422–3.05 µM, with the SR cell line (leukemia, GI50 = 0.422 µM) being the
most sensitive strain. Compound 69 exhibited GI50 values in the range of 1.25–8.66 µM,
with the MCF7 (GI50 = 1.25 µM) being the most sensitive strain, while compound 70
showed GI50 values in the range of 1.48–14.9 µM, being especially effective against HCT-
116 with GI50 = 1.48 µM. The best cytotoxicity value was shown by compound 69 against
UO-31 (renal cancer, LC50 = 5.08 µM) [38].

3. Search Strategy and Selection Criteria

The aim of this study was to collect knowledge and data on the synthesized novel
1,3,5-triazine derivatives, their effects on cancer cells, and to identify enzymes as potential
targets for these substances. To carry out the study, the following databases were searched:
PubMed (NCBI), Web of Science, and Scopus, using the following key words: 1,3,5-triazine,
s-triazine, anticancer, antitumor, and enzyme inhibitor. We examined original articles
and case studies published between 2015 and 2021. The results of the study include the
compounds from papers with the highest activity.

4. Conclusions

The “hybrid” approach incorporating a triazine framework ensures an improved
profile against the target biological pathways pertaining to infectious parasites, microbes,
and conditions such as cancer and neurodegeneration. The multi-targeting approach of
the hybrid compounds ensures an effective overcoming of the key regulatory pathways
contributing to complicacies such as drug resistance. This review presents a comprehensive
discussion on the candidature of the 1,3,5-triazine scaffold for a rational development
of the hybrid molecules by conjugation with bioactive pharmacophoric moieties. The
basis of superior efficacy of 1,3,5-triazine based hybrid molecules by considering their
interactions with the cellular targets has also been discussed in a succinct manner. The
literature revealed that s-triazine derivatives possess diverse anticancer potential, easy
synthetic routes for synthesis, and have attracted researchers for development of new
chemotherapeutic agents. Extensive research is required on the 1,3,5-triazine moiety to find
novel analogs suitable for clinical applications in cancer treatment.
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