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Accumulating evidence indicates that myeloid-
derived suppressor cells (MDSCs) are critically 
involved in tumor progression. Despite the  
ambiguity surrounding their origin, MDSCs 
are recognized for their ability to suppress anti-
tumor immune responses. MDSCs exert their 
pro-neoplastic effects through the release of 
small soluble oxidizers, impairment of T cell/
antigen recognition, and depletion of essential 
amino acids from the local extracellular environ-
ment, all ultimately leading to T cell suppres-
sion (Mazzoni et al., 2002; Kusmartsev and 
Gabrilovich, 2003; Liu et al., 2003; Kusmartsev 
et al., 2004;). Additionally, MDSCs shift immune 
regulation to a state favoring both tumor escape 

and proliferation through overproduction of 
cytokines and angiogenic factors (Kusmartsev 
and Gabrilovich, 2006). Thus, it is not sur-
prising that presence of MDSCs in the blood 
and tumor biopsies of cancer patients is asso-
ciated with poor prognosis (Almand et al., 
2001; Lechner et al., 2011; Solito et al., 2011; 
Porembka et al., 2012).

MDSCs comprise a heterogeneous popu-
lation of immature myeloid cells (Bronte  
et al., 2000; Gabrilovich et al., 2001; Liu et al., 
2003; Kusmartsev et al., 2004; Kusmartsev et al., 
2005; Zea et al., 2005; Gallina et al., 2006),  
identified by the co-expression of Gr-1 and m 
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Myeloid-derived suppressor cells (MDSCs) favor tumor promotion, mainly by suppressing 
antitumor T cell responses in many cancers. Although the mechanism of T cell inhibition is 
established, the pathways leading to MDSC accumulation in bone marrow and secondary 
lymphoid organs of tumor-bearing hosts remain unclear. We demonstrate that down-
regulation of PLC2 signaling in MDSCs is responsible for their aberrant expansion during 
tumor progression. PLC2/ MDSCs show stronger immune-suppressive activity against 
CD8+ T cells than WT MDSCs and potently promote tumor growth when adoptively trans-
ferred into WT mice. Mechanistically, PLC2/ MDSCs display reduced -catenin levels, 
and restoration of -catenin expression decreases their expansion and tumor growth. 
Consistent with a negative role for -catenin in MDSCs, its deletion in the myeloid popula-
tion leads to MDSC accumulation and supports tumor progression, whereas expression of 
-catenin constitutively active reduces MDSC numbers and protects from tumor growth. 
Further emphasizing the clinical relevance of these findings, MDSCs isolated from pancre-
atic cancer patients show reduced p-PLC2 and -catenin levels compared with healthy 
controls, similar to tumor-bearing mice. Thus, for the first time, we demonstrate that 
down-regulation of PLC2–-catenin pathway occurs in mice and humans and leads to 
MDSC-mediated tumor expansion, raising concerns about the efficacy of systemic  
-catenin blockade as anti-cancer therapy.
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MDSC expansion in the bone marrow of tumor-bearing 
mice and enhances MDSC immunosuppressive activities via 
modulation of -catenin levels. Together these results high-
light a novel molecular pathway regulating the expansion of 
MDSCs and their crucial role in tumor progression.

RESULTS
MDSCs are responsible for increased  
tumor growth in PLC2/ mice
To understand the mechanism responsible for the impaired 
antitumor T cell response observed in PLC2/ mice, we 
measured the percentage of MDSCs after s.c. inoculation  
of B16 melanoma and Lewis lung carcinoma (LLC) cell  
lines. Consistent with a significant increase in s.c. tumor 
growth in PLC2/ mice, we also found a higher percentage 
of Gr-1+CD11b+ MDSCs in the bone marrow, spleen, and 
tumor site 14 d after inoculation of both tumor cell lines (Fig. 1, 
A and B). The increase in percentage of MDSCs observed  
in the null mice was not detected at baseline, reflecting a rather 
specific response to the tumor itself (not shown). Between the 
two cell lines, LLC induced stronger MDSC accumulation 
than B16 cells in both PLC2/ and WT mice, and thus this 
cell line was used for all subsequent experiments. Next,  
to determine whether the expanded MDSC population ob-
served in the null mice was a consequence of greater tumor 
growth, we injected WT and PLC2/ mice with 105 LLC 
and sacrificed the animals 7 d after tumor challenge when no 
detectable differences in tumor weight were yet observed 
(Fig. 1 C). PLC2/ mice already displayed greater MDSC 
accumulation in bone marrow and spleen, whereas only a 
small percentage of MDSCs was detected in the tumor at this 
time in both genotypes (Fig. 1 C).

To determine whether increased numbers of MDSCs  
are responsible for enhanced tumor growth in PLC2/ 
mice, we adoptively transferred 3 × 106 MDSCs isolated from 
LLC tumor-bearing PLC2/ or WT mice into WT animals. 
MDSCs were i.v. injected into the recipient mice 3 and 6 d 
after s.c. LLC inoculation. Tumor growth was monitored for 
2 wk, and the percentage of MDSCs in the spleen was mea-
sured at time of sacrifice. We found that adoptive transfer of 
PLC2/ MDSCs into WT recipients significantly enhanced 
tumor growth compared with animals receiving WT MDSCs, 
and it also further increased MDSC accumulation in the 
spleen (Fig. 2 A). To address whether the expansion of MDSCs 
caused by administration of PLC2-deficient MDSCs was 
caused by proliferation of the null cells or by increased ex-
pansion of endogenous MDSCs, we adoptively transferred 
CD45.2+ PLC2/ or WT MDSCs into tumor-bearing 
CD45.1+ WT recipients. Mice injected with saline were used 
as controls. Tumor growth was monitored for 14 d and the 
percentage of endogenous CD45.1+ MDSCs and total  
Gr-1+CD11b+ MDSCs (CD45.1+ and CD45.2+) in the spleen 
was analyzed at time of sacrifice. As in Fig. 2 A, animals receiv-
ing PLC2/ MDSCs showed increased tumor growth 
compared with animals receiving WT MDSCs, accompa-
nied by greater MDSC expansion (Fig. 2 B). Interestingly, the 

integrin (CD11b) in mice. More recently, MDSCs were sub-
divided into two different subsets based on the expression of 
Ly6C and Ly6G. One subset comprises monocytic and mono-
nuclear CD11b+Ly6GLy6Chigh cells, called MO-MDSCs, 
which primarily release NO to suppress T cell activation 
(Movahedi et al., 2008; Youn et al., 2008). The second subset, 
termed PMN-MDSCs, includes CD11b+Ly6G+Ly6Clow cells 
with granulocytic and polymorphonuclear morphology and 
they exert T cell inhibition by producing mainly reactive  
oxygen species (ROS). The expansion of these two MDSC 
subsets has been shown to be tumor cell line dependent. Most 
tumors show increased PMN-MDSCs, whereas MO-MDSCs 
are expanded in only a few models (Youn et al., 2008). Nev-
ertheless, both PMN- and MO-MDSC subsets exert compara-
ble immune suppressive activity primarily against CD8+ T cells.

A large body of work has focused on the identification  
of the factors modulating MDSC activation and the signals 
mediating their recruitment to the tumor microenvironment 
or secondary lymphoid organs. Several tumor-derived growth 
factors, including macrophage colony-stimulating factor  
(M-CSF), IL-6, and granulocyte/macrophage colony-stimulating 
factor (GM-CSF) promote the expansion of MDSCs through 
stimulation of myelopoiesis and inhibition of the differentia-
tion of mature myeloid cells reviewed by (Gabrilovich and 
Nagaraj, 2009). Other factors such as IFN-, ligands for TLRs, 
and TGF produced mainly by activated T cells and tumor 
stroma, are involved in MDSC activation. In most instances, 
phosphorylation of signal transducer and activator of tran-
scription 3 (STAT3) and STAT1 are observed in MDSCs 
during tumor progression. Although STAT3 was shown to 
modulate MDSC differentiation and function, recent reports 
suggest that STAT3 primarily controls the ability of MDSCs 
to suppress antigen-dependent T cell activation (Kortylewski 
et al., 2005; Chalmin et al., 2010). Other transcription factors 
important for myeloid cell fate determination, such as PU.1 
(Spi-1) or CAAT/enhancer binding protein- (C/EBP-), 
have been implicated in MDSC differentiation and immune-
suppressive functions (Schroeder et al., 2003; Marigo et al., 
2010). However, one of the major unresolved questions is the 
mechanism leading to MDSC expansion in the bone marrow, 
an event that occurs very early during tumor progression, 
even when the tumor itself is at a distant site. Thus, the focus 
of our work is to better understand the mechanisms involved 
in MDSC accumulation in response to the tumor.

Activation of PLC2, an enzyme converting phosphati-
dylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DAG) 
and inositol triphosphate (IP3), is implicated in proliferation 
and migration of several cancers (Smith et al., 1998; Feng  
et al., 2012). However, its deletion in the host also leads to  
increased tumor growth (Zhang et al., 2011). We have recently 
shown that PLC2/ mice are more susceptible to tumor 
growth in bone despite a decrease in osteoclast number and 
function. Although PLC2 is not required for T cell activation, 
we observed impaired CD8+ T cell responses in PLC2/ 
tumor-bearing mice (Zhang et al., 2011). Our current study 
shows that down-regulation of PLC2 signaling promotes 
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2.5 fold-increase in the percentage of MDSCs in the spleen 
(Fig. 3). All together these results indicate that PLC2 is a 
negative regulator of MDSC expansion and function in 
tumor-bearing hosts.

PLC2 deficiency favors MDSC accumulation  
over myeloid cell differentiation in vitro
To better understand the role of PLC2 in MDSC accumula-
tion, we isolated MDSCs from the spleen of tumor-bearing 
mice and analyzed the balance between anti- (Blc-2, Bcl-xl) 
and proapoptotic (Bax) signals by quantitative RT-PCR. 
PLC2/ MDSCs showed similar relative mRNA expres-
sion levels of Bcl-2, Bcl-xl, and Bax to WT MDSCs (not  
depicted). Next, we wondered whether PLC2 deficiency 
would affect the cell fate differentiation from myeloid pro-
genitor cells in the bone marrow. We isolated lineage negative 
hematopoietic progenitor cells from PLC2/ or WT bone 
marrow and cultured them in the presence of GM-CSF, IL-4, 
and tumor conditioned medium (TCM) (Bronte et al., 2000; 
Youn et al., 2008). After 5 d, we determined the percentage  
of cells expressing DCs (CD11c), mature DCs (B7.2), macro-
phages (F4/80), and granulocyte lineage (Gr-1) markers. We 
found a significant reduction in the percentage of F4/80-
positive cells (PLC2/: 31.6 ± 1.3% versus WT: 53.3 ± 
1.4%; P = 0.00004), as well as CD11c (PLC2/: 22.3 ± 2.3% 
versus WT: 35.7 ± 3.0%; P = 0.004) and CD11c/B7.2-positive 
cells (PLC2/: 13.8 ± 1.7% versus WT: 24.5 ± 2.2%;  

accumulation of MDSCs after adoptive transfer of either WT 
or PLC2/ cells was due to expansion of endogenous 
CD45.1+ MDSCs, as their percentage was similar to that of 
total MDSCs (Fig. 2 B and not depicted). This finding indi-
cates that the transfer of exogenous PLC2-deficient MDSCs 
into WT recipient animals causes the expansion of endogenous 
MDSCs, which might be the result of enhanced tumor growth. 
Next, to use a second approach to show that PLC2 de-
ficiency in the myeloid population, including MDSCs, is 
responsible for the observed tumor phenotype, we turned to 
PLC2 conditional KO mice (PLC2cKO), in which deletion 
of PLC2 is under control of LysM-Cre. Reduced PLC2 
expression in MDSCs was confirmed by Western blot, and 
similarly to the global PLC2/ mice, PLC2cKO animals 
also displayed increased tumor growth and MDSC accumula-
tion compared with LysM-Cre controls (not shown).

As MDSCs have also a recognized role in tolerance, we 
next analyzed whether PLC2/ mice, which are on a 
C57BL/6 background, could allow growth of the allogeneic 
4T1 breast cancer cell line derived from BALB/c mice. 5 × 106 
4T1 tumor cells were inoculated s.c. in WT and PLC2/ 
mice and tumor growth followed for 2 wk. As expected by 
the different background of the recipient C57BL/6 mice and 
the 4T1 tumor cell line isolated from BALB/c mice, the 
tumor engraftment was rejected in WT mice (Fig. 3). How-
ever, 4T1 tumor cells grew in PLC2/ mice with a con-
comitant accumulation of MDSCs in the bone marrow and a 

Figure 1. PLC2 deficiency induces 
greater tumor growth and MDSC accumu-
lation. (A and B) 105 B16 melanoma (A) or 
LLC (B) cells were s.c. injected into PLC2/ 
or WT mice and tumor growth was evaluated 
for 14 d. Percentage of MDSCs in the bone 
marrow, spleen, and tumor site was analyzed 
by FACS using anti–Gr-1 and CD11b staining. 
Results represent mean ± SD (B16: n = 5, 
experiment done in duplicate; LLC: n = 3, 
experiment repeated 4 times). *, P < 0.05;  
**, P < 0.01; ***, P < 0.001. (C) 105 LLC cells were 
s.c. injected in PLC2/ or WT mice. 7 d after 
tumor challenge, the tumor was resected and 
weighed. Percentage of MDSCs from bone 
marrow, spleen and tumor were then ana-
lyzed by FACS staining (Gr-1+CD11b+, MDSCs). 
Results represent mean ± SD (n = 4). Data are 
reported from one of two similar independent 
experiments. **, P < 0.01.
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similar at baseline in the two genetic backgrounds (Fig. 4 A). 
PMN-MDSCs represented the dominant subpopulation  
before and after the tumor challenge in both WT and KO (Fig. 4, 
A and B). However, both MDSC subfractions were signifi-
cantly increased in bone marrow and spleen of PLC2/ 
mice compared with WT mice in response to LLC-tumor 
inoculation (Fig. 4 B). Thus, PLC2 does not seem to exert 
differential effects on PMN- and MO-MDSC subsets.

Next, to determine whether PLC2/ MDSCs exhib-
ited stronger immunosuppressive functions compared with 
WT, in addition to being more numerous, we examined the 
inhibitory effects of PMN- and MO-MDSCs on T cell pro-
liferation in vitro. As MDSCs were shown to suppress both 
antigen-driven and mitogen-driven T cell proliferation, we 
examined the immune-suppressive activity of MDSCs under 
both conditions. Splenocytes from OT-1 transgenic mice 
were labeled with CFSE and incubated with MHC class I–
restricted SIINFEKL (OT-1) peptide (10 pM) to induce 
CD8+ T cell antigen–specific proliferation or with anti-CD3 
antibody (10 µg/ml) for mitogen-driven CD8+ T cell stimu-
lation. The immune-suppressive effects of MDSCs were deter-
mined by culturing WT and PLC2/ PMN- or MO-MDSCs 
with three different ratios of splenocytes (1:10; 1:5; 1:1). Pro-
liferation of targeted CD8+ T cells was measured in terms of 
CFSE dilution by flow cytometric analysis 72 h later. We 
found that both PLC2/ PMN- and MO-MDSCs had 
greater immune-suppressive effects on CD8+ T cell prolifera-
tion than WT MDSCs in both antigen- and mitogen-driven 
T cell stimulatory conditions (Fig. 5, A and B). It is established 
that PMN-MDSCs inhibit CD8+ T cell proliferation mainly 
through ROS production and that MO-MDSCs induce  
T cell apoptosis mostly via NO release. To evaluate the mech-
anism by which PLC2 deficiency controls MDSC immune 
suppressive activity, we measured ROS and NO levels in 
PMN- and MO-MDSCs in response to PMA (300 nM) or 
LPS (1 µg/ml) for indicated time. As expected (Movahedi  
et al., 2008; Youn et al., 2008), WT PMN-MDSCs predomi-
nantly produced ROS, whereas WT MO-MDSCs mainly re-
leased nitrites (Fig. 5, C and D). In contrast, PMN-MDSCs 

P = 0.003) in the cultures from PLC2-deficient cells com-
pared with WT. In contrast, the percentage of Gr-1+ cells was 
significantly increased in PLC2/ cultures compared with 
WT (PLC2/: 37.1 ± 0.9% versus WT: 12.0 ± 1.6%; P = 
0.0001). This result suggests that PLC2 deficiency favors 
MDSC accumulation over myeloid cell differentiation.

PLC2 deficiency expands PMN- and MO-MDSC subsets 
and potentiates their immunosuppressive functions
To gain more insights into the role of PLC2 in MDSC- 
induced tumor progression, we performed phenotypic and 
functional analyses comparing WT and PLC2/ MDSCs 
during tumor progression. We measured the relative proportion 
of PMN-MDSCs (CD11b+Ly6G+Ly6Clow) and MO-MDSCs 
(CD11b+Ly6GLy6Chigh) by FACS in PLC2/ and WT 
mice. We first confirmed that the percentage of both PMN- 
and MO-MDSC subsets in bone marrow and spleen was 

Figure 2. Adoptive transfer of PLC2/ MDSCs enhances tumor 
growth in WT mice. (A) WT mice s.c. inoculated with LLC cells were 
adoptively transferred on days 3 and 6 with 3 × 106 WT or PLC2/ 
MDSCs from LLC tumor–bearing mice. Tumor growth was followed for  
14 d, and the percentage of Gr-1+CD11b+ MDSCs isolated from spleens 
was determined by FACS. Mean ± SD (n = 5) are shown. Data are re-
ported from one of two similar experiments. **, P < 0.01; ***, P < 0.001. 
(B) 3 × 106 WT or PLC2/ MDSCs were isolated from the spleen of  
tumor-bearing CD45.2+ mice and inoculated i.v. into CD45.1+ WT mice on 
days 3 and 6 after LLC tumor challenge. The tumor growth in CD45.1+ WT 
recipients was monitored for 14 d, and the percentage of endogenous 
CD45.1+ Gr-1+CD11b+ MDSCs in spleen was determined by FACS. Mean ± 
SD (n = 5) are shown. Data are reported from one of two similar indepen-
dent experiments. *, P < 0.05; **, P < 0.01.

Figure 3. PLC2/ mice permit 4T1 allogeneic tumor growth.  
5 × 106 4T1 mammary tumor cells were s.c. injected in PLC2/ or WT 
mice and tumor growth was evaluated for 14 d. Percentage of MDSCs in 
spleen was then analyzed by FACS using anti–Gr-1 and CD11b staining. 
Results represent mean ± SD (n = 3). One representative experiment of 
two is shown. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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activation similarly to endogenous DAG but even in the ab-
sence of PLC2 (Castagna et al., 1982). Whole PLC2/ 
bone marrow cells were cultured in the presence of PDBu  
for 18 h, MDSCs were isolated and -catenin protein levels 
were determined by Western blot. Results show increased  
-catenin protein levels in PLC2-deficient MDSCs treated 
with PDBu compared with untreated cells (Fig. 6 B), indi-
cating that PLC2 can regulate -catenin levels via DAG- 
dependent PKC activation.

-catenin deficiency in myeloid cells leads to greater  
tumor growth and MDSC accumulation
To further understand the importance of -catenin down-
regulation in MDSCs in vivo, we turned to the Cre-loxP  
recombination system to conditionally delete -catenin in 
myeloid cells. -catenin–floxed mice were bred with animals 
expressing the Cre recombinase under the control of Lyso-
zyme M (LysM-Cre/-cateninflox/flox; herein defined as -cat.
cKO), and deletion of -catenin in MDSCs was confirmed 
by Western blot (not shown). We used animals expressing  
either the Cre recombinase (LysM-Cre/-cateninwt/wt) or the 
floxed allele (-cateninflox/flox) as a control (CTR). As no dif-
ferences in tumor growth and MDSC expansion in the two 
control genotypes were observed, we used either one or the 
other as control group. LLC tumor cell line was inoculated 
s.c. into -cat.cKO or control mice, and tumor growth was 
followed by caliper measurements for 14 d. The percentage of 
MDSCs in the bone marrow, spleen, and tumor site was ana-
lyzed by flow cytometry at time of sacrifice. Similarly to 
PLC2/ mice, -cat.cKO animals displayed greater tumor 
growth and over twofold increase in the percentage of MDSCs 
in spleen and tumor site compared with CTR (Fig. 6 C).  
A significant increase in the percentage of MDSCs in the 
bone marrow was also observed. To further determine the abil-
ity of -catenin-deficient MDSCs to support tumor growth, 
we adoptively transferred MDSCs isolated from tumor-bearing 
-cat.cKO or CTR mice into tumor-bearing WT mice. Mice 
receiving saline were used as additional controls. We found 
that mice transferred with -cat.cKO MDSCs displayed  
enhanced tumor volume and twofold increase in splenic 
MDSCs compared with animals receiving CTR MDSCs or 
saline (Fig. 6 D).

-catenin stabilization in myeloid cells protects from tumor 
growth by reducing MDSC accumulation and function
To further demonstrate that -catenin is a critical modulator of 
MDSC expansion in response to tumor, we turned to a similar 
LysM-Cre-loxP genetic mouse model to express a constitutively 
active mutant of -catenin (LysM-Cre/-cateninfloxEx3/floxEx3; 
herein defined as -cat.CA; Harada et al., 1999) in myeloid cells, 
including MDSCs (not shown). LLC cells were inoculated s.c. 
into -cat.CA and LysM-Cre CTR mice. Tumor growth was 
monitored every 2 d, and MDSC accumulation in bone marrow, 
spleen, and tumor site was evaluated 14 d after tumor challenge. 
In contrast to -cat.cKO mice, expression of a stable form of 
-catenin in MDSCs reduced tumor growth compared with 

and MO-MDSCs from PLC2/ mice released both high 
levels of ROS and NO (Fig. 5, C and D). Thus, PLC2 defi-
ciency in both MDSC subsets induces higher release of solu-
ble oxidizers, making them more effective in suppressing both 
Ag-specific and nonspecific immune responses.

Reduced -catenin levels are observed in PLC2/ MDSCs
Dysregulated -catenin signaling has been noted in many 
cancers. Furthermore, -catenin pathway is also known to 
modulate the self-renewal and maintenance of hematopoietic 
stem cells and myeloid progenitor cells (Scheller et al., 2006). 
Because MDSCs are immature myeloid progenitor cells, we 
hypothesized that -catenin could be an important player in 
their development. First, we confirmed deletion of PLC2 
and reduced phosphorylation levels of the PLC2 effector 
PKC (p-PKC; Fig. 6 A). Next, we measured -catenin and 
phosphorylated-GSK3 (p-GSK3) levels in WT and PLC2/ 
MDSCs isolated from tumor-bearing mice by Western blot. 
Surprisingly, we observed a striking decrease in -catenin and 
p-GSK3 levels in PLC2/ MDSCs compared with WT 
(Fig. 6 A). Because PKC has been previously shown to stabi-
lize -catenin protein levels in T cells (Lovatt and Bijlmakers, 
2010), we wondered if reduced PKC activation in PLC2/ 
MDSCs could be responsible for decreasing -catenin levels. 
To address this question, we turned to the DAG-analogue 
phorbol 12,13-dibutyrate (PDBu), which can induce PKC 

Figure 4. PLC2 deficiency leads to increased PMN- and MO-
MDSCs in tumor-bearing mice. (A and B) Bone marrow and spleens 
from tumor-free (A, No Tumor) or LLC tumor–bearing (B, Tumor) WT and 
PLC2/ mice were harvested, and single-cell suspensions were stained 
for Ly6G and Ly6C markers. Percentages of WT and PLC2/ PMN-MD-
SCs (CD11b+Ly6G+Ly6Clow) and MO-MDSCs (CD11b+Ly6G-Ly6Chigh) are 
shown. Data are expressed as mean ± SD (n = 7). Cumulative results from 
two experiments are shown (A and B). *, P < 0.05; **, P < 0.01.
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MDSCs were more potent inhibitors than -cat.CA MDSCs at 
1:1 ratio (Fig. 7 B). Collectively, these results indicate that modu-
lation of -catenin levels in MDSCs is critical for their accumu-
lation and function and for modulation of tumor progression.

-catenin stabilization in PLC2/ MDSCs decreases  
their accumulation and immune suppressive activity
Next, to determine if PLC2 controls MDSC expansion  
in response to tumor via -catenin, we bred LysM-Cre 
PLC2 conditional KO mice (PLC2cKO) with LysM-Cre/ 
-cateninfloxEx3/floxEx3 mice (-cat.CA) to obtain the double-
mutant PLC2cKO/-cat.CA animals. Because the double 

CTR mice (Fig. 7 A). Although the percentage of MDSCs was 
not different in the bone marrow, a significant decrease in MDSC 
accumulation was observed in the spleen and tumor site of  
-cat.CA mice (Fig. 7 A). To determine whether stabilization of  
-catenin levels in MDSCs would affect their immune suppres-
sive activity in addition to their expansion, we isolated MDSCs 
from the spleen of tumor-bearing CTR and -cat.CA mice and 
co-cultured these cells with WT CFSE-labeled splenocytes at 
1:5 and 1:1 ratios. CD8+ T cell proliferation was induced by 
incubation with anti-CD3 antibody for 72 h and analyzed by 
FACS. Whereas the T cell proliferation rate was similar in CTR- 
and -cat.CA-MDSC cultures at 1:5 ratio, we found that WT 

Figure 5. PLC2/ MDSCs are more potent 
immune suppressors than WT MDSCs in vitro. 
(A and B) T cell proliferation assay. PMN- or MO-
MDSCs isolated from WT and PLC2/ mice 
were co-cultured for 3 d with CFSE-labeled sple-
nocytes from OT-1 transgenic mice (1:10, 1:5, and 
1:1 ratios) and stimulated with SIINFEKL peptide 
(10 pM) in antigen-driven (A) or with anti-CD3 
(10 µg/ml) in mitogen-driven (B) experiments. Bar 
graphs show mean ± SD of three independent 
experiments. *, P < 0.05; **, P < 0.01. Representa-
tive flow cytometric analysis of CD8+ T cell prolif-
eration (shown as CFSE dilution) in the presence 
of WT (dashed line) and PLC2/ (solid line) 
MDSCs is also shown. (C and D) Suppressive 
mechanisms of PMN- and MO-MDSCs isolated 
from WT and PLC2/ mice. Level of ROS (mean 
fluorescence intensity, MFI) in PMN and MO sub-
sets in response to PMA stimulation (300 nM for 
30 min) was measured using DCFDA staining and 
FACS. NO2 release in supernatant of 105 MDSCs 
subfractions was assayed by a standard Greiss 
reaction after LPS stimulation (1 µg/ml for 24 h; D). 
Mean ± SD from three independent experiments 
are shown. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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mice with 105 LLC and sacrificed the animals 5 d after tumor 
challenge when no detectable differences in tumor weight 
were yet observed (Fig. 7 D). Similar to the global PLC2- 
deficient mice, we observed greater accumulation of PLC2cKO 
MDSCs compared with CTR in mice with similar tumor size 
(Fig. 7 D). In contrast, PLC2cKO/-cat.CA mice showed 
significantly lower MDSC expansion than PLC2cKO mice 
(Fig. 7 D). Consistent with this observation, the percentage of 
CD8+ T cells infiltrating the tumor was significantly in-
creased in PLC2cKO/-cat.CA compared with PLC2cKO 
(Fig. 7 E). As these findings suggested that stabilization of  
-catenin levels in PLC2cKO MDSCs impairs cell immune 
suppressive activity, we performed functional T cell prolifera-
tion assays. CTR-, PLC2cKO-, and PLC2cKO/-cat.CA-
MDSCs were cultured with CFSE-labeled WT splenocytes 
stimulated with anti-CD3 antibody (10 µg/ml). After 3 d, the 
proliferation of targeted CD8+ T cells was analyzed in terms of 
CFSE dilution by flow cytometry. As expected from our pre-
vious result (Fig. 5 B), CD8+ T cell proliferation is strongly  
diminished by PLC2cKO MDSCs compared with control. In 
contrast, PLC2cKO/-cat.CA MDSCs have significantly 

mutant mice were born at less than Mendelian rates, rendering 
the analysis of their tumor phenotype very difficult, we gen-
erated radiation chimeras consisting of lethally irradiated WT  
recipient mice transplanted with bone marrow cells from double- 
mutant PLC2cKO/-cat.CA animals, PLC2cKO or LysM- 
Cre control mice. 4 wk after bone marrow transplantation, 
LLC cells were s.c. inoculated into the transplanted mice. 
Tumor growth was followed for 14 d and the percentage of 
MDSCs was evaluated by flow cytometry at time of sacrifice. 
Expression levels of PLC2 and -catenin in MDSCs in all 
chimeric mice were determined by Western blot (Fig. 7 C). 
Similar to the global PLC2/ mice, PLC2cKO chimeric 
mice also displayed increased tumor growth and MDSC ac-
cumulation compared with LysM-Cre chimeric controls (CTR; 
Fig. 7 C). In contrast, chimeric mice bearing double-mutant 
PLC2cKO/-cat.CA bone marrow cells showed significantly 
lower tumor growth and MDSC expansion than chimeric 
mice transplanted with PLC2cKO cells (Fig. 7 C). To finally 
determine whether reduced percentage of PLC2cKO/-cat.
CA MDSCs was a consequence of decreased tumor growth, 
we injected CTR, PLC2cKO, and PLC2cKO/-cat.CA 

Figure 6. Down-regulation of -catenin 
regulates MDSC accumulation and tumor 
growth. (A) Western blot analysis displaying  
expression levels of PLC2, -catenin, p-PKC and 
p-GSK3 in MDSCs isolated from tumor-bearing 
WT and PLC2/ mice. -actin was used as 
loading control. One representative blot out of 3 
independent experiments is shown. (B) Western 
blot analysis displaying expression levels of 
PLC2 and -catenin in PLC2/ MDSCs stimu-
lated with PDBu or saline for 18 h. -actin was 
used as loading control. One representative blot 
out of two independent experiments is shown. 
(C) 105 LLC cells were s.c. injected in -cat.cKO or 
control mice (CTR) and tumor growth followed 
for 14 d. BM, spleen and tumors were then  
analyzed by FACS using anti–Gr-1 and CD11b 
staining to measure the percentage of MDSCs. 
Mean ± SD (n = 8) are shown. One representative 
out of 3 independent experiments is shown.  
*, P < 0.05, **, P < 0.01, ***, P < 0.001. (D) WT mice 
s.c. inoculated with LLC cells were adoptively 
transferred on days 3 and 6 with 3 × 106 CTR- or 
-cat.cKO-MDSCs isolated from LLC tumor–bearing 
mice. Saline injection was used as control. Tumor 
growth was followed for 14 d. The percentage of 
MDSCs was determined by FACS in spleen 14 d 
after tumor inoculation. Mean ± SD (n = 6) are 
shown. Data are reported from one of two similar 
independent experiments. **, P < 0.01.
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Figure 7. Increased -catenin expression inhibits MDSC expansion, activity, and tumor growth. (A) 105 LLC cells were s.c. injected in -cat.CA 
or control mice (CTR), and tumor growth was followed for 14 d. Bone marrow, spleen, and tumors were then analyzed by FACS using anti–Gr-1 and 
CD11b staining to measure the percentage of MDSCs. Mean ± SD (n = 4) are shown. One representative out of two independent experiments is shown.  
*, P < 0.05; **, P < 0.01. (B) T cell proliferation assay. MDSCs were isolated from CTR and -cat.CA mice, co-cultured with CFSE-labeled splenocytes from 
WT mice (1:5 and 1:1 ratios) and stimulated with anti-CD3 (10 µg/ml) for 3 d. Bar graphs show mean ± SD of three independent experiments. *, P < 0.05. 
Representative flow cytometric analysis of gated CD8+ T cell proliferation in the presence of CTR- (dashed line) and .cat.CA-MDSCs (solid line) is also 
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expression levels. Similarly to mice, we isolated the whole 
human MDSC population, characterized by the co-expression 
of CD11b and the common myeloid marker CD33 (Greten 
et al., 2011; Filipazzi et al., 2012). All samples were collected 
before surgical or medical therapy. 5 patients (49–74 yr of 
age), 2 with resectable T2A or T3 stages and 3 with unresect-
able T3 or T4 stages of pancreatic ductal adenocarcinoma 
were tested by Western blot. Considering the variability be-
tween individuals, we normalized protein levels with total 
amount of protein loaded visualized by -actin. We found 
significant reduction of p-PLC2 and its downstream effector 
p-PKC in MDSCs from pancreatic cancer patients compared 
with healthy donors. -catenin and p-GSK3 levels were also 
decreased (Fig. 8 C). In conclusion these results demonstrate 
that the down-regulation of PLC2–-catenin signaling is a 
critical step in MDSC expansion in humans and mice.

DISCUSSION
The mechanism behind MDSC differentiation and the signals 
that control their commitment and biological function in 
tumor-bearing hosts are not well understood. MDSCs have 
been detected in bone marrow, secondary lymphoid organs, 
and tumor site in many murine tumor models and in patients 
with advanced malignancies (Young et al., 1988; Gabitass  
et al., 2011; Porembka et al., 2012). The variability in the per-
centage of MDSCs and their efficiency to suppress antitumor 
T cell responses depend on the type and stage of tumor (Youn 
et al., 2008; Dolcetti et al., 2010; Younos et al., 2011). Several 
studies focused on identifying tumor-derived factors involved 
in the accumulation of MDSCs (Bronte et al., 2000; Barreda 
et al., 2004; Serafini et al., 2006; Pan et al., 2008; Roland et al., 
2009; Xiang et al., 2009). Fewer studies, however, analyzed  
the signaling pathways involved in MDSC expansion in the 
tumor host. We now provide new evidence demonstrating 
that down-regulation of PLC2 and -catenin signaling pro-
motes MDSC accumulation in the bone marrow and subse-
quent recruitment to secondary lymphoid organs and tumor 
site, where they favor tumor escape from immune control.  
We found that PLC2/ MDSCs, with reduced -catenin 
levels, are increased in number and strongly suppress CD8+  
T cell activity via production of ROS and NO species. This 
increase in MDSC number and immune suppressive effects is 
likely responsible for the greater s.c growth of LLC and B16 
tumor cell lines and for the allogeneic tumor progression  

less ability to suppress T cell proliferation compared with 
PLC2cKO MDSCs (Fig. 7 F). All together these findings  
reveal that stabilization of -catenin in PLC2/ MDSCs 
modulates MDSC expansion and their suppressive activity.

Reduced PLC2/-catenin in MDSCs occurs during  
tumor progression in mice and cancer patients
We then wondered if down-regulation of PLC2–-catenin 
pathway is an important regulatory mechanism involved in 
the aberrant MDSC expansion and/or activity during tumor 
progression. To test the hypothesis that down-regulation of 
PLC2–-catenin pathway occurs in WT MDSCs, we com-
pared protein expression levels of phosphorylated-PLC2  
(p-PLC2) and -catenin in MDSCs isolated from tumor-
free and tumor-bearing WT mice. Strikingly, we found down-
regulation of p-PLC2 and -catenin levels in MDSCs isolated 
from WT tumor-bearing mice compared with tumor-free 
controls. Both LLC and B16 tumor cell lines induced a simi-
lar phenomenon (Fig. 8 A).

Because various studies implicated MDSCs in the meta-
static process (Li et al., 2013; Sawant et al., 2013;  Yu et al., 
2013), we wondered whether down-regulation of PLC2/ 
-catenin signaling in MDSCs would also occur at late stages 
of tumor dissemination. To answer this question, we injected 
firefly-conjugated B16 melanoma (B16-Fl) cells into the left 
ventricle of WT animals, a model widely used to study tumor 
dissemination to bone, visceral organs, and lungs in C57BL/6 
mice (Arguello et al., 1988; Kang et al., 2003). Animals receiving 
saline were used as negative control. Recruitment of tumor 
cells to bone was assessed by bioluminescence imaging. Mice 
were sacrificed on day 14 when tumor cells were readily de-
tectable in bones, and increased percentage of MDSCs in the 
bone marrow and the spleen compared with tumor-free con-
trols was confirmed by FACS. Importantly, we also observed 
reduced p-PLC2 and -catenin protein levels in MDSCs 
isolated from spleens of animals bearing bone metastases 
compared with controls (Fig. 8 B). Thus, the down-regulation 
of PLC2–-catenin axis in MDSCs occurs in mice with 
primary s.c. tumors as well as during tumor dissemination.

As increased percentage of MDSCs in peripheral blood 
correlates with disease progression and stage in many human 
cancers, including pancreatic cancer (Porembka et al., 2012), 
we isolated MDSCs from PBMCs of pancreatic cancer pa-
tients and healthy donors to compare p-PLC2 and -catenin 

shown. (C) WT mice were lethally irradiated and transplanted with bone marrow cells from PLC2cKO, LysM-Cre (CTR), or PLC2cKO/-cat.CA to generate 
chimeric mice. Western blot analyses show the expression of PLC2, -catenin, p-PKC, p-GSK3, and -actin in MDSCs from chimeric mice. 4 wk after 
BM transplantation, chimeric mice were inoculated s.c. with 105 LLC cells and tumor growth was followed for 14 d. Percentage of MDSCs in bone marrow, 
spleen, and tumor was analyzed by FACS at time of sacrifice. Mean ± SD (n = 10) are shown. Data are reported from one of two similar independent  
experiments. **, P < 0.01; ***, P < 0.001. (D and E) 105 LLC cells were s.c. injected in PLC2cKO, CTR, or PLC2cKO/-cat.CA mice. 5 d after tumor challenge, 
the tumor was resected and weighed (D). Percentage of MDSCs from bone marrow, spleen, and tumor were then analyzed by FACS staining (Gr-1+CD11b+, 
MDSCs) (D). Dissected tumors were stained with anti-CD8 antibody and the percentage of CD8+ T cells was determined by FACS (E). Results represent 
mean ± SD (n = 3). One representative out of two independent experiments is shown (D and E). *, P < 0.05; **, P < 0.01. (F) T cell proliferation assay. 5 d 
after LLC tumor inoculation, MDSCs were isolated from CTR, PLC2cKO, and PLC2cKO/-cat.CA mice, co-cultured for 3 d with CFSE-labeled splenocytes 
from WT mice (1:5 and 1:1 ratios), and stimulated with anti-CD3 (10 µg/ml). Bar graphs show mean ± SD of three independent experiments. *, P < 0.05.
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osteoclasts are required to sustain tumor growth in bone. In-
terestingly, PLC2/ mice display enhanced tumor growth 
in bone despite decreased osteoclast numbers, due to impaired 
CD8+ T cell activation (Zhang et al., 2011). Thus, expansion 
of PLC2/ MDSCs in this tumor model seems to over-
come the requirement for active osteoclasts to sustain tumor 
growth in bone. Importantly, the down-regulation of PLC2 
and -catenin can also occur in MDSCs from WT mice dur-
ing tumor dissemination to bone, indicating that PLC2/ 
-catenin pathway modulates MDSC expansion in primary 
tumors as well as in a metastatic setting.

Similarly to PLC2-deficient animals, mice with deletion 
of -catenin in the myeloid compartment are more susceptible 
to tumor growth due to increased MDSC numbers, whereas ex-
pression of a constitutively active form of -catenin decreases 
MDSC accumulation and tumor growth. Importantly, expression 
of -catenin constitutively active in PLC2-deficient MDSCs  
is also sufficient to reduce the expansion and the immune 

of 4T1 breast carcinoma cells observed in PLC2/ mice. 
Although a tumor/MDSCs vicious cycle is expected to take 
place, in which larger tumors cause greater MDSC expansion 
to promote tumor escape from immune control, we found 
increased PLC2/ MDSCs numbers at early time points 
after tumor inoculation, when differences in tumor size 
between WT and KO mice were not present. Although  
DC and NK cells from PLC2/ mice also have func-
tional defects and could enhance tumor growth in PLC2/ 
mice, the MDSCs adoptive transfer studies demonstrate that 
PLC2/ MDSCs alone can greatly increase tumor progres-
sion in WT recipient mice. This finding indicates that PLC2 
controls MDSC development and/or proliferation in response 
to the tumor.

Enhanced accumulation of MDSCs is also likely to be re-
sponsible for the unexpected bone tumor phenotype recently 
observed in PLC2/ animals (Zhang et al., 2011). In the 
bone metastasis field, it has been established that bone resorbing 

Figure 8. Reduced p-PLC2 and -cat-
enin expression levels are observed in MD-
SCs during tumor progression in mice and 
humans. (A) Western blot analyses show  
p-PLC2 and -catenin protein levels in  
MDSCs from tumor-free (No Tumor) and LLC or 
B16 tumor-bearing C57BL/6 WT mice. -actin 
was used as loading control. Mean ± SD of 
three tumor-free mice (No Tumor) and three 
tumor-bearing mice (Tumor). **, P < 0.01;  
***, P < 0.001. (B) 104 B16-Fl cells were i.v. in-
jected in WT mice to allow tumor dissemination 
to bone. When bone metastases (Met.) were 
established, animals were sacrificed and bone 
marrow and spleen were analyzed by FACS 
using anti–Gr-1 and -CD11b antibodies to 
measure the percentage of MDSCs. Mice  
receiving saline i.v. injection were used as 
controls (No Tumor). Mean ± SD (n = 4) is 
shown. Data are reported from one of two 
similar independent experiments. *, P < 0.05. 
Western blot analysis of p-PLC2, -catenin 
and -actin (loading control) levels in MDSCs 
from spleen of mice with bone metastases 
(Met.) or tumor-free controls (No Tumor). One 
representative Western blot from three different 
mouse samples is shown. (C) MDSCs isolated 
from healthy donors (HD) or pancreatic can-
cer patients (Pt) were analyzed for -catenin 
and phosphorylation levels of PLC2, PKC, 
and GSK3. -actin was used as loading con-
trol. Graph shows semiquantitative analysis of 
protein levels from Western blots of all sam-
ples after normalization to total protein 
loaded into the gel (measured by -actin). 
Three representative patients out of five are 
shown. *, P < 0.05.
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with WT, whereas the rescue of PKC activation by PDBu in 
PLC2/ MDSCs increases -catenin protein levels. Never-
theless, we cannot exclude additional PLC2-independent 
down-regulation of -catenin in MDSCs, possibly via modu-
lation of Wnt ligands or Wnt inhibitors by the tumor cells.

How does -catenin control MDSC expansion? Elevated 
levels of -catenin are often associated with increased cell 
proliferation. This is especially true for cancer cells. Therefore, it 
was puzzling to observe that MDSC expansion was associated 
with reduced -catenin levels. -catenin has been extensively 
analyzed in hematopoiesis, at times leading to contradictory 
findings. Conditional expression of a stabilized, active form of 
-catenin in hematopoietic stem cells (HSC) resulted in hema-
topoietic failure because of a reduction in cell cycle quiescence, 
HSC exhaustion, and blocked differentiation. Consistent with 
our hypothesis that -catenin limits MDSC expansion, consti-
tutive activation of -catenin in early hematopoietic precursors 
significantly reduces the Gr-1+CD11b+ myeloid cell population 
(Scheller et al., 2006). Thus, it is possible that down-regulation 
of -catenin, rather than controlling MDSC proliferation,  
allows MDSC accumulation by preventing their differentiation 
into mature myeloid cells. In support of this hypothesis, we find 
that in vitro cultures of hematopoietic progenitor cells from 
PLC2-deficient mice give rise to less mature myeloid popula-
tions but more Gr-1+ cells than WT cultures. Another plausible 
mechanism that could lead to accumulation of MDSCs in 
tumor-bearing PLC2- and -catenin–null animals would be 
through increased differentiation from myeloid progenitors in 
the bone marrow. Several transcription factors involved in  
myelopoiesis such as interferon-regulatory factor 8 (IRF-8),  
C/EBP-, and PU.1 have been demonstrated to regulate 
MDSC development (Scheller et al., 1999; Schroeder et al., 
2003; Kirstetter et al., 2006; Marigo et al., 2010). However 
IRF-8, PU.1, and C/EBP- are also involved in monocyte/
macrophage maturation, neutrophil differentiation, and/or 
DC development (Tamura et al., 2000; Hamdorf et al., 2011; 
Batliner et al., 2012; Pham et al., 2012). Therefore, further 
studies are required to determine whether down-regulation 
of PLC2–-catenin pathway may affect MDSC differentia-
tion via transcriptional regulation.

In conclusion, our results identify the PLC2–-catenin 
pathway as a negative modulator of MDSC accumulation and 
activation in response to tumors. This finding is clinically rel-
evant because we confirmed down-regulation of PLC2  
and -catenin in human MDSCs isolated from pancreatic 
cancer patients. This observation is particularly important, as 
-catenin targeting is currently in clinical trials because of the 
positive role of -catenin on cell growth in many cancers. 
However, based on our finding this approach could be under-
mined by tumor escape from immune control through ex-
pansion of MDSCs.

MATERIALS AND METHODS
Animals and tumor models. Animals were housed in a pathogen-free 
animal facility at Washington University. 6–8-wk-old littermate mice were 
used in all experiments according to protocols approved by the Institutional 

suppressive activity of PLC2/ MDSCs, allowing greater in-
filtration of CD8+ T cells at tumor site. Consequently, tumor 
growth is reduced in PLC2cKO/-cat.CA mice compared 
with PLC2cKO animals. The importance of down-regulation 
of PLC2–-catenin axis in MDSC accumulation and activity 
is not limited to our KO mouse models but it is a general 
mechanism involved in the modulation of WT MDSC re-
sponses occurring in the presence of tumor, including in cancer 
patients. Our data show that pancreatic cancer patients at ad-
vanced stage have reduced p-PLC2 and -catenin levels com-
pared with MDSCs isolated from healthy controls. These results 
demonstrate that PLC2 is a negative regulator of MDSC ex-
pansion and immune suppressive effects in tumor-bearing hosts 
via the -catenin pathway in humans and mice. Several ques-
tions arise from this finding.

How is PLC2 signaling regulated in MDSCs? Activation 
of PLC2, via phosphorylation of its tyrosine residues, is often 
observed in hematopoietic cells, including myeloid cells, as 
well as in cancer cells downstream of ITAM-containing im-
mune receptors, growth factor receptors, and G protein cou-
pled receptors. Considering that the tumor microenvironment 
is enriched with tumor-derived factors that can potentially 
signal via PLC2, it was very surprising to observe reduction 
of PLC2 phosphorylation in MDSCs from tumor-bearing 
mice and cancer patients compared with healthy controls. In 
myeloid cells PLC2 activation downstream of ITAM con-
taining receptors can be counterbalanced by negative regula-
tory signals emanated by receptors containing ITIM domains. 
A recent study indicated that the ITIM-containing paired 
immunoglobulin-like receptor (PIR) B is highly expressed in 
MDSCs (Ma et al., 2011). Deletion of PIR-B switches the 
MDSC phenotype from immune-suppressive to proinflam-
matory, thus leading to reduced tumor growth. Therefore, one 
possible mechanism for down modulation of PLC2 activa-
tion in WT MDSCs would be through suppression of ITAM 
signaling by PIR-B. Because -catenin activation has also 
been reported to occur downstream of ITAM receptors 
(Otero et al., 2009), reduced -catenin levels in MDSCs iso-
lated from tumor-bearing mice or cancer patients could also 
be caused by suppression of ITAM signaling by PIR-B.

How does PLC2 modulate -catenin? Regardless of 
which ITAM-containing receptor may activate PLC2 and 
-catenin, we propose that these molecules lie on the same 
pathway. This assumption is supported by the observation that 
-catenin levels are reduced in PLC2/ MDSCs and that 
expression of constitutively active -catenin in PLC2/ 
marrow cells limits MDSC expansion and immune suppres-
sive effects and reduces tumor growth. Although PLC2 has 
never been shown to directly modulate -catenin levels, acti-
vation of PKC can induce -catenin stabilization in T cells 
(Lovatt and Bijlmakers, 2010). It is likely that PKC, a down-
stream effector of PLC2, phosphorylates and thus inactivates 
GSK3, a kinase that targets -catenin for ubiquitination  
and subsequent proteasomal degradation. In support of this 
hypothesis, we observed impaired PKC phosphorylation and 
reduced p-GSK3 levels in PLC2/ MDSCs compared 
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isotype-matched conjugated controls were purchased from eBioscience and 
BD, respectively. Cell surface staining on isolated cells from human PBMCs 
were performed using monoclonal (PerCP-Cy5.5)-conjugated anti–human 
CD33 antibody (BioLegend) and (PE)-conjugated anti–human CD11b anti-
body (BD). Corresponding isotope controls yielded no significant staining. 
Acquisition was performed on a FACSCalibur and the dedicated software 
CellQuest (BD). Data were analyzed with FlowJo 7.5.5 software (Tree Star).

MDSC isolation. In vivo experiments were assessed using freshly isolated 
MDSCs from spleens of tumor-bearing mice. Cells were purified by immuno-
magnetic separation using biotinylated anti–Gr-1 antibody and streptavi-
din-conjugated MicroBeads with MiniMACS columns according to the 
manufacturer’s protocol (Miltenyi Biotec). In vitro functional and mechanis-
tic assays were done either with whole MDSC population or with PMN- 
and MO-MDSC subsets. Cells were isolated from spleens of tumor-bearing 
mice using the Myeloid-Derived Suppressor Cell Isolation kit from Miltenyi 
Biotec. Cell purity was checked by flow cytometric analysis using anti-
CD11b and Gr-1 antibodies (>95%), and viability was checked by Trypan 
blue dye exclusion.

Human PBMCs were obtained from D.C. Linehan’s laboratory (Wash-
ington University, St Louis, MO) as previously described (Porembka et al., 
2012). In brief, informed consent was prospectively obtained from all  
patients before obtaining human blood according to the institutionally  
approved Human Studies Committee Protocol. Peripheral blood samples 
were collected in vacuum tubes containing EDTA (BD). PBMCs were iso-
lated by Ficoll-density centrifugation and frozen in DMSO with 10% FBS. 
Cells were then thawed, washed, and processed for cell isolation using CD33 
and CD11b MicroBeads with MiniMACS columns according to the manu-
facturer’s protocol (Miltenyi Biotec). Purity was confirmed by flow cytometric 
(>95%) and Western blot analyses, which were immediately performed.

Real-time PCR. MDSCs from spleens were isolated 14 d after tumor challenge 
as previously described. Total RNA was extracted with TRIzol (Invitrogen) and 
quantified on ND-1000 spectrophotometer (NanoDrop Technologies). The 
cDNA was synthesized with 1 µg RNA using RNA to cDNA EcoDry Premix 
(oligo dT) RT-PCR kit from Takara. The amount of Bcl-2, Bcl-xl, or Bax was 
determined using Power SYBR Green mix on 7300 Real-Time PCR System 
(Applied Biosystems). Cyclophilin mRNA was used as internal control. Specific 
primers were as follows: Bcl-2, 5-TGAGTACCTGAACCGGCATCT-3 and 
5-GCATCCCAGCCTCCGTTAT-3; Bcl-xl, 5-ACAGAGCAGACCCAG-
TAAGT-3 and 5-ACCGCAGTTCAAACTCAT-3; Bax, 5-ACAGAT-
CATGAAGACAGGGG-3 and 5-CAAAGTAGAAGAGGGCAACC-3; 
cyclophilin, 5-AGCATACAGGTCCTGGCATC-3 and 5-TTCACCTTC-
CAAAAGACCAC-3. Relative quantification of transcription was calculated as 
the power of the difference between amplification of the target gene and ampli-
fication of cyclophilin (i.e., 2[Ct target gene  Ct cyclophilin], where Ct represents 
threshold cycle).

Generation of cells from bone marrow progenitors. Hematopoietic 
progenitor cells (HPCs) were isolated from WT and PLC2/ bone mar-
row using the Lineage Cell Depletion kit (Miltenyi Biotec). 5 × 105 HPCs 
were cultured in 24-well plates containing 2 ml of RPMI 1640 supplemented 
with 10% FBS, 20 ng/ml GM-CSF, 10 ng/ml IL-4, and 20% vol/vol tumor 
conditioned medium (TCM; Youn et al., 2008). The TCM was generated 
from primary EL-4 tumor cells injected into WT C57BL/6 for 2 wk, col-
lected as single-cell suspension with collagenase and cultured for 2 d in 
RPMI supplemented with 10% FBS. TCM were frozen at 80°C until fur-
ther use. After 5 d of HPC cultures, percentages of CD11c+, CD11c+/B7.2+, 
F4/80+, and Gr-1+ cells in total WT and PLC2/ cell cultures were ana-
lyzed by flow cytometry.

T cell suppression assay. Freshly isolated splenocytes (5 × 106 cells/ml) 
from OT-I TCR transgenic mice were depleted of red cells and labeled with 
CFSE (1 µM; Molecular Probe, Carlsbad, CA) for 10 min at 37°C and washed 
with fresh culture media, according to the manufacturer’s instructions. OT-1 

Animal Care and Use Committee. PLC2/ mice were on a C57BL/6 
background and have been previously described (Wang et al., 2000). WT  
and PLC2/ littermates were used throughout the study. LysM-Cre/ 
-cateninflox/flox (conditional KO, -cat.cKO) and LysM-Cre/-cateninfloxEx3/

floxEx3 (constitutively active, -cat.CA) mice on C57BL/6 background were 
provided by F. Long (Washington University, St. Louis, MO) and have been 
previously described (Clausen et al., 1999; Harada et al., 1999; Brault et al., 
2001). In brief, -cateninflox/flox mice bear two LoxP sites flanking exons  
2–6, which lead to a loss-of-function deletion upon Cre-mediated excision. 
In -cateninfloxEx3/floxEx3 mice, excision of exon 3 leads to a stabilized, non-
degradable form of -catenin. C57BL/6 PLC2flox/flox mice were obtained 
from T. Kurosaki (Kansai Medical University, Moriguchi, Japan; Hashimoto 
et al., 2000, and the mating strategy to obtain the conditional KO under the 
LysM-Cre promoter (PLC2cKO) was performed in our laboratory. LysM-Cre 
and floxed littermates were used as controls (CTR). All in vivo figures  
are shown as representative experiments. Importantly, significant differ-
ences are maintained when all CTR groups are pooled together (Fig. 6 C 
and Fig. 7 A).

CD45.1 C57BL/6 WT mice used for the MDSC transfer experiments 
were purchased from The Jackson Laboratory. C57BL/6 OT-1 mice were ob-
tained from M. Colonna’s laboratory (Washington University, St Louis, MO).

B16 (C57BL/6 murine melanoma cells), LLC (C57BL/6 murine LLC 
cells), and 4T1 (BALB/c murine mammary tumor cells) were cultured at 
37°C in complete media (DMEM supplemented with 2 mM l-glutamine, 
100 µg/ml streptomycin, 100 IU/ml penicillin, and 1 mM sodium pyruvate) 
containing 10% FBS. To establish tumors, B16 (105), LLC (105) or BALB/c 
4T1 (5 × 106) tumor cells were suspended in PBS and inoculated s.c. in the 
flank of mice. Tumor measurements were performed every 2 or 3 d with a 
caliper, and volumes were calculated using the following formula: V = ½ 
(length [mm] × [width {mm}]2).

For adoptive transfer experiments, appropriate control mice and indi-
cated KO (PLC2/ or -cat.cKO) animals were s.c. injected with 105 
LLC. 14 d after tumor xenograft, MDSCs were isolated from the spleen as 
described below, and 3 × 106 MDSCs were i.v. injected into WT tumor-
bearing mice on days 3 and 6 after tumor challenge. WT mice receiving sa-
line injection on days 3 or 6 were used as additional controls.

104 firefly-conjugated B16 melanoma cells (B16-Fl) suspended in 50 µl 
of saline solution were injected into the left cardiac ventricle (i.v.) of 6-wk-old 
female mice as previously described (Arguello et al., 1988; Kang et al., 2003). 
Recruitment of tumor cells to bone was monitored on days 9, 12, and 14  
by bioluminescence imaging using an IVIS 100 imaging system (Caliper  
Life Sciences). Mice with extrapleural intrathoracic tumors were excluded 
from analysis. Bioluminescence photon flux (photons per second) data were 
analyzed by region of interest measurements in Living Image 3.2 (Caliper 
Life Sciences).

Bone marrow transplantation. 4-wk-old female C57BL/6 mice were  
lethally irradiated using a 137Cs source with 1,000 rads to generate recipient 
mice. Bone marrow was harvested from 6-wk-old female PLC2cKO, 
PLC2cKO/-cat.CA, or LysM-Cre control mice. Cells were then suspended 
in PBS and 106 cells/200 µl were injected into the lateral tail vein of recipient 
mice. 4 wk after bone marrow transplantation, these mice were inoculated 
with tumor cells as described above.

Flow cytometric analysis. Immediately upon sacrifice, single-cell suspen-
sions were prepared from bone marrow, spleen, and tumor. In brief, bone 
marrow cells were harvested from tibias and femurs by centrifugation, 
whereas spleens and tumors were mechanically dissociated and individual cell 
suspensions obtained through 70-µm cell strainer. Red blood cells were then 
removed with lysis buffer and cells counted. Cell suspensions were then 
washed once and stained in PBS with 0.5% FBS with the following anti–mouse 
antibodies: allophycocyanin (APC)-conjugated anti–Gr-1 or -Ly6C, FITC-
conjugated anti-F4/80 (eBioscience); and phycoerythrin (PE)-conjugated 
antibodies to CD11b or CD11c, FITC-conjugated anti-Ly6G, -CD11c, -CD86 
(B7.2), or -CD45.1, APC-conjugated anti-CD8 (BD). The respective 
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