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Activation of hepatic stellate cell (HSC) involves the transition from a quiescent
to a proliferative, migratory, and fibrogenic phenotype (i.e., myofibroblast), which
is characteristic of liver fibrogenesis. Multiple cellular and molecular signals which
contribute to HSC activation have been identified. This review specially focuses on the
metabolic changes which impact on HSC activation and fibrogenesis.
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INTRODUCTION

Activation of hepatic stellate cells (HSCs) involves the transition from a quiescent to a
proliferative, migratory and fibrogenic phenotype (i.e., myofibroblast) which is characteristic
of liver fibrogenesis. To date, multiple cell-surface, cytoplasmic and nuclear molecular signals
and pathways have been reported to modulate HSC activation, including cytokines (Syn
et al., 2011, 2012); adipocytokines (Saxena and Anania, 2015; Coombes et al., 2016); Toll-
like receptors (TLRs) (Chou et al., 2012; Seo et al., 2016); Interleukins (ILs) (Jiao et al.,
2016); collagen receptors (Liu et al., 2017); nuclear receptors (Beaven et al., 2011; Ding
et al., 2013; Li et al., 2014; Palumbo-Zerr et al., 2015; Duran et al., 2016); G protein-
coupled receptors (GPCRs) (Li et al., 2015, 2016a; Le et al., 2018); autophagy (Thoen et al.,
2011, 2012; Hernández-Gea and Friedman, 2012; Hernández-Gea et al., 2012); endoplasmic
reticulum stress (Hernández-Gea et al., 2013; Koo et al., 2016); oxidative stress (Lan et al.,
2015; Ou et al., 2018); epigenetics (Coll et al., 2015; Hyun et al., 2016; Kweon et al.,
2016; Huang et al., 2018; Zheng et al., 2018); cell metabolism (Nwosu et al., 2016; Du
et al., 2018; Franko et al., 2018; Zhang et al., 2018), etc. In addition, extracellular/paracrine
signals from resident and inflammatory cells including hepatocytes (Zhan et al., 2006),
macrophages (Pradere et al., 2013), natural killer cells (Glässner et al., 2012), natural killer
T cells (Wehr et al., 2013), liver sinusoidal endothelial cells (LSECs) (Xie et al., 2012),
platelets (Kurokawa et al., 2016), and B cells (Thapa et al., 2015) further promote HSC
activation.

In this review, we provide a focused update on the impact of cellular metabolism on HSC
activation and fibrogenesis. A detailed discussion on other signals and pathways is beyond the
scope of this article and has been reviewed elsewhere (Weiskirchen and Tacke, 2014; Lee et al., 2015;
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Wallace et al., 2015; Yang and Seki, 2015; El Taghdouini and
van Grunsven, 2016; Hyun and Jung, 2016; Nwosu et al., 2016;
Schumacher and Guo, 2016; de Oliveira da Silva et al., 2017;
Higashi et al., 2017; Huang et al., 2017; Jiang et al., 2017; Kisseleva,
2017; Tsuchida and Friedman, 2017; Mortezaee, 2018; Ni et al.,
2018; Wang J. N. et al., 2018).

AEROBIC GLYCOLYSIS: WARBURG
EFFECT

Proliferative cells are often glycolytic, similar to the Warburg
state that has been described in cancer cells. Diehl and colleagues
first reported that reprogramming of quiescent hepatic stellate
cell (Q-HSC) into myofibroblastic hepatic stellate cell (MF-HSC)
is dependent upon induction of aerobic glycolysis (Chen
et al., 2012). Compared with Q-HSC, MF-HSC express higher
levels of glycolytic enzymes including hexokinase 2 (HK2),
phosphofructokinase platelet (PFKP), pyruvate kinase M2
(PKM2) and glucose transporter 1 (GLUT1), monocarboxylate
transporter 4 (MCT4), but downregulate key gluconeogenic
enzymes phosphoenolpyruvate carboxykinase (PCK1) and
fructose bisphosphatase (FBP1). During HSC activation,
glycolysis occurs which lead to accumulation of intracellular
lactate (Figure 1). Conversely, inhibition of conversion of
pyruvate to lactate in MF-HSC with a pharmacologic inhibitor
of lactate dehydrogenase A (LDHA) led to the decrease in
lactate/pyruvate ratio, inhibition of proliferation, suppression
of MF-genes expression, reduction of lipid accumulation and
upregulation of genes involved in lipogenesis. Mechanistically,
these investigators showed that activation of the Hedgehog (Hh)
pathway upregulates expression of hypoxia inducible factor
1α (HIF1α), a key modulator of the expression and activity
of glycolytic enzymes, directs glycolytic reprogramming, and
controls the fate of HSC. By contrast, the inhibition of Hh
signaling, HIF1α expression, glycolysis, or lactate accumulation
results in the reversal of MF-HSC to a Q-HSC phenotype.
These cellular changes are recapitulated in vivo: diseased livers
of animals and patients accumulate an increasing number of
glycolytic stromal cells that correlates with severity of liver
fibrosis. In aggregate, these findings indicate that cellular
metabolism plays a central role in the fibrogenic response,
and imply that targeting cellular metabolism may be a novel
antifibrotic strategy.

Despite these preliminary findings, the exact mechanisms that
aerobic glycolysis modulates HSC activation and fibrogenesis
remain largely unknown. For example, why (and how) do HSCs
switch to aerobic glycolysis even when oxygen is abundant
(Figure 1)? What are the key mediators to trigger the switch
from oxidative phosphorylation to aerobic glycolysis? While
glycolysis generates only two ATPs for each molecule of glucose,
the oxidative phosphorylation produces up to 38 ATPs for each
molecule of glucose that is consumed. Why should a cell utilize
a less efficient metabolism system (at least in terms of ATP
production) to promote HSC activation? Future studies will be
needed to better understand the potential roles of lactate and
lactate dehydrogenases (LDHs) in metabolic reprogramming.

The current data to date, however, suggest that metabolites
generated by aerobic glycolysis may have a more important
role in the regulation of cellular functions then simply energy
production.

GLUTAMINOLYSIS: ANAPLEUROSIS

Glutaminolysis is the conversion of glutamine (Gln) in
α-ketoglutarate (α-KG) and consists of two reactions: the first
reaction is catalyzed by the glutaminase (GLS), which converts
Gln into glutamate (Glu) by loosing an amino group; the second
step consists of the conversion of Glu to α-KG and is catalyzed
by glutamate dehydrogenase or aminotransferases (Figure 2).
Glutaminolysis could be involved in the mechanism for
regulating HSC activation because glutaminolytic activity might
fuel anapleurosis to meet the elevated demands of bioenergetic
and biosynthetic pathways needed for the myofibroblastic
phenotype.

In a recent study, Du et al. (2018) demonstrated that
glutaminolysis could enable the transdifferentiation of HSCs
into MF-HSCs. MF-HSCs, like highly proliferative cancer cells,
are also highly dependent on glutamine in vitro. Glutamine is
critical not only for MF-HSC growth but also for acquiring and
maintaining a myofibroblastic phenotype. Their results show that
α-ketoglutarate (α-KG), the end-product of glutaminolysis, helps
to replenish the TCA cycle to satisfy the high bioenergetic and
biosynthetic demands of MF-HSCs. Similar to aerobic glycolysis,
investigators reported that Hh-mediated pathways also induce
glutaminolysis to increase the production of energy and anabolic
substrates needed to satisfy their increased demands when
Q-HSC transdifferentiate to become MF-HSC. Interestingly, Yes-
associated protein 1 (YAP) was identified as a downstream
mediator of Hh-directed regulator of glutaminolytic enzymes
during HSC transdifferentiation, and was shown to work in
concert with its realted transcriptional regulator TAZ through
TEAD binding sites to regulate glutaminase 1 (Gls1) expression
in HSCs.

Similar findings were reported by Li et al. (2017). They showed
that culture- as well as in vivo-activated HSCs demonstrate
increased utilization of glutamine and related genes expression
in glutamine metabolism, including glutaminase (GLS), aspartate
transaminase (GOT1) and glutamate dehydrogenase (GLUD1).
In addition to Hh signaling, TGF-β1, c-Myc, and Ras signaling
have also been identified as major regulators of glutamine
metabolism. In sum, these data indicate that increased glutamine
metabolism not only meets an increasing energy demand but
also functions as a key early regulator of HSC activation and
fibrogenesis.

In support of its role in liver fibrogenesis, recent data also
suggest that glutaminolysis regulates MF differentiation and play
a critical role in other tissues. As an example, glutaminolysis was
found to be a critical factor in the metabolic reprogramming of
MF differentiation in lung tissues (Bernard et al., 2018), that TGF-
β1 driven GLS1 expression is dependent upon both SMAD family
member 3 (SMAD3) and mitogen activated protein kinase p38
(p38MAPK) activation.
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FIGURE 1 | Activation of hepatic stellate cells (HSCs) through induction of aerobic glycolysis (Warburg effect). The transformation of glucose to lactate during HSC
activation even when amounts of oxygen are available, leads to accumulation of intracellular lactate. Mitochondria may remain functional and some oxidative
phosphorylation continue in cells. Aerobic glycolysis is less efficient than oxidative phosphorylation for generating adenosine 5′-triphosphate (ATP), which suggests
that metabolites (for example, lactate) generated by aerobic glycolysis may have a more important role in the regulation of cellular functions than simply energy
production during HSC activation.

Despite compelling data, further investigations are still
needed to reveal the downstream components of the Hh-Yap-
glutaminase axis, and identify alternative signaling pathways
which regulate glutaminolysis in HSCs. It is also unclear if
changes in glutaminolysis or other anaplerotic pathways, those
catalyzed by pyruvate carboxylase (PC) as an example, can also
modulate other regenerative programs and/or liver cells during
fibrogenesis (Harvey and Chan, 2018).

LIPID DROPLETS (LDs)

Q-HSCs are lipid-storing cells with the presence of large
lipid droplets (LDs). During activation, HSCs lose their LDs
(Friedman et al., 1993). LDs exist as a hydrophobic core of neutral
lipids, surrounded by a phospholipid monolayer (Onal et al.,
2017). In HSCs, the LDs contain in addition to neutral lipids
consisting of triacylglycerols (TAG) and cholesterol esters, also
retinyl esters (RE) with majority comprising of retinol/vitamin A.
The exact mechanism of LD loss and its role in HSCs activation is
unclear but has been recently studied. Cumulative data (Testerink
et al., 2012; Tuohetahuntila et al., 2015, 2016, 2017; Ajat et al.,
2017; Molenaar et al., 2017) show that LDs degrade during
HSC activation in two distinct phases: (a) upon HSCs activation,
the size of LDs was reduced while the number was increased
during the first 7 days in culture; (b) disappearance of the
LDs. During the prime stage of HSC activation there is a rapid
decrease of REs, whereas the TAG content increases transiently,
predominantly due to an abundant increase in polyunsaturated
fatty acid (PUFA)-containing triacylglycerol, which is mediated
by the increase in the ratio of the PUFA-specific fatty acid CoA
synthase 4 (ACSL4) to the non-specific ASCLs, such as ASCL1.

Two pools of LDs are thought to exist in HSC: a
preexisting (“original”/“old”) and a dynamic (“new”) pool of

LDs (Molenaar et al., 2017; Tuohetahuntila et al., 2017; Figure 3).
The preexisting LD pool, located predominately round the
nucleus, containing predominantly TAGs and REs, as well as
retinol acyltransferase (LRAT). During activation, lysosomal
acid lipase (LAL/Lipa) is involved in the degradation of the
preexisting LDs in the lysosome. The dynamic LDs, smaller
than preexisting LDs, containing less REs but enriched in TAGs
containing one or more PUFAs, are located in the periphery
of the HSC. Diacylglycerol O-acyltransferase 1 (DGAT1) and
adipose triglyceride lipase (ATGL), also known as patatin like
phospholipase domain containing 2 (PNPLA2), are involved in
the synthesis and breakdown of these newly synthesized TAGs,
respectively.

Despite these new findings, the mechanism by which one pool
is targeted for lipophagy and the other for lipolysis by ATGL
remains elusive. It is also unclear why “old” types of LDs are
degraded and “new” types of LDs formed. What triggers the
replacement of retinyl esters by PUFAs? What kind of roles do
the incorporated PUFAs play in contributing to HSC activation?

FREE CHOLESTEROL (FC)

Recent studies (Schwabe and Maher, 2012; Teratani et al.,
2012; Tomita et al., 2014a,b; Furuhashi et al., 2017; Figure 4)
suggest that free cholesterol (FC) also mediates HSCs activation
and fibrogenesis. FC accumulation in HSCs increases Toll-
like receptor 4 protein (TLR4) levels by suppressing the
endosomal-lysosomal degradation pathway of TLR4, and
thereby sensitizes the cells to TGF-β-induced activation through
down-regulating the expression of TGFβ-pseudoreceptor Bambi
(bone morphogenetic protein and activing membrane-bound
inhibitor). Along with HSC activation, subsequent upregulation
of both sterol regulatory element-binding protein 2 (SREBP2)
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FIGURE 2 | Biochemical reactions in glutaminolysis. Glutaminolysis is the conversion of glutamine (Gln) to α-ketoglutarate (α-KG) and consists of two reactions: the
first reaction is catalyzed by the glutaminase (GLS), which converts Gln into glutamate (Glu) by losing an amino group; the second step consists of the conversion of
Glu to α-KG, a critical intermediate in the tricarboxylic acid (TCA) cycle, which is catalyzed by glutamate dehydrogenase or aminotransferases.

FIGURE 3 | Two different metabolic pools of lipid droplets (LDs) in activated HSCs. The “original”/“old” LDs (depicted in brown), are located predominately round the
nucleus, and contains predominantly triacylglycerol (TAG) and retinyl ester (RE), as well as retinol acyltransferase (LRAT). Lysosomal acid lipase (LAL/Lipa) is involved
in the degradation of the “original”/“old” LDs in the lysosome during activation. The “new” LDs (depicted in yellow) which are smaller than “old” LDs, contain less REs
but are enriched in TAGs, and are located in the periphery of the cells. Diacylglycerol O-acyltransferase 1 (DGAT1) and adipose triglyceride lipase (ATGL) are involved
in the synthesis and breakdown of these newly synthesized TAGs, respectively.

and miR-33a signaling through the suppression of PPARγ

signaling, as well as disruption of the SREBP2-mediated
cholesterol-feedback system in HSCs, which was characterized
by a high SREBP cleavage-activating protein (Scap)-to-

insulin-induced gene (Insig) ratio and exaggerated by the
down-regulation of Insig-1 through the suppression of PPARc
signaling, led to further FC accumulation and enhancing liver
fibrosis in a positive feedforward loop. Notably, in a mouse model
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FIGURE 4 | Signaling pathways involved in free cholesterol (FC) accumulation mediated HSC activation. Downregulation of Niemann–Pick type C2 protein (NPC2)
results in FC accumulation and enhances platelet-derived growth factor BB (PDGF-BB)-induced HSC proliferation by extracellular signal-regulated kinases (ERKs),
p38, c-Jun N-terminal kinases (JNK), and protein kinase B (AKT) phosphorylation. In addition, the mitochondrial respiration function is impaired. FC accumulation
also increases Toll-like receptor 4 protein (TLR4) expression, thereby sensitizing cells to TGF-β-induced activation through down-regulation of TGFβ-pseudoreceptor
Bambi. Along with HSC activation, subsequent upregulation of both sterol regulatory element-binding protein 2 (SREBP2) and miR-33a signaling leads to further FC
accumulation and exaggerates liver fibrosis in a positive feedforward loop.

of liver fibrosis it was shown that reduction of FC accumulation
in activated HSCs downregulated TLR4 signaling; this resulted
in an increase of Bambi expression, which was associated with a
reduction of liver fibrosis (Furuhashi et al., 2017).

Further support for the role of FC in liver fibrosis was
demonstrated by studies on the Niemann–Pick type C2
protein (NPC2) (Twu et al., 2016; Wang Y. H. et al., 2018;
Figure 4). NPC2 regulates intracellular cholesterol trafficking
and homeostasis by directly binding with FC and expression of
NPC2 is down-regulated in CCl4- and thioacetamide (TAA)-
induced liver fibrosis tissues. The loss of NPC2 enhances the
accumulation of FC in HSCs and exaggerates HSC response
to TGF-β1 treatment. Gene depletion of NPC2 resulted in
activation of extracellular signal-regulated kinases (ERKs), p38,
c-Jun N-terminal kinases (JNK), and protein kinase B (AKT)
phosphorylation which all contributed to increase the HSC
proliferation induced by platelet-derived growth factor BB
(PDGF-BB). In addition, the mitochondrial respiration function
was also impaired.

Despite accumulating data on the role of FC on HSC
phenotype, little is known of the roles of individual enzymes of
cholesterol biosynthesis pathway in the fibrogenic response.
Future studies will be needed to understand whether
enzymes such as 3-hydroxy-3-methylglutaryl-CoA reductase
(HMGCR), 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA),
mevalonate kinase (MVK), phosphomevalonate kinase

(PMVK), diphosphomevalonate decarboxylase (MVD),
farnesyl diphosphate synthase (FDPS), farnesyl-diphosphate
farnesyltransferase 1 (FDFT1), squalene epoxidase (SQLE),
7-dehydrocholesterol reductase (DHCR7), or related metabolites
may be involved in modulating HSC biology.

TRICARBOXYLIC ACID (TCA) CYCLE

The tricarboxylic acid cycle (TCA cycle), also called Krebs cycle
and citric acid cycle, which was proposed by Hans Adolf Krebs
in 1937, is the final common pathway for oxidative catabolism of
carbohydrates, fatty acids and amino acids, providing precursors
for multiple biosynthetic pathways and plays a critical role in
gluconeogenesis, transamination, deamination, and lipogenesis.

In brief, eight steps are involved in the TCA cycle,
which is catalyzed by eight different enzymes including
citrate synthase, aconitase, isocitrate dehydrogenase,
ketoglutarate dehydrogenase, succinyl-CoA synthase, succinate
dehydrogenase, fumarase, malate dehydrogenase. The TCA
cycle starts with the convertion of the pyruvate into acetyl CoA,
which is then converted in citrate by the combination with
oxaloacetate. In a multi-steps reaction citrate is next converted
in isocitrate to form then α-ketoglutarate. α-ketoglutarate loses
a molecule of carbon dioxide and is oxidized to form succinyl
CoA, which is then converted to succinate that is oxidized to
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FIGURE 5 | Role of succinate in HSC activation. Succinate, an intermediate in the TCA cycle, functions as a paracrine signal between hepatocytes and HSCs,
through binding and activation of its cognate G protein-coupled receptor 91 (GPR91), which resulted in upregulation of fibrogenic markers alpha-smooth muscle
actin (α-SMA), transforming growth factor β (TGF-β), and collagen type I. Sirtuin 3 (SIRT3), a NAD+-dependent protein deacetylase, predominantly localized in the
mitochondrial matrix, is a key regulator of dehydrogenase (SDH) activity. The SIRT3-SDH-GPR91 axis regulates HSC activation. Repression of succinate-GPR91
signaling by LY2405319, an analog of fibroblast growth factor 21 (FGF21), as well as metformin inhibits HSC activation.

form fumarate. At the end of the cycle fumarate is hydrolyzed to
produce malate which is then oxidized to generate oxaloacetate.
For each complete cycle there is the regeneration of oxaloacetate
and the formation of two molecules of carbon dioxide.

In a recent study Li et al. (2015, 2016a; Figure 5) demonstrated
the importance of succinate (an intermediate in the TCA
cycle) in HSC activation, through binding and activation of its
cognate G protein-coupled receptor 91 (GPR91). When cultured
HSCs were treated directly with succinate or with inhibitors
of succinate dehydrogenase (SDH) (malonate, palmitate/choline,
and methionine-choline deficient media), these resulted in
the induction of GPR91, and upregulation of fibrogenic
markers alpha-smooth muscle actin (α-SMA), transforming
growth factor β (TGF-β), and collagen type I. Conversely,
transfection of siRNA against GPR91 abrogated succinate-
induced increases in the expression of α-SMA. Similar findings
were observed when HSCs were isolated from methionine
choline deficient diet-fed mice: HSC expressed higher levels of
succinate, GPR91, and α-SMA. Taken together, these findings
support a key role for succinate-GPR91 in HSC activation and
fibrogenesis.

Sirtuin 3 (SIRT3), a NAD+-dependent protein deacetylase,
predominantly localized in the mitochondrial matrix, is a key
regulator of SDH activity. Recently, Li et al. (2016a; Figure 5)
further found that the SIRT3-SDH-GPR91 axis regulated
HSC activation, and proposed that succinate functions as a
paracrine signal between hepatocytes and HSCs. Significantly,
the repression of succinate-GPR91 signaling by LY2405319, an
analog of the fibroblast growth factor 21 (FGF21), inhibited
HSC activation. These observations suggest that the succinate-
GPR91 pathway might be a potential therapeutic target in
the treatment of liver fibrosis (Cho, 2018; Le et al., 2018;
Figure 5).

A ROLE FOR DIRECT
METABOLISM-TARGETED
ANTIFIBROTIC STRATEGY

Since both aerobic glycolysis (a target of the hedgehog pathway)
and glutaminolysis (a process strongly regulated by Yap) are
necessary to fulfill inherent metabolic requirements of the
MF state and safely satisfies the bioenergetic and biosynthetic
demands of highly proliferative cells, combining inhibitors of
glycolysis and inhibitors of glutaminolysis which restrict both
metabolic adaptations might be a physiologic and practical
approaches to limit accumulation of MF-HSCs during liver
injury.

Curcumin, a natural occurring principal curcuminoid of
turmeric, has been reported to inhibit hedgehog signaling,
decrease the accumulation of ATP and lactate, and downregulate
the expressions and activities of hexokinase (HK) and
phosphofructokinase-2 (PFK2) within HSCs. The glucose
transporter Glut4 and lactate transporter MCT4 are also
concomitantly downregulated (Lian et al., 2015). Thus, curcumin
exhibits inhibitory effects on multiple steps of the glycolysis
pathway and regulates metabolic reprogramming in activated
HSCs (Lian et al., 2015), which is consistent with the report from
Diehl and colleagues which showed that Hh signaling regulates
metabolism in activated HSCs (Chen et al., 2012). In addition, as
shown in a recent study (She et al., 2018), curcumin could also
inhibit HSC activation via suppression of succinate-associated
hypoxia-inducible transcription factor-1α (HIF-1α) induction.

Statins, are drugs known to lowering the levels of cholesterol
and suppressing the cholesterol biosynthesis through
the competitive inhibition of 3-hydroxy-3-methylglutaryl
Co-enzyme A reductase (HMGCR) and subsequent blockade of

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 November 2018 | Volume 6 | Article 150

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-06-00150 November 8, 2018 Time: 16:38 # 7

Hou and Syn Metabolism in Liver Fibrosis

the conversion of HMGCoA into mevalonate. Multiple studies
have reported the potential antifibrotic roles of atorvastatin
(Trebicka et al., 2010; Klein et al., 2012; El-Ashmawy et al., 2015;
Ying et al., 2017), fluvastatin (Chong et al., 2015; Cheng et al.,
2018), pitavastatin (Yang et al., 2010) and simvastatin (Wang
et al., 2013; Jang et al., 2018), and recent data further reveal
that these antifibrotic effects may occur via upregulation of the
Krüppel-like factor 2 (KLF2) transcription factor (Marrone et al.,
2013, 2015; Ray, 2015; Trebicka and Schierwagen, 2015).

Metformin, a well-known and the most widely used anti-
diabetic drug, inhibiting hepatic gluconeogenesis in the liver,
has been recently shown to suppress α-SMA expression via
inhibition of succinate-GPR91 signaling in activated LX-2 cells
(Nguyen et al., 2018; Figure 5). Interestingly, metformin can
also attenuate activation of HSCs by activating the AMP-
activated protein kinase (AMPK) pathway (Li et al., 2018; Nguyen
et al., 2018). AMPK, recognized as an energy sensor with
three heterotrimeric subunits (α, β, and γ), is an evolutionary
conserved and ubiquitously expressed serine/threonine kinase
playing a central role in the coordination of energy homeostasis.
In a bleomycin model of lung fibrosis (Rangarajan et al., 2018),
metformin therapeutically accelerates the resolution of well-
established fibrosis in an AMPK-dependent manner through
enhancing mitochondrial biogenesis and normalizing sensitivity
to apoptosis. Metformin has emerged as novel antifibrotic
strategies for the treatment of fibrotic diseases (Dos Santos et al.,
2018; Li et al., 2018; Nguyen et al., 2018; Rangarajan et al., 2018).

CONCLUSION AND
SPECULATION/HYPOTHESIS

Cells constantly reprogram their metabolic pathways through
direct or indirect mechanisms. Mounting evidences have shown
the cross talk between signaling pathways and metabolic control
in HSCs, and the complex interplay between metabolism and
fibrogenesis is an exciting area of HSC research. Although
recent data have shed light on the roles of some metabolic
pathways in HSC biology, many more have yet to be described.
A better understanding of the roles of cellular metabolism in HSC
activation and fibrogenesis will provide us with novel molecular
basis for the development of antifibrotic interventions.

Some speculative hypotheses might be put forward here to
broaden the horizon about the role of metabolism in HSC
activation and fibrogenesis. In addition to single cell glycolysis
and glutaminolysis, symbiosis may be an alternate energy
metabolism model that contributes to HSC fibrogenesis. For
example, some HSCs might produce lactate with ATP production
by consuming glucose (Warburg effect), while a neighboring
HSC might consume the secreted lactate to produce ATP via
the TCA cycle and oxidative phosphorylation. In fact, lactate
could be used by some cancer cells [e.g., human non-small-cell
lung cancers (NSCLCs)] as a substrate for TCA intermediates
through monocarboxylate transporters (MCT1/4) and also for
ATP production (Faubert et al., 2017).

Many glycolytic enzymes also function as protein kinases.
Although these enzymes participate in specific metabolic
pathways, each metabolic enzyme is also known to catalyze a
unidirectional and/or bidirectional reaction. Recent data further
revealed that pyruvate kinase M2 (PKM2), phosphoglycerate
kinase 1 (PGK1), ketohexokinase (KHK) isoform A (KHK-A),
hexokinase (HK), and nucleoside diphosphate kinases 1 and 2
(NME1/2) can function as protein kinases and phosphorylate
multiple protein substrates to regulate cellular functions (Yang
and Lu, 2015; Li et al., 2016b,c). Future studies will be needed to
determine whether these, hitherto unrecognized protein kinase
activity (of these metabolic enzymes) might also modulate HSC
phenotype.
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