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Abstract

Inflammasomes are mediators of inflammation, and constitutively activated NLRP3 

inflammasomes have been linked to IL-1β-mediated tumorigenesis in human melanoma. Whereas 

NLRP3 regulation of caspase-1 activation requires the adaptor protein ASC, caspase-1 activation 

by another danger-signaling sensor NLRP1 does not require ASC because NLRP1 contains a C-

terminal CARD domain that facilitates direct caspase-1 activation via CARD-CARD interaction. 

We hypothesized that NLRP1 has additional biological activities besides IL-1β maturation and 

investigated its role in melanoma tumorigenesis. NLRP1 expression in melanoma was confirmed 

by analysis of 216 melanoma tumors and 13 human melanoma cell lines. Unlike monocytic THP-1 

cells with prominent nuclear localization of NLRP1, melanoma cells expressed NLRP1 mainly in 

the cytoplasm. Knocking down NLRP1 revealed a tumor promoting property of NLRP1 both in 
vitro and in vivo. Mechanistic studies showed that caspase-1 activity, IL-1β production, IL-1β 
secretion, and NF-kB activity were reduced by knocking down of NLRP1 in human metastatic 

melanoma cell lines 1205Lu and HS294T, indicating that NLRP1 inflammasomes are active in 

metastatic melanoma. However, unlike previous reports showing that NLRP1 enhances pyroptosis 

in macrophages, NLRP1 in melanoma behaved differently in the context of cell death. Knocking 

down NLRP1 increased caspase-2, -9, and -3/7 activities and promoted apoptosis in human 

melanoma cells. Immunoprecipitation revealed interaction of NLRP1 with CARD-containing 

caspase-2 and -9, whereas NLRP3 lacking a CARD motif did not interact with the caspases. 

Consistent with these findings, NLRP1 activation but not NLRP3 activation reduced caspase-2, -9, 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence: Dr. Mayumi Fujita, Department of Dermatology, University of Colorado Denver SOM, 12801 E. 17th Avenue, RC-1 
South, Rm 4124, Aurora, CO, 80045, USA., Office phone: 303-724-4045; Fax: 303-724-4048., mayumi.fujita@ucdenver.edu. 

CONFLICT OF INTEREST
The authors declare no conflict of interest.

SUPPLEMENTARY INFORMATION
Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

HHS Public Access
Author manuscript
Oncogene. Author manuscript; available in PMC 2017 September 06.

Published in final edited form as:
Oncogene. 2017 July 06; 36(27): 3820–3830. doi:10.1038/onc.2017.26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/onc


and -3/7 activities and provided protection against apoptosis in human melanoma cells, suggesting 

a suppressive role of NLRP1 in caspase-3/7 activation and apoptosis via interaction with caspase-2 

and -9. In summary, we showed that NLRP1 promotes melanoma growth by enhancing 

inflammasome activation and suppressing apoptotic pathways. Our study demonstrates a tumor-

promoting role of NLRP1 in cancer cells.
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INTRODUCTION

Inflammation has long been recognized to be closely associated with various types of 

cancer.1–3 Inflammation was initially believed to be a host defense mechanism against 

tumors; however, growing evidence suggests that tumor-derived inflammatory factors are 

required for tumor development and progression.4–7 In particular, a pleiotropic cytokine 

IL-1β is secreted by human melanoma and promotes tumor growth, angiogenesis, and 

metastasis in both autocrine and paracrine manners.6–8 The processing of IL-1β precursor 

depends on cytosolic caspase-1 activation, which is tightly regulated by NLRP (NACHT, 

LRR and PYD domains-containing protein) inflammasomes, including NLRP1 and NLRP3 

inflammasomes.9,10 During malignant transformation, inflammasomes are activated by 

danger signals arising from the tumor microenvironment.9,10 We have reported that NLRP3 

inflammasomes are constitutively activated and mediate autoinflammation via caspase-1 

processing and IL-1β secretion in human melanoma cells.8 NLRP3 regulation of caspase-1 

activation requires the adaptor protein ASC (apoptosis-associated speck-like protein 

containing a CARD (caspase recruitment domain)). However, low expression of ASC in 

metastatic melanoma cells promotes tumor growth, but on the other hand, high expression of 

ASC in primary melanoma cells suppresses tumor growth,11 suggesting that other NLRPs 

besides NLRP3 may contribute to the regulation of melanoma-related inflammation.

NLRP1 is unique in that unlike other NLRPs, it contains a CARD binding motif at its C 

terminus, which facilitates protein binding through CARD-CARD interactions. 9,10,12 

Caspase-1 activation by NLRP1 therefore does not strictly require ASC.9,10,12 In addition, 

CARD domains are typically found in proteins involved in caspase processing and 

activation, including caspase-1, -2, -5, and -9.13,14 Caspase-1 and -5 are inflammatory 

caspases involved in the inflammasome activation responsible for IL-1β processing, whereas 

caspase-2 and -9 are apoptotic caspases involved in the mitochondrial apoptotic pathway.9,10 

We hypothesized that the CARD domain of NLRP1 may allow this danger-signaling sensor 

protein to play a distinct biological role in tumorigenesis.

Our findings demonstrate that NLRP1 promotes tumorigenesis in human melanoma. We 

provide evidence that NLRP1 coordinately enhances caspase-1-mediated inflammasome 

activation and suppresses the caspase-2/9-mediated mitochondrial apoptotic pathway in 

metastatic melanoma. Accordingly, NLRP1 may be a potential novel therapeutic target in 

human melanoma.
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RESULTS

NLRP1 is expressed in human melanoma cells

NLRP1 is widely expressed in many human tissues.15–17 We examined NLRP1 RNA 

expression in human melanoma tissues using three publicly available microarray data sets 

from independent gene profiling studies.18–20 The skin has the highest expression level of 

NLRP1 RNA of all human tissues,17 and was used as a positive control. These data showed 

that, NLRP1 RNA is expressed in human melanoma tissues, though melanoma tissues have 

lower NLRP1 RNA expression than normal skin (Figure 1a). Two of the three studies 

showed no difference in levels of NLRP1 RNA between primary melanoma and metastatic 

melanoma, while one study reported a reduction in NLRP1 RNA in human metastatic 

melanoma.

We then evaluated the expression of NLRP1 RNA in 13 human melanoma cell lines derived 

from different stages of disease progression. Human monocytic THP-1 cells were used as a 

positive control because this cell line expresses NLRP1 and NLRP3, and has been studied 

for inflammasome functions and activation mechanisms.8,16,21–23 NLRP1 RNA was 

expressed in all melanoma cells tested, including two radial growth phase (RGP) melanoma 

cell lines, four vertical growth phase (VGP) melanoma cell lines, and seven metastatic 

melanoma cell lines (Figure 1b). Compared to THP-1 cells, several melanoma cell lines 

(WM1552C, WM793B, WM239A, A375, HS294T, and SK-MEL-2) had higher NLRP1 
RNA expression levels. Interestingly, we observed no clear correlation between NLRP1 
RNA expression (Figure 1b) and NLRP1 protein expression (Figure 1c) in these cell lines, 

nor any correlation between expression levels and melanoma growth phases (RGP, VGP or 

metastatic).

NLRP1 protein has been reported to be present in the nucleus of immune cells;16 however, it 

is cytosolic NLRP1 protein that is thought to function as the driver of the NLRP1 

inflammasome machinery.16,24 To elucidate which compartment’s NLRP1 was more 

relevant for human melanoma, we investigated the subcellular localization of NLRP1 in 

matched primary and metastatic melanoma cells (WM115/WM239A, WM278/WM1617, 

and WM793B/1205Lu) by Western blot analysis. Consistent with reported findings,16 

NLRP1 was predominantly expressed in the nucleus of THP-1 cells regardless of their 

differentiation by phorbol 12-myristate 13-acetate (PMA) and further activation of NLRP1 

inflammasome by anthrax lethal toxin (LT)25 (Figure 1d). In contrast, NLRP1 was 

principally expressed in the cytoplasm of melanoma cells (Figure 1e). No obvious 

differences in the subcellular distribution patterns of NLRP1 between primary and metastatic 

melanoma cells were observed. Immunofluorescence microscopy analysis revealed that 

NLRP1 is primarily in the nucleolus of THP-1 cells (Figure 1f), the dark region seen with 

4′,6-diamidino-2-phenylindole (DAPI) staining of the nucleus,26 whereas it is particularly 

abundant in the perinuclear region of cytoplasm in human melanoma cells. In accordance 

with previous reports,16 NLRP3 was predominantly cytosolic in both THP-1 and melanoma 

cells. These data suggest that the differences in the subcellular localization of NLRP1 may 

reflect different biological roles in melanoma cells versus immune cells.
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NLRP1 is a tumor promoter in human melanoma

To investigate the potential functional roles of NLRP1 in melanoma, we knocked down 

NLRP1 expression by transducing NLRP1 shRNA into primary melanoma cells, WM35 and 

WM115, and metastatic melanoma cells, 1205Lu and HS294T. Successful transduction was 

confirmed by significant decreases in NLRP1 RNA (Figure 2a) and NLRP1 protein (Figure 

2b) compared to corresponding cells transduced with control shRNA. We first determined 

the effect of NLRP1 knockdown on viable cell numbers in vitro. Knocking down NLRP1 

significantly reduced the viable cell numbers of WM115, 1205Lu, and HS294T cells, but not 

WM35 (Figure 2c).

To evaluate whether knocking down NLRP1 results in the same suppressive effects in vivo, 

we injected nude mice with NLRP1 or control shRNA-transduced WM35 or 1205Lu cells 

and monitored tumorigenesis for 30 days by measuring tumor volumes at 2–3 day intervals. 

Mice injected with 1205Lu-NLRP1-shRNA cells showed significantly slower tumor growth 

and decreased tumor volume (63% reduction by day 25), compared to mice injected with 

1205Lu-control-shRNA cells (Figure 2d). However, we were unable to evaluate the effect of 

NLRP1 knockdown in primary WM35 cells in vivo because WM35 cells rarely formed 

tumors even at the termination of the study (day 30).27

To confirm that NLRP1 promotes tumor growth in metastatic melanoma, additional animal 

experiments were performed (Supplementary Figure 1). In a second, independent animal 

experiment, we generated a new pool of shRNA-transduced cells by transducing the same 

shRNA into 1205Lu, and injected nude mice with newly generated 1205Lu-control-shRNA 

or 1205Lu-NLRP1-shRNA cells (Supplementary Figure 1a). To demonstrate that the 

observed NLRP1 knockdown effect is indeed on-target, we transfected 1205Lu cells with a 

NLRP1 shRNA with non-overlapping sequences (obtained from a different company) and 

repeated animal experiments (Supplementary Figure 1b). To demonstrate that the tumor-

promoting property of NLRP1 is not limited to 1205Lu, we injected nude mice with 

HS294T transduced with control or NLRP1 shRNA plasmid (Supplementary Figure 1c). 

Taken together, these findings strongly indicate a role for NLRP1 in promoting tumor 

growth in metastatic melanoma.

NLRP1 inflammasomes are active in metastatic melanoma

IL-1β plays a critical role in tumor progression, immunosuppression, and chemoresistance. 

IL-1β is synthesized as a biologically inactive precursor and cleaved to biologically active 

mature IL-1β by caspase-1 whose activation is regulated by NLRP inflammasomes.9,10 

Spontaneous NLRP3 inflammasome activation and subsequent caspase-1 activation have 

been linked to IL-1β-mediated tumorigenesis in human melanoma.8,28–30 However, it was 

unclear whether NLRP1 inflammasomes also mediate IL-1β activation in melanoma. We 

therefore investigated the participation of NLRP1 inflammasomes in the IL-1β activation 

and secretion pathways in human melanoma cells. Caspase-1 activation was evaluated by 

detecting the conversion of inactive pro-caspase-1 to an enzymatically active fragment of 

caspase-1 (p20) using Western blot analysis. In addition, we evaluated caspase-1 activity 

using fluorescent labeled inhibitors of caspases in WM35, WM115, 1205Lu, and HS294T 

cells. Consistent with our previously published data,8 caspase-1 was constitutively cleaved 

Zhai et al. Page 4

Oncogene. Author manuscript; available in PMC 2017 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(indicated by the presence of 20 kDa fragment) in both primary and metastatic melanoma 

cells without exogenous stimuli (Figure 3a). Knockdown of NLRP1 significantly suppressed 

caspase-1 cleavage (Figure 3a) and caspase-1 activity (Figure 3b) in metastatic melanoma 

cells 1205Lu and HS294T but not in primary melanoma cells WM35 and WM115, 

suggesting that NLRP1 inflammasomes activate caspase-1 in metastatic melanoma.

Active caspase-1 cleaves pro-IL-1β, and active IL-1β is released into extracellular space, 

where it binds to IL-1 receptors and initiates inflammatory response by stimulating NF-κB 

activity.11 In agreement with the effects of NLRP1 knockdown on caspase-1 activation in 

metastatic melanoma cells, knocking down NLRP1 significantly reduced IL-1β production 

(Figure 3c), IL-1β secretion (Figure 3d), and NF-kB activity (Figure 3e) in 1205Lu and 

HS294T cells. To evaluate the functionality of NLRP1 inflammasome in primary melanoma, 

NLRP1 was knocked down in WM35 and WM115 cells. Knocking down NLRP1 reduced 

IL-1β secretion in WM115 (Figure 3d), but this inhibitory effect was minimal due to the low 

levels of IL-1β production and secretion in primary melanoma cells. Different from the 

suppressive effects of NLRP1 on IL-1β production and NF-kB activity in metastatic 

melanoma cells, knocking down NLRP1 in primary melanoma cells did not reduce IL-1β 
production or NF-kB activity, but rather enhanced NF-kB activity. To examine the effect of 

functional NLRP1 inflammasome on NF-κB activity, we analyzed PMA-differentiated 

THP-1 cells. Knocking down NLRP1 significantly reduced NF-κB activity in THP-1 cells 

(Figures 3f–3g), but this effect was not due to the change in NLRP3 expression (Figure 3f), 

suggesting a positive regulation of NF-κB activity by NLRP1 in THP-1 cells. Taken 

together, these findings indicate that NLRP1 inflammasomes are functional and mediate 

IL-1β processing in metastatic melanoma.

NLRP1 knockdown does not affect the cell cycle but induces apoptosis in human 
melanoma cells

We have previously shown that ASC knockdown induces G1 cell cycle arrest, reduces viable 

cell numbers, and suppresses tumorigenesis in metastatic melanoma.11 Because NLRP1 

knockdown reduced viable cell numbers and suppressed tumorigenesis in metastatic 

melanoma, we examined whether NLRP1 knockdown also resulted in G1 cell cycle arrest. 

We analyzed cell proliferation by quantitating the proportion of cells residing in each phase 

of the cell cycle. Unlike ASC knockdown, NLRP1 knockdown did not alter the cell cycle 

ratios of 1205Lu and HS294T cells (Figure 4a), suggesting that NLRP1-mediated changes in 

cell viability and tumorigenesis are not related to cell proliferation. To investigate the 

mechanisms underlying the observed effects of NLRP1 on cell viability and tumorigenesis 

in human melanoma, we analyzed 1205Lu tumor tissues collected in the animal study 

depicted in Figure 2d. H&E staining revealed pyknotic cells in sections from 1205Lu-

NLRP1-shRNA tumors (Figure 4b). Immunohistochemical analyses revealed slightly 

decreased proliferation (Ki-67-positive cells) but significantly increased apoptosis (TUNEL-

positive cells) in tumors from mice injected with 1205Lu-NLRP1-shRNA cells compared 

with those from mice injected with 1205Lu-control-shRNA cells (Figure 4b).

We hypothesize that the CARD domain of NLRP1 may contribute to the regulation of 

apoptotic caspases resulting in the increase of apoptosis we observed in vivo. To this end, we 
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investigated cell apoptosis in vitro using Annexin V staining. NLRP1 knockdown increased 

apoptosis in 1205Lu cells (Figure 4c, Supplementary Figure 2). When cells were exposed to 

apoptosis inducer actinomycin D (AMD) for 18 h, NLRP1 knockdown increased apoptosis 

in both 1205Lu and HS294T cells. To evaluate whether the apoptosis-regulatory effects of 

NLRP1 is specific to metastatic melanoma cells, we analyzed THP-1 cells. Different from 

melanoma cells, knocking down NLRP1 did not result in an induction of apoptosis in AMD-

treated THP-1 cells (Supplementary Figure 3). These data suggest that NLRP1 plays a role 

in the regulation of apoptosis in human melanoma cells.

NLRP1 protein interacts with caspase-2 and -9 and reduces caspase-3/7 activity in human 
melanoma cells

To further understand the molecular mechanisms by which NLRP1 controls apoptosis, we 

investigated the interaction of NLRP1 with CARD-containing apoptotic caspases in 

metastatic melanoma cells. Among 7 apoptotic caspases, only caspase-2 and -9 contain a 

CARD domain. Both caspases are initiator caspases for the intrinsic mitochondrial pathway 

leading to the processing of executioner caspases-3/7 that subsequently mediate the 

apoptotic cascade.31 Co-immunoprecipitation analyses of endogenous proteins confirmed 

the interaction of NLRP1 with caspase-2 and -9 in 1205Lu and HS294T cells (Figure 5a, 

Supplementary Figure 4). NLRP3, which lacks a CARD motif, did not interact with 

caspase-2 and -9.

Next, we examined the effect of NLRP1 knockdown on caspase-2, -9, and -3/7 activities in 

1205Lu and HS294T cells. Cells were cultured in the absence or presence of an apoptosis 

inducer, either AMD or camptothecin (CPT), which have been shown to induce activation of 

caspase-2, -9, and -3/7 (Figures 5b–5d). Knocking down NLRP1 led to increased caspase-2 

(Figure 5b), -9 (Figure 5c), and -3/7 (Figure 5d) activities in untreated and apoptosis 

inducer-treated 1205Lu and HS294T cells, though the effects of NLRP1 knockdown on 

caspase-2 activity were relatively weak compared with those on caspase-9 and -3/7 

activities. Knocking down NLRP1 also increased caspase-3/7 activity in WM35 and WM115 

cells (Supplementary Figure 5).

To evaluate whether the caspase-suppressive effects of NLRP1 are specific to apoptotic 

caspases, we analyzed inflammatory caspase-1 activity in 1205Lu and HS294T cells 

(Supplementary Figure 6). In contrast to its effects on apoptotic caspases, knocking down 

NLRP1 reduced caspase-1 activity in the baseline (Figure 3b) and AMD-treated melanoma 

cells. These findings support our hypothesis that NLRP1 negatively regulates activation of 

the intrinsic apoptotic pathway in melanoma, irrespective of melanoma stages, and support 

the viability-promoting activity observed in Figure 2c.

NLRP1 inflammasome activation reduces caspase-2, -9 and -3/7 activity and apoptosis in 
human melanoma cells

Considering the role for NLRP1 polypeptide in apoptosis, we examined whether NLRP1 

inflammasome activation also affects the intrinsic apoptotic pathway in melanoma cells. To 

examine the influence of differential inflammasome activation on caspase-2, -9, and -3/7 

activities, NLRP1 inflammasomes were activated by LT whereas NLRP3 inflammasomes 
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were activated using the specific activator, monosodium urate (MSU).9 Since inflammasome 

activation results in IL-1β secretion and subsequent activation of the IL-1 receptor, IL-1α 
was added to determine the effect of IL-1 receptor activation. After short-term treatment 

with LT, MSU or IL-1α, 1205Lu and HS294T cells were cultured in the absence or presence 

of AMD or CPT for 18 h. Activation of NLRP1 inflammasomes by LT significantly 

decreased AMD- or CPT-induced caspase-2 (Figure 6a), -9 (Figure 6b), and -3/7 (Figure 6c) 

activities. In contrast, NLRP3 inflammasome activation and IL-1α treatment decreased 

AMD-induced caspase-3/7 activity, but did not alter caspase-2 and -9 activities in 1205Lu 

and HS294T cells. Consistent with these results, flow cytometric analysis of apoptosis by 

Annexin V staining showed a reduction in apoptosis by LT in human melanoma cells (Figure 

6d, Supplementary Figure 7).

Different from melanoma cells, activation of NLRP1 inflammasomes by LT did not reduce 

AMD- or CPT-induced caspase-2, -9 and -3/7 activities (Figures 6a–6c) or apoptosis (Figure 

6d) in THP-1 cells, but rather increased caspase-2, -9 and -3/7 activities. To evaluate whether 

the caspase-suppressive effects of NLRP1 inflammsome are specific to apoptotic caspases, 

we analyzed inflammatory caspase-1 activity in 1205Lu and THP-1 cells (Supplementary 

Figure 8). In contrast to its suppressive effects on apoptotic caspases, NLRP1 inflammasome 

activation did not reduce caspase-1 activity in 1205Lu cells or THP-1 cells, but rather 

increased caspase-1 activity in THP-1 cells. Activation of the NLRP1 inflammasome by LT 

has been reported to induce caspase-1-dependent cell death, termed as pyroptosis, in 

macrophages of certain mouse species.32–35 We therefore determined lactate dehydrogenase 

(LDH) release (indicative of pyroptosis)36 in THP-1 and 1205Lu cells exposed to LT for 18 

h. We found that LT increased LDH release in THP-1 cells, but not in 1205Lu cells (Figure 

6e). Taken together, these data strongly support our conclusion that activation of NLRP1 

inflammasomes protects human melanoma cells from apoptotic cell death.

DISCUSSION

While this manuscript was under revision, Zhong, et.al.17 described gain-of-function 

mutations within the LRR and PYD domain of NLRP1. It was reported that while wild-type 

NLRP1 exists as a monomer in its inactive state, germline mutations in the PYD domain of 

NLRP1 lead to constitutively active NLRP1 which self-oligomerizes, activates the 

inflammasome, and promotes the processing of IL-1β. Patients with such mutations in 

NLRP1 can suffer from skin disorders such as multiple healing palmoplantar carcinoma and 

familial keratosis lichenoides chronica.17 These findings provide important genetic evidence 

linking inflammasome signaling to inflammatory skin disorders and skin cancer. Our 

findings further demonstrate that NLRP1 has at least two distinct biological functions: first, 

as a NLRP1 inflammasome to activate inflammatory caspase-1 and IL-1β, and second, as a 

NLRP1 polypeptide to interact with other CARD-containing proteins (particularly apoptotic 

caspases) that fine-tunes apoptosis. The former inflammasome function is active only in 

metastatic melanoma whereas the latter anti-apoptotic function is active in both primary and 

metastatic melanoma.

NLRP1 is important for eliciting the inflammatory response during host defense through the 

formation of inflammasome complex.9,37 Concomitant with inflammatory response of 
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caspase-1 activation is pyroptotic cell death in macrophages of some mouse species.32–35 

Although we detected increased LDH release in LT-stimulated THP-1 cells, we did not 

detect this response in 1205Lu cells (Figure 6e). Instead, exposure of 1205Lu and HS294T 

melanoma cells to LT protected these cells from apoptotic cell death (Figures 6a–6d). 

NLRP1 contains both N-terminal pyrin domain and C-terminal CARD domain, and 

functions through the domain-domain interaction with inflammasome components or 

apoptosis signaling molecules. Caspase -2 and -9 are cytoplasmic proteins (Supplementary 

Figure 9), and the binding of NLRP1 to caspase-2 and -9 in melanoma cells may disrupt the 

interaction of these apoptotic caspases with other apoptosis-inducing proteins, thereby 

negatively regulating apoptosis in melanoma cells. In contrast, the nuclear distribution of 

NLRP1 in THP-1 cells may physically limit its interaction with caspase-2 and -9. This 

functional switch of NLRP1 from inducing cell death in non-melanoma models38–40 to 

suppressing cell death in melanoma may represent an important mechanism contributing to 

tumor progression and metastasis.41

The anti-apoptotic function of NLRP1 may be of clinical importance in the treatment of 

cancer. Metastatic melanoma is notoriously resistant to chemotherapy. The apoptosis 

inducers AMD and CPT used in the present study are DNA intercalators and have a potent 

anti-tumor activity.42,43 Such DNA-damaging agents interfere with DNA topoisomerases 

engaged in replication and transcription, subsequently activating the p53-mediated 

mitochondrial apoptotic pathway, in which caspase-2 and -9 act as key initiator 

caspases.30,42–44 We observed more robust inhibitory effects of the NLRP1 inflammasome 

on activation of caspase-2 and -9 and apoptotic cell death in AMD- and CPT-treated cells 

than in untreated cells (Figures 5b–5d and Figures 6a–6d). NLRP1 also regulates activation 

of NF-κB (Figure 3e), which confers melanoma resistance to apoptosis.45 Therefore, 

NLRP1 is not only an anti-apoptotic protein but also may mediate resistance to certain 

drugs, such as DNA-damaging agents.

Our results show that the NLRP1 inflammasome is involved in tumor-mediated 

inflammation and survival in metastatic melanoma, and that NLRP1 protein plays an anti-

apoptotic role in melanoma. These two distinct properties of NLRP1 promote tumor growth 

and survival in human melanoma. This work begins to define the function of endogenous 

NLRP1 in melanoma, and further studies of NLRP1 and its regulators may further clarify its 

role in the molecular melanoma tumorigenesis and progression, which may reveal potential 

new therapeutic targets for human melanoma.

MATERIALS AND METHODS

Bioinformatics analysis

To examine NLRP1 expression in human melanoma tissues, we analyzed three online 

microarray profiling data sets: Study 1 (GEO accession number: GSE1506) from Raskin et 
al.18 had 16 normal skin samples, 46 primary melanoma samples, and 12 metastatic 

melanoma samples, Study 2 (GSE7553) from Riker et al.19 had 4, 14, and 40 samples, and 

Study 3 (GSE46517) from Kabbarah et al.20 had 7, 31, and 73 samples, respectively. To re-

normalize the Affymetrix array data, the intensity values of 3 probes per sample in each data 

set were averaged since they used the same internal control. For each data set, the average 
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expression level of NLRP1 in normal skin samples was set as 1 and the expression of 

NLRP1 in primary and metastatic melanoma tissues were adjusted accordingly.

Cell culture

THP-1 cells and 13 human melanoma cell lines were obtained from the American Type 

Culture Collection (Manassas, VA) and grown in RPMI 1640 (Corning Cellgro, Manassas, 

VA) supplemented with 10% fetal bovine serum at 37°C in a 5% CO2 incubator. THP-1 cells 

were differentiated with PMA (50 ng/ml; Santa Cruz Biotechnology, Santa Cruz, CA) 

overnight then treated with LT (List Biological Laboratories, Campbell, CA) containing 100 

ng/ml lethal factor and 200 ng/ml protective antigen.

Quantitative RT-PCR

Total RNA was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA) and reverse-

transcribed using MMLV reverse transcriptase (Promega, Madison, WI). Quantitative real-

time PCR was performed using the Power SYBR Green PCR Master Mix on the MX3000P 

PCR system (Applied Biosystems, Foster City, CA). The thermal profile was 95°C for 10 

min, followed by 40 cycles of 95°C for 30 s and 60°C for 1 min. Primers for NLRP1 were 

5′-GCTGGACCAGACAACTCTGA-3′ (forward) and 5′-

GGTTTCCGTCTGCTGAAGAT-3′ (reverse) and those for GAPDH were 5′-

CAGGGCTGCTTTTAACTCTGG-3′ (forward) and 5′-

TGGGTGGAATCATATTGGAACA-3′ (reverse).

Western blot

Cells were lysed in RIPA buffer containing 1% protease inhibitor cocktail (Sigma, St. Louis, 

MO). To assess the localization of NLRP1, cytoplasmic and nuclear fractions of cells were 

isolated using NE-PER Nuclear and Cytoplasmic Extraction Reagents (Thermo Scientific, 

Rockford, IL). Primary antibodies included NLRP1 (Enzo Life Sciences, Farmingdale, NY, 

#ALX-210-017 or ALX-804-803), HSP90 (ALX-804-078), NLRP3 (Cell Signaling 

Technology, Danvers, MA, #13158), caspase-1 (#2225), cyclophilin A (CyPA, #2175), and 

Lamin B (Santa Cruz Biotechnology, #sc-2617). Signals were visualized by SuperSignal 

West Femto Maximum Sensitivity Substrate (Thermo Scientific) and analyzed using the 

Odyssey imaging system (LI-COR, Lincoln, NE). The band densities were quantified using 

the ImageJ software (NIH, MD).

Confocal imaging

Cells were seeded on cover glasses. For THP-1 cells, PMA was added to induce 

differentiation. Cells were fixed in 4% paraformaldehyde and permeabilized by 0.25% 

Triton X-100. Following blocking, cells were serially incubated in rabbit anti-NLRP1 

(1:400) and Alexa Fluor 488 goat anti-rabbit IgG (1:1000; Invitrogen). Cells were mounted 

with Prolong Gold anti-fade reagent with DAPI (Invitrogen) and imaged under an Olympus 

FV-1000 microscope (Olympus America, Center Valley, PA) with a 60X water lens.
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shRNA transduction

Two different sets of NLRP1 shRNAs were used for NLRP1 knockdown (sequences are 

shown in Supplementary Tables 1 and 2). Briefly, cells were transduced overnight with 1 × 

105 infectious units of virus of shRNA lentiviral particles against control or NLRP1 (Santa 

Cruz Biotechnology) in culture medium containing 5 μg/ml Polybrene (Santa Cruz 

Biotechnology) in 24-well plates. Cells expressing transduced shRNA were selected by and 

maintained in culture medium with 1 μg/ml of puromycin (Sigma). To confirm that the 

observed phenotype by knocking down NLRP1 is on-target, cells were also transfected with 

250 ng of scrambled or NLRP1 shRNA expression pGFP-V-RS vectors (Origene, Rockland, 

MA) using Lipofectamine 2000 (Invitrogen) for 24 h. GFP-positive cells were sorted on a 

MoFlo XDP100 sorter (Beckman, Indianapolis, IN).

siRNA transfection

Cells were transfected with 40 nM NLRP1 siRNA (a mixture of two preselected siRNAs for 

NLRP1) or negative control (Qiagen Valencia, CA) using Lipofectamine 2000 reagent in 

OPTI-MEM1 reduced serum medium overnight.

Cell viability assay

Cell viability was measured as described previously using the CellTiter 96 AQueous One 

Solution Cell Proliferation Assay kit (Promega).11

Tumor formation in vivo

Six-week-old female athymic nu/nu mice from Jackson Laboratories (Bar Harbor, ME) were 

randomly assigned to two experimental groups and all experimental manipulations were 

approved by the Institutional Animal Care and Use Committee of University of Colorado 

Denver. In the first set of experiments, a total of 1 × 106 shRNA lentiviral particle-

transduced 1205Lu cells or 2.5 × 106 shRNA lentiviral particle-transduced WM35 cells were 

suspended in 0.1 ml of Matrigel Matrix (BD Biosciences, San Jose, CA) diluted 1:1 with 

phosphate buffered saline and injected intradermally into the flank of mice (2 tumors per 

mouse, 4 mice per group). In the second animal study, which are an extension of the first set, 

1205Lu (1.8 × 105) and HS294T (2 × 105 cells) cells carrying control or NLRP1 shRNA 

plasmids were separately injected into nude mice (total 5 and 4 mice, 2 tumors each, for 

1205Lu and HS294T, respectively). In the third animal study, 9 × 104 GFP-positive 1205Lu 

cells transfected with different control or NLRP1 shRNA plasmids were injected per flank of 

each mouse of 3 mice per group. Tumor growth was monitored regularly with an digital 

caliper and tumor volume was calculated with the formula: tumor volume (mm3) = longest 

diameter × shortest diameter2/2.

Immunohistochemistry

Tumor tissues were harvested and fixed in 10% neutral buffered formalin. After paraffin 

embedding, tumor specimens were cut into 5-μm sections and stained with hematoxylin and 

eosin (H&E). Ki-67 staining and TdT-mediated dUTP nick end labeling (TUNEL) were 

performed by IHC World (Woodstock, MD) following its standard protocols.
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ELISA

As described previously,11 culture supernatants were collected for the analysis of secreted 

IL-1β and cell lysates collected for the analysis of IL-1β production (intracellular IL-1β) 

using a human IL-1β ELISA kit (R&D Systems, Minneapolis, MN).

NF-kB activity assay

Cells seeded in 24-well plates at 5 × 104 cells/well overnight were transfected with a control 

vector (pMetLuc2) or an NF-κB reporter vector (pNFkB-MetLuc2) (Clontech Laboratories, 

San Francisco, CA) using Lipofectamine 2000 (Invitrogen). Culture medium was collected 

18 h later for the analysis of NF-κB activity using the Ready-to-Glow Secreted Luciferase 

Vector kit (Clontech Laboratories).

Cell cycle analysis

Cell cycle analysis was performed as described previously.11

Immunoprecipitation

Pre-cleared whole cell lysates were incubated with a primary antibody or control IgG then 

immunoprecipitated with TrueBlot anti-rabbit or anti-mouse Ig IP beads (Rockland 

Immunochemicals, Limerick, PA). Immunoprecipitates were analyzed by Western blot. 

TrueBlot secondary antibodies (Rockland Immunochemicals) were used to reduce 

interference by the ~55 kDa heavy and ~23 kDa light chains of the immunoprecipitating 

antibody.

Caspase activity assay

To determine the activity of the caspases of interest, cells were treated with DMSO as a 

vehicle control or an apoptosis inducer, AMD (5 μM) or CPT (1 μM) (BioVision, Milpitas, 

CA), for 18 h. To determine the effect of inflammasome activation on the caspase activities, 

cells were pre-treated with LT, MSU (50 μg/ml; Enzo Life Sciences), or recombinant human 

IL-1α (10 ng/ml; ThermoFisher Scientific) for 2 h prior to the addition of apoptosis 

inducers. Caspase-1 and -9 activities were measured using FAM-FLICA caspase assay kits 

(ImmunoChemistry Technologies, Bloomington, MN) with a fluorescence plate reader. 

Caspase-2 and -3/7 activities were measured using Caspase-Glo kits from Promega. To 

selectively measure caspase-2 activity, caspase-3/7 inhibitor Ac-DEVD-CHO (60 nM; Enzo 

Life Sciences) and proteasome inhibitor Z-Leu-leu-leu-al (60 μM; Sigma) were added to the 

Caspase-Glo 2 reagent as recommended by the Caspase-Glo 2 kit protocol.

Annexin V staining

Cells were stained with Annexin V and PI according to the FITC Annexin V apoptosis 

detection kit I protocol (BD Biosciences) for flow cytometric analysis. Early apoptotic cells 

(Annexin V-positive/PI-negative) and end stage apoptotic cells (Annexin V-positive/PI-

positive) were quantitated.

Zhai et al. Page 11

Oncogene. Author manuscript; available in PMC 2017 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LDH activity assay

LDH in culture medium was assayed using the Pierce LDH cytotoxicity assay kit (Thermo 

Scientific) according to the manufacturer’s protocol.

Statistical analysis

Results represent at least three independent experiments. The numerical data are expressed 

as mean ± s.e.m. Two-tailed Student’s t-test was used for two groups only, while for three or 

more groups, one-way ANOVA was performed with Bonferroni post-test using the 

GraphPad Software. P < 0.05 was considered statistically significant. Assumptions of 

normal distribution and similar variance were examined per statistical analysis when 

applicable. No samples were excluded from the data analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. NLRP1 expression in human melanoma cells. (a) Microarray analyses of NLRP1 RNA 
expression in human melanoma tissues
The data from three independent gene profiling studies were used to compare NLRP1 RNA 

expression levels in human normal skin, primary melanoma and metastatic melanoma. The 

first study from Raskin et al.18 had 16 normal skin samples, 46 primary melanoma samples, 

and 12 metastatic melanoma samples. The second study from Riker et al.19 had 4 normal 

skin samples, 14 primary melanoma samples, and 40 metastatic melanoma samples, and the 

third study from Kabbarah et al.20 had 7 normal skin samples, 31 primary melanoma 

samples, and 73 metastatic melanoma samples. See Materials and Methods for normalizing 

the affymetrix array data and statistical comparison. Data represent mean ± s.e.m. (b) 

Quantitative RT-PCR of NLRP1 RNA in human melanoma cell lines and differentiated 

human monocytic THP-1 cells. RGP: radial-growth phase melanoma; VGP: vertical-growth 

phase melanoma. Data represent mean ± s.e.m. for triplicate experiments except for 1205Lu, 

HS294T, A375, and WM35 with sextuplicate experiments. (c) Western blot analyses of 

NLRP1 protein expression levels in human melanoma cell lines and differentiated THP-1 

cells. The band intensities were quantitated and the ratios of NLRP1/β-actin calculated. (d) 
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Western blot analysis of intracellular localization of NLRP1 in THP-1 cells. THP-1 cells 

were untreated (undifferentiated), differentiated with phorbol 12-myristate 13-acetate (PMA) 

or further stimulated with anthrax lethal toxin (LT). Cytoplasmic and nuclear fractions of 

THP-1 cells were isolated and assayed for NLRP1 and NLRP3 expression. HSP90 and 

Lamin B were used as markers for cytoplasmic and nuclear proteins, respectively. 

Cyclophilin A (CyPA) is expressed in the cytoplasm and nucleus of all cell types. (e) Similar 

to (d), Western blot analysis of intracellular localization of NLRP1 and NLRP3 in matched 

primary and metastatic melanoma cells (WM115/WM239A, WM278/WM1617, and 

WM793B/1205Lu). Representative blots are shown. (f) Immunofluorescence staining of 

NLRP1 in human melanoma 1205Lu cells and monocytic THP-1. Cells were stained for 

NLRP1 and nucleus using Alexa Fluor 488 secondary antibody conjugated (green) and 

DAPI (blue), respectively. Representative staining cells of quadruplicate experiments are 

shown.
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Figure 2. Effects of NLRP1 knockdown on human melanoma cell viability in vitro and tumor 
growth in vivo
(a) Real-time RT-PCR analysis of NLRP1 RNA expression levels in human melanoma cells 

transduced with control or NLRP1 shRNA. NLRP1 gene expression levels in the control 

shRNA-expressing cells were normalized to 100%. Data represent mean ± s.e.m for 

triplicate experiments. (b) Western blot analysis of NLRP1 protein expression levels in 

melanoma cells with stable NLRP1 knockdown. Optical density of NLRP1 was quantitated 

and normalized to that of corresponding loading control β-actin. (c) Cell viability of 

melanoma cells with NLRP1 knockdown and corresponding control cells with mock 

transduction. Cell viability was determined daily for four days by the MTS-based assay. 

Data represent mean ± s.e.m. for triplicate (1205Lu and HS294T) or quadruplicate (WM35 

and WM115) experiments. (d) Effects of NLRP1 knockdown on 1205Lu and WM35 tumor 

growth in vivo. Nude mice were injected with control shRNA- or NLRP1 shRNA (Santa 

Cruz Biotechnology)-transduced WM35 cells (2.5 × 106) or 1205Lu cells (1 × 106), and 

tumor growth was monitored for 30 days. Data represent mean ± s.e.m. of eight tumors. *P 
< 0.05, **P < 0.01, and ***P < 0.001 compared with corresponding cells with control 

shRNA-expression or tumor tissues. KD, knockdown. OD, optical density.

Zhai et al. Page 17

Oncogene. Author manuscript; available in PMC 2017 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Effects of NLRP1 knockdown on NLRP1 inflammasome function and NF-κB activity 
in melanoma cells
(a) Western blot analysis of caspase-1 cleavage indicated by the presence of 20 kDa 

fragment in four melanoma cells. The band densities of cleaved caspase-1 p20 were 

quantitated and normalized to that of the corresponding loading control β-actin. (b) 

Caspase-1 activity after NLRP1 knockdown in human melanoma cells determined by a 

FAM-FLICA (fluorescent labeled inhibitors of caspases caspase) assay. (c) IL-1β production 

in human melanoma cells with NLRP1 knockdown. Cells were cultured in OPTI-MEM I 

reduced serum medium for 24 h. Cell lysates were assayed for IL-1β production by ELISA. 

(d) IL-1β secretion in human melanoma cells with NLRP1 knockdown. Similar to (c), 

however, culture medium was collected for assessing IL-1β secretion. (e) NF-κB activity in 

melanoma cells with NLRP1 knockdown determined by a Ready-to-Glow Secreted 

Luciferase assay. (f) NLRP1 and NLRP3 RNA expression in THP-1 cells transfected with 

NLRP1 siRNA. THP-1 cells were differentiated with PMA then treated with LT for another 

24 h. (g) NF-κB activity in THP-1 cells transfected with NLRP1 siRNA. Data represent 

mean ± s.e.m. for triplicate experiments. *P < 0.05, **P < 0.01, and ***P < 0.001 compared 

with corresponding mock-transduced control cells. KD, knockdown.
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Figure 4. Effects of NLRP1 knockdown on cell proliferation and apoptosis in human melanoma 
cells
(a) Cell cycle analysis of 1205Lu and HS294T cells transduced with control or NLRP1 
shRNA. Data represent mean ± s.e.m. for triplicate experiments. (b) Representative 1205Lu 

tumor sections stained with hematoxylin and eosin (H&E) (upper panel), Ki-67 (middle 

panel), and for apoptosis using TUNEL method (lower panel). Tumor sections were 

prepared from Figure 2d tumor tissues. Bar = 50 μm. Quantitative analyses of Ki-67-positive 

cells and TUNEL-positive cells were performed with cell counting in the whole field under a 

microscope with 200 × magnification. Data represent mean ± s.e.m. for quadruplicate 

experiments. *P < 0.05 versus tumors from 1205Lu-control-shRNA cells. (c) Flow 

cytometric analysis of apoptosis with Annexin V conjugate. Cells were treated with DMSO 

(vehicle) or an apoptosis inducer actinomycin D (AMD, 5 μM) for 18 h. Data represent 
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mean ± s.e.m. for triplicate experiments. *P < 0.05, **P < 0.01, and ***P < 0.001. KD, 

knockdown. AV, Annexin V.
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Figure 5. Effects of NLRP1 knockdown on pro-apoptotic caspase activities in human melanoma 
cells
(a) Immunoprecipitation interaction of NLRP1 with caspase-2 and caspase-9 in human 

melanoma cells. Whole lysates of 1205Lu and HS294T cells were immunoprecipitated with 

IgG control (IgG), anti-NLRP1 (NLRP1) or anti-NLRP3 (NLRP3) antibody, subjected to 

SDS-PAGE and probed with antibodies against NLRP1, NLRP3, caspase-2, and caspase-9 

for Western blot (WB). (b, c, d) Caspase-2 (b), caspase-9 (c), and caspase-3/7 (d) activities 

in NLRP1 shRNA-expressing 1205Lu and HS294T cells treated with DMSO (vehicle), 5 

μM actinomycin D (AMD) or 1 μM camptothecin (CPT) for 18 h. Data represent mean ± 
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s.e.m. for triplicate experiments. *P < 0.05, **P < 0.01, and ***P < 0.001. IP, 

immunoprecipitation. KD, knockdown.

Zhai et al. Page 22

Oncogene. Author manuscript; available in PMC 2017 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Effects of NLRP1 inflammasome activation on pro-apoptotic caspase activities and 
apoptosis in human melanoma cells and THP-1 cells
(a, b, c) Caspase-2 (a), caspase-9 (b), and caspase-3/7 (c) activities in 1205Lu, HS294T, and 

THP-1 cells, respectively. As indicated, cells were stimulated with NLRP1 inflammasome 

activator LT containing 100 ng/ml lethal factor and 200 ng/ml protective antigen, NLRP3 

inflammasome activator monosodium urate (MSU, 50 μg/ml), or recombinant human IL-1α 
(10 ng/ml) for 2 h, and subsequently treated with AMD or CPT for another 18 h. (d) Flow 

cytometric analysis of apoptosis with Annexin V staining in 1205Lu, HS294T, and THP-1 

cells. Cells were pretreated with LT for 2 h and treated with AMD for 18 h. (e) Lactate 

dehydrogenase (LDH) release by 1205Lu and THP-1 cells after exposure to LT for 18 h. 

Data represent mean ± s.e.m. for triplicate (caspase-2 activity and Annexin V staining) or 
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quadruplicate (caspase-9 activity, caspase-3/7 activity, and LDH release) experiments. *P < 

0.05, **P < 0.01, and ***P < 0.001. KD, knockdown. AV, Annexin V.
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