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Abstract Biofilms are spatially organized communities of microorganisms embedded in a self- 
produced organic matrix, conferring to the population emerging properties such as an increased 
tolerance to the action of antimicrobials. It was shown that some bacilli were able to swim in the 
exogenous matrix of pathogenic biofilms and to counterbalance these properties. Swimming 
bacteria can deliver antimicrobial agents in situ, or potentiate the activity of antimicrobial by 
creating a transient vascularization network in the matrix. Hence, characterizing swimmer trajec-
tories in the biofilm matrix is of particular interest to understand and optimize this new biocontrol 
strategy in particular, but also more generally to decipher ecological drivers of population spatial 
structure in natural biofilms ecosystems. In this study, a new methodology is developed to analyze 
time- lapse confocal laser scanning images to describe and compare the swimming trajectories of 
bacilli swimmers populations and their adaptations to the biofilm structure. The method is based on 
the inference of a kinetic model of swimmer populations including mechanistic interactions with the 
host biofilm. After validation on synthetic data, the methodology is implemented on images of three 
different species of motile bacillus species swimming in a Staphylococcus aureus biofilm. The fitted 
model allows to stratify the swimmer populations by their swimming behavior and provides insights 
into the mechanisms deployed by the micro- swimmers to adapt their swimming traits to the biofilm 
matrix.

Editor's evaluation
This paper nicely considers how the biofilm matrix impacts the organism's moving within that 
environment, connecting prior analyses of cell movements on/within abiotic substrates to those 
within a "living" substrate. Though there are instinctive descriptions for this motility, the strength 
of this manuscript is the development and implementation of a statistical model that quantifies 
critical parameters and incorporates interactions with the biofilm matrix itself. While the manuscript 
measures the differences between morphologically distinct bacteria, a long- term possibility is to 
achieve predictable and reliable delivery of antimicrobials (delivered by bacteria or an abiotic object) 
into the biofilm's center, thereby reducing a biofilm's recalcitrant responses to biocontrol chemicals.
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Introduction
Biofilm is the most abundant mode of life of bacteria and archaea on earth (Flemming and Wuertz, 
2019; Flemming et al., 2016b). They are composed of spatially organized communities of micro-
organisms embedded in a self- produced extracellular polymeric substances (EPS) matrix. EPS are 
typically forming a gel composed of a heterogenous mixture of water, polysaccharides, proteins, and 
DNA (Flemming et al., 2016a). The biofilm mode of life confers to the inhabitant microbial commu-
nity strong ecological advantages such as resistance to mechanical or chemical stresses (Bridier et al., 
2011) so that conventional antimicrobial treatments remain poorly efficient against biofilms (Bridier 
et al., 2015). Different mechanisms were invoked such as molecular diffusion- reaction limitations in 
the biofilm matrix and the cell type diversification associated with stratified local microenvironments 
(Bridier et al., 2017). Biofilms can induce harmful consequences in several industrial applications, 
such as water (Beech and Sunner, 2004), or agri- food industry (Doulgeraki et al., 2017), leading to 
significant economic and health burden (Köck et al., 2010). Indeed, it was estimated that the biofilm 
mode of life is involved in 80% of human infection and usual chemical control leads to serious envi-
ronmental issues (Bridier et al., 2011). Hence, finding efficient ways to improve biofilm treatment 
represents important societal sustainable perspectives.

Motile bacteria have been observed in host biofilms formed by exogenous bacterial species (Houry 
et al., 2012; Li et al., 2014; Piard et al., 2016; Flemming et al., 2016a). These bacterial swimmers 
are able to penetrate the dense population of host bacteria and to find their way in the interlace of 
EPS. Doing so, they visit the 3D structure of the biofilm, leaving behind them a trace in the biofilm 
structure, that is a zone of extracellular matrix free of host bacteria (Figure 1a and Appendix 1—
figure 3). Hence, bacterial swimmers are digging a network of capillars in the biofilm, enhancing the 
diffusivity of large molecules (Houry et al., 2012), allowing the transport of biocide at the heart of 
the biofilm, reducing islands of living cells. The potentiality of bigger swimmers has also been studied 

eLife digest Anyone who has ever cleaned a bathroom probably faced biofilms, the dark, slimy 
deposits that lurk around taps and pipes. These structures are created by bacteria which abandon 
their solitary lifestyle to work together as a community, secreting various substances that allow the 
cells to organise themselves in 3D and to better resist external aggression.

Unwanted biofilms can impair industrial operations or endanger health, for example when they 
form inside medical equipment or water supplies. Removing these structures usually involves massive 
application of substances which can cause long- term damage to the environment.

Recently, researchers have observed that a range of small rod- shaped bacteria – or ‘bacilli’ – can 
penetrate a harmful biofilm and dig transient tunnels in its 3D structure. These ‘swimmers’ can enhance 
the penetration of anti- microbial agents, or could even be modified to deliver these molecules right 
inside the biofilm. However, little is known about how the various types of bacilli, which have very 
different shapes and propelling systems, can navigate the complex environment that is a biofilm. This 
knowledge would be essential for scientists to select which swimmers could be the best to harness 
for industrial and medical applications.

To investigate this question, Ravel et al. established a way to track how three species of bacilli swim 
inside a biofilm compared to in a simple fluid. A mathematical model was created which integrated 
several swimming behaviors such as speed adaptation and direction changes in response to the struc-
ture and density of the biofilm. This modelling was then fitted on microscopy images of the different 
species navigating the two types of environments.

Different motion patterns for the three bacilli emerged, each showing different degrees of adapting 
to moving inside a biofilm. One species, in particular, was able to run straight in and out of this envi-
ronment because it could adapt its speed to the biofilm density as well as randomly change direction.

The new method developed by Ravel et al. can be redeployed to systematically study swimmer 
candidates in different types of biofilms. This would allow scientists to examine how various swimming 
characteristics impact how bacteria- killing chemicals can penetrate the altered biofilms. In addition, 
as the mathematical model can predict trajectories, it could be used in computational studies to 
examine which species of bacilli would be best suited in industrial settings.

https://doi.org/10.7554/eLife.76513
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for biofilm biocontrol, including spermatozoa (Mayorga- Martinez et al., 2021), protozoans (Derlon 
et al., 2012), or metazoans (Klein et al., 2016). Recent results suggest a deeper role of bacterial 
swimmers in biofilm ecology with the concept of microbial hitchhiking: motile bacteria can transport 
sessile entities such as spores (Muok et al., 2021), phages (Yu et al., 2021) or even other bacteria 
(Samad et al., 2017), enhancing their dispersion within the biofilm. Hence, characterizing microbial 
swimming in the very specific environment of the biofilm matrix is of particular interest to decipher 
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Figure 1. Microscopy data and model outlines. (a) Temporal stacks of 2D images are acquired, with different fluorescence colors for host bacteria 
(Staphylococcus aureus, green) and swimmers (Bacillus pumilus, Bacillus sphaericus or Bacillus cereus, red). Bacterial swimmers navigate in a host biofilm 
and are tracked in the different snapshots. Swimmer trajectories are represented with white lines. High density and low density zones of host cells are 
visible in the biofilm (green scale). (b) Additionally to speed and acceleration distributions, three trajectory descriptors are considered. Distance is the 
total length of the trajectory path. Displacement is the distance between the initial and final points of the trajectory. Visited area is the total area of 
the pores left by the swimmer during its path. Hence, when a swimmer retraces its steps, the displacement is incremented but not the visited area. (c) 
Three different mechanisms are considered in the mechanistic model. Biofilm- dependant speed. A target speed is defined accordingly to the local 
density of biofilm and asymptotically reached after a relaxation time. Biofilm- dependent direction. Swimming direction is defined accordingly to the 
local biofilm density gradient. Random walk. A Brownian motion is added. (d) The image acquisition workflow is composed of a first step at the wet lab 
where host biofilm and swimmer are plated and imaged in different color channels. Then a post- processing phase recomposes the swimmer trajectories 
with tracking algorithms. Finally, temporal positions, speeds and accelerations are computed. On the biofilm channel, density and density gradient 
maps are processed at each time step.

https://doi.org/10.7554/eLife.76513
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biofilm spatial regulations and their biocontrol, but more generally in an ecological perspective of 
microbial population dynamics in natural ecosystems.

Bacterial swimming is strongly influenced by the micro- topography and bacteria deploy strategies 
to sense and adapt their motion to their environment (Lee et al., 2021), with specific implications 
for biofilm formation and dynamics (Conrad and Poling- Skutvik, 2018). Model- based studies were 
conducted to characterize bacterial active motion in interaction with an heterogeneous environment. 
An image and model- based analysis showed non- linear self- similar trajectories during chemotactic 
motion with obstacles (Koorehdavoudi et al., 2017). Theoretical studies explored Brownian dynamics 
of self- propelled particles in interaction with filamentous structures such as EPS (Jabbarzadeh et al., 
2014) or with random obstacles, exhibiting continuous limits and different motion regimes depending 
on obstacle densities (Chepizhko and Peruani, 2013; Chepizhko et al., 2013). Image analysis char-
acterized different swimming patterns in polymeric fluids (Patteson et  al., 2015), completed by 
detailed comparisons between a micro- scale model of flagellated bacteria in polymeric fluids and 
high- throughput images (Martinez et al., 2014). Models of bacterial swimmers in visco- elastic fluids 
were also developed to study the force fields encountered during their run (Li and Ardekani, 2016). 
However, to our knowledge, no study tried to characterize swimming patterns in the highly heteroge-
neous environment presented by an exogenous biofilm matrix.

In this study, we aim to provide a quantitative characterization of the different swimming behaviours 
in adaptation to the host biofilm matrix observed by microscopy. We focus on identifying potential 
species- dependent swimming characteristics and quantifying the swimming speed and direction vari-
ations induced by the host biofilm structure. To address these goals, three different Bacillus species 
presenting contrasted physiological characteristics are selected. First, different trajectory descriptors 
accounting for interactions with the host biofilm are defined, allowing to discriminate the swim of 
these bacterial strains by differential analysis. Then, a mechanistic random- walk model including swim-
ming adaptations to the host biofilm is introduced. This model is numerically explored to identify the 
sensitivity of the trajectory descriptors to the model parameters. An inference strategy is designed to 
fit the model to 2D+T microscopy images. The method is validated on synthetic data and applied to 
a microscopy dataset to decipher the swimming behaviour of the three Bacillus.

Results
Ultrastuctural bacterial morphology
To investigate how the shape and propelling mechanism of bacteria can affect the way they navigate 
in a porous media such as a biofilm, we first image three bacterial swimmers –Bacillus pumilus (B. 
pumilus), Bacillus sphaericus (B. sphaericus), and Bacillus cereus (B. cereus) – by Transmitted Electron 
Microscopy (TEM) (Figure 2) to seek for potential structural and physiological differences. Important 
discrepancies can be observed between these Bacillus. First, they show noticeable difference in 
length and diameter, B. sphaericus being the longest bacteria by a factor of approximatively 1.5, and 
B. cereus and B. pumilus having similar size, but B. cereus showing a higher aspect ratio. Secondly, 
they do not have the same type of flagella: B. pumilus and B. sphaericus present several long flagella 
distributed over the whole surface of the membrane while B. cereus shows a unique brush- like bundle 
of very thin flagella, at its back tip.

We then used these three species to test if these ultrastructural differences could impact their 
swimming behaviour in a host biofilm or in a Newtonian control fluid: could the longer body of B. 
sphaericus be an impediment in a crowded environment such as a biofilm or on the contrary could its 
larger size give it a higher strength to cross the biofilm matrix? Is the unique brush- like flagella of B. 
cereus an advantage or a disadvantage to swim in a Newtonian fluid or in a host biofilm?

Characterizing bacterial swimming in a biofilm matrix through image 
descriptors
2D+T Confocal Laser Scanning Microscopy (CLSM) of the three Bacillus swimming in a Staphylo-
coccus aureus (S. aureus) host biofilm or in a control Newtonian buffer are acquired (see Figure 1d). 
Swimmers and host biofilms are imaged with different fluorescent dyes, allowing their acquisition in 
different color channels, and to recover in the same spatio- temporal referential the swimmer trajecto-
ries and the host biofilm density (see Materials and methods, Figure 1 and Table 1). Namely, for each 

https://doi.org/10.7554/eLife.76513
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species  s  and individual swimmer   , we recover the initial ( T
s
0,i ) and final ( T

s
end,i ) observation times (when 

the swimmer goes in and out the focal plane, see Materials and methods sect. Confocal Laser Scan-
ning Microscopy [CLSM]), and the number  T

s
i   of time points in the trajectory. We then extract from the 

2D+T images the observed position, instantaneous speed and acceleration time- series

 t �→ Xs
i (t), t �→ Vs

i (t), t �→ As
i (t), for t ∈ (Ts

0,i, Ts
end,i).  

Noting  bs(t, x)  the dynamic biofilm density maps obtained from the biofilm images, we also compute 
the local biofilm density and density gradient along trajectories

 t �→ bs(t, Xs
i (t)), and t �→ ∇bs(t, Xs

i (t)).  

The angle  θ
s
i (t)  and the average velocity  ̄V

s
i (t)  between two successive speed vectors are also 

collected (see Materials and methods sec. Post- processing of image data).
Different swimming patterns can be deciphered by qualitative observations of the trajectories  X

s
i (t)  

(Figure 3) in the biofilm and in the control Newtonian buffer, and run- and- tumble swimming patterns 
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Figure 2. TEM images of the three Bacillus. TEM images of the three Bacillus are acquired, scaled in the same dimension and aligned (left panel). 
Images at lower scale are made with a zoom in on the flagella insertion (right panel). Note that the zoom in is optical so that the zoomed in image do 
not correspond to a zone of the larger scale images.

https://doi.org/10.7554/eLife.76513
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are quantified with  θ
s
i (t)  and  ̄V

s
i (t)  (Figure 4). B. sphaericus has a similar run- and- reverse behaviour in 

the biofilm and the control buffer with trajectories divided between back and forth paths around the 
starting point and long runs, the biofilm strongly impairing its speed and increasing the number of 
reverse events. By contrast, B. pumilus clearly switches its swimming behaviour in the biofilm, from 
quasi- straight runs in the Newtonian buffer to a pronounced run- and- reverse behaviour in the biofilm 
with decreased speeds and chaotic trajectories. On the contrary, B. cereus swimmers manage to 
conserve comparable trajectories and distributions of swimming speed and direction in the biofilm 
compared to control. Interestingly, the number of reverse events is even reduced in the host biofilm 
for B. cereus.

For further quantitative analysis, trajectory descriptors are defined. We first investigate the 
distribution of the population- wide average acceleration and velocity norms 

 
1

Ts
i−2

∑
t ∥As

i (t)∥  and 

 
1

Ts
i−1

∑
t ∥Vs

i (t)∥ , where  ∥ · ∥  denotes the Euclidian norm. We also quantify the swimming kinematics 
by computing the travelled distance  distsi   along the path and the total displacement  disps

i  , that is the 
distance between the initial and final trajectory points, with

 
distsi =

´ Ts
end,i

Ts
0,i

∥Vs
i (t)∥dt and disps

i = ∥X(Ts
end,i) − X(Ts

0,i)∥ = ∥
´ Ts

end,i
Ts

0,i
Vs

i (t)dt∥.
  

We finally compute the total biofilm area visited by a swimmer along its path (see Figure 1b). The 
same descriptors are computed in the control Newtonian buffer.

The three species present contrasted distributions for these descriptors (Figure 5). B. sphaericus 
has the smallest mean ( ||A|| = 0.58  and  ||V|| = 0.70 ) and median ( ∥A∥ = 0.50  and  ∥V∥ = 0.53 ) values of 
acceleration and speed, while B. pumilus has the widest distributions (difference between 95% and 
5% centiles of 2.76 for  ∥A∥  and 2.45 for  ∥V∥  compared to 1.00, 1.51 and 1.90, 1.49 for B. sphaericus 
and B. cereus respectively). B. cereus for its part shows the highest accelerations, indicating larger 
changes in swimming velocities, but median and mean speeds comparable to B. pumilus (Figure 5, 

 ∥A∥  and  ∥V∥  panels). We also note that B. sphaericus and to a lower extent B. pumilus trajectories have 
a significant amount of null or small average speeds, while B. cereus trajectories have practically no 
zero velocity, consistently with the qualitative analysis (Figure 5,  ∥V∥  panels). Small velocities episodes 
of B. sphaericus and B. pumilus could occur during their back- and- forth trajectories, which produce 
small displacements and pull the displacement distribution towards lower values than B. cereus 
(Figure 5, Disp panel). B. pumilus displacement is intermediary. Conversely, back- and- forth trajec-
tories can produce large swimming distances for B. sphaericus and B. pumilus (mean adimensioned 
value of 32.2 and 43.2 respectively) so that B. sphaericus has a distance distribution comparable to B. 
cereus (mean adimensioned value of 29.6, Figure 5, Dist panel), but lower than B. pumilus. Observing 
conjointly displacement and distance (Figure 5, lower- right panel) provides consistent insights: B. 
sphaericus shows a large variability of small displacement trajectories, from small to large distances, 

Table 1. Dataset characteristics.
We detailed, for each batch, the number of trajectories, the average number of time points by 
trajectory (and standard deviation), the total number of time points in the dataset, the total movie 
duration in seconds and the time interval between two snapshots in seconds.

Species Batch # traject. traj. length time points Duration [s]  ∆t [s]

B. pumilus 1 122 40 (7.4) 4,590 30 0.134

2 152 25 (5.7) 3,543 30 0.134

3 243 38 (6.9) 8,825 30 0.134

B. sphaericus 1 98 40 (7.6) 3,762 30 0.134

2 91 43 (7.7) 3,771 30 0.134

3 48 55 (7.9) 2,543 23 0.134

B. cereus 1 105 47 (7.9) 4,766 30 0.069

2 53 36 (7.7) 1,808 30 0.069

3 121 43 (7.1) 5,006 30 0.069

https://doi.org/10.7554/eLife.76513
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while B. cereus trajectory displacement seems to vary almost linearly with the distance at least for the 
points inside the isoline 50%. B. pumilus has again an intermediary distribution, with a large range 
of displacement- distance couples. The distributions of visited areas of B. pumilus and B. cereus are 
almost identical, and higher than B. sphaericus one. Compared to the control buffer, all descriptors 
are reduced in the biofilm. Consistently with previous observations, the displacement ( disp ) is strongly 
reduced for B. pumilus, and less impacted for B. sphaericus and B. cereus. These observations must 
be related to the behavioural switch for B. pumilus and to the identical swimming patterns for the two 
other Bacilii in the biofilm compared to the control fluid.

All together, this data depict (1) a long- range species, B. cereus, which moves efficiently in the 
biofilm during long, relatively straight, rapid runs, almost identically as in a Newtonian fluid (2) a 
short- range species, B. sphaericus, that moves mainly locally in small areas in the biofilm and in the 
control buffer with lower accelerations and speeds except few exceptions (only 6% of its trajectories 
induced a displacement higher than  10µm  compared to 28% for B. cereus and 26% for B. pumilus) and 
(3) a medium- range species, B. pumilus, with a large diversity of rapid trajectories, from small to large 
displacement, and a behavioural change from straight runs in a Newtonian fluid to frequent run- and- 
reverse events in the biofilm. These kinematics discrepancies for B. pumilus and B. cereus allow them 
however to cover identical visited areas.

Figure 3. Swimmer trajectories The whole set of trajectories of each species is displayed in the control Newtonian buffer (upper panel) and in the 
host biofilm (lower panel). Note that the 3 batches of the different species are pooled on these images. Number of trajectories are n = 517 and 123 
(B. pumilus), n = 237 and 94 (B. sphaericus) and n = 279 and 144 (B. cereus) for, respectively, the biofilm and the control buffer. The physical size of the 
domain is 147x147μm. 

https://doi.org/10.7554/eLife.76513
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Though, these global descriptors do not inform about potential adaptations of the swimmers to 
the biofilm matrix. We first check if swimmer velocities are directly linked to the local biofilm density, 
and if the swimmers adapt their trajectory according to density gradients by plotting the points 

 (∥∇b(t, Xs
i (t))∥, ∥As

i (t)∥)  and  (b(t, Xs
i (t)), ∥Vs

i (t)∥)  (Figure 5, lower panel). Clear differences between the 
three species can be deciphered. First, the three Bacillus do not have the same distribution of visited 
biofilm density and gradient. B. pumilus swimmers visit denser biofilm with higher variations than the 
other species while B. sphaericus and B. cereus stay in less dense and smoother areas, the quantile 
0.5 of these species being circumscribed in low gradient and low density values. Next, B. cereus has a 
wider distribution of accelerations, specially for small- density gradients, compared to B. pumilus and 
B. sphaericus. This could indicate that when the biofilm is smooth, B. cereus samples its acceleration in 
a large distribution of possible values. Finally, we observe that the speed distribution rapidly drops for 
increasing biofilm densities for B. sphaericus and B. cereus, while the decrease is much smoother for 
B. pumilus. These observations provide additional insights in the species swimming characteristics: B. 
pumilus swimmers seem to be less inconvenienced by the host biofilm density than the other species, 
while B. cereus and B. sphaericus bacteria appear to be particularly impacted by higher densities and 

Figure 4. Assessing run- and- tumble with speed and direction distributions. For each time point, the swimmer mean speed  ̄V
s
i (t) , defined as the mean 

between the incoming and outgoing velocity vectors  V̄
s
i (t) = (∥Vs

i (t)∥ + ∥Vs
i (t −∆t)∥)/2, for t ∈ (Ts

0,i + ∆t, Ts
end,i) , is plotted versus the direction change, 

defined as the angle  θ
s
i (t)  between the incoming and outgoing velocity vectors  θ

s
i (t) = arccos((Vs

i (t) · Vs
i (t −∆t))/(||Vs

i (t)||V
s
i (t −∆t)||)) . The left and bottom 

panels indicate the marginal distributions, with the mean (dashed line) and quantiles 0.05, 0.5, and 0.95 (plain lines). Number of times points are n = 6 
848 and 6 509 (B.pumilus), n = 2 818 and 3 740 (B. sphaericus) and n = 3 526 and 4 435 (B. cereus) for, respectively, the biofilm and the control buffer.

https://doi.org/10.7554/eLife.76513
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to favor low densities where it can efficiently move. Though, B. sphaericus has lower motile capabili-
ties than B. cereus when the biofilm is not dense.

Analysis of swimming data with an integrative swimming model
This descriptive analysis does not allow to clearly identify potential mechanisms by which the swim-
mers adapt their swim to the biofilm structure or to simulate new species- dependant trajectories. We 
then build a swimming model based on a Langevin- like equation on the acceleration that involves 
several swimming behaviours modelling the swimmer adaptation to the biofilm. Furthermore, after 
inference, new synthetic data can be produced by predicting swimmer random walks sharing charac-
teristics comparable to the original data.

We consider bacterial swimmers as Lagrangian particles and we model the different forces involved 
in the update of their velocity  v . We assume that the swimmer motion can be modelled by a stochastic 
process with a deterministic drift (Figure 1c):

 

dv = γ(α(b) − ∥v∥) v
∥v∥dt

︸ ︷︷ ︸
speed selection

+ β
∇b

∥∇b∥dt
︸ ︷︷ ︸

direction selection

+ ηdt︸︷︷︸
random term

  

(1)

where the right hand side is composed of two deterministic terms in addition to a gaussian noise, 
each weighted by the parameters  γ ,  β  and  ϵ .

Figure 5. Analysis of swimming characteristics using trajectory descriptors. Upper panel: normalized acceleration, speed, distance, displacement, and 
area distributions structured by species are displayed, together with quantile 0.05, 0.5, and 0.95 (vertical plain lines) and mean (vertical dashed line). The 
descriptor distribution in the control Newtonian buffer is indicated with the dotted line. All values are normalized by the corresponding reference value 
as indicated in Materials and methods. T- test pairwise comparison p- values are displayed in Appendix 1—table 2. Number of trajectories are n = 517 
and 123 (B.pumilus), n = 237 and 94 (B. sphaericus) and n = 279 and 144 (B. cereus) for, respectively, the biofilm and the control buffer. Lower panel: we 
display the distribution of the instantaneous acceleration norm respectively to the local biofilm density gradient (i.e.  ||Ai(t)||  function of  ∇b(Xi(t)) ) and 
of the instantaneous velocity norm respectively to the local biofilm density (i.e.  ||Vi(t)||  function of  b(Xi(t)) ), structured by population. The point cloud of 
each species is approximated by a gaussian kernel and gaussian kernel isolines enclosing 5, 50% and 95% of the points centered in the densest zones 
are displayed to facilitate comparisons between species (see Materials and methods Plots and statistics).

https://doi.org/10.7554/eLife.76513
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The first term implements the biological observation (Figure 5, lower central panel) that the bacte-
rial swimmers adapt their velocity to the biofilm density. This term can be interpreted as a speed selec-
tion term that pulls the instantaneous speed of the swimmer towards a prescribed target velocity  α(b)  
that depends on the host biofilm density  b . The weight  γ  can be interpreted as a penalization coeffi-
cient. In such a formalism, the difference between the swimmer and the prescribed speed is divided 
by a relaxation time  τ   to be homogeneous to an acceleration. Hence,  γ  is proportionally inverse to 
 τ  ,  γ ∼ 1

τ  . As a first- order approximation of the speed drop observed in Figure 5 for increasing  b , the 
target speed  α(b)  is modeled as a linear variation between v0 and v1, where v0 is the swimmer char-
acteristic speed in the lowest density regions, where  b = 0 , and v1 in the highest density zones where 
 b = 1 :

 α(b) = v0(1 − b) + bv1 = v0 + b(v1 − v0)  

The second term updates the velocity direction according to the local gradient of the biofilm 
density  ∇b . The sign of  β  indicates if the swimmer is inclined to go up (negative  β ) or down (positive 

 β ) the host biofilm gradient, while the weight magnitude indicate the influence of this mechanism in 
the swimmer kinematics. We note that this term does not depend on the gradient magnitude but 
only on the gradient direction: this reflects the implicit assumption that the bacteria are able to sense 
density variations to find favorable directions, but that the biological sensors are not sensitive enough 
to evaluate the variation magnitudes.

The third term is a stochastic two- dimensional diffusive process that models the dispersion around 
the deterministic drift modelled by the two first terms. We define

 η ∼ N (0, ϵ)  

The term η can also be interpreted as a model of the modelling errors, tuned by the term  ϵ . Equa-
tion 1 is supplemented by an initial condition by swimmer. For vanishing  ∥v∥  or  ∥∇b∥  leading to an 
indetermination, the corresponding term in the equation is turned off.

Equation 1 links the observed biofilm density and the swimmer trajectories trough mechanistic 
swimming behaviours. The model fitting can be seen as an ANOVA- like integrative statistical analysis 
of the image data. It decomposes the observed acceleration variance between mechanistic processes 
describing different swimming traits in order to decipher their respective influence on the swimmer 
trajectories while integrating heterogeneous data (density maps  b  and trajectories kinematics).

We can define characteristic speed and acceleration  V∗  and  A∗  in order to set a dimensionless 
version of Equation 1

 dv = γ′(v′0 + b(v′1 − v′0) − ∥v∥) v
∥v∥dt + β′ ∇b

∥∇b∥dt + η′dt  (2)

where  γ
′ = γV∗

A∗  ,  v
′
0 = v0

V∗  ,  v
′
1 = v1

V∗  ,  β
′ = β

A∗  ,  η
′ ∼ N (0, ϵ′)  and  ϵ

′ = ϵ
A∗2  .

This dimensionless version will strongly improve the inference process and will allow an analysis of 
the relative contribution of the different terms in the kinematics. An extended numerical exploration 
of this model is performed in Appendix 2 Sec. Numerical exploration on mock biofilm images to 
illustrate the impact of the different parameters on the trajectories, showing in particular the inter-
play between  γ  and  ϵ : counter- intuitively, straight lines are induced when the stochastic part  ϵ  is high 
compared to the speed selection parameter  γ  (see also Appendix 2).

Inferring swimming parameters from trajectory data
For each bacterial swimmer population, we now seek to infer with a Bayesian method population- wide 
model parameters governing the swimming model of a given species from microscope observations.

Inference model setting
Equation (2) is re- written as a state equation on the acceleration for the bacterial strain  s  and the 
swimmer   

 
As

i (t) = γs(vs
0 + b(t, Xs

i (t))(v
s
1 − vs

0) − ∥Vs
i (t)∥) Vs

i (t)
∥Vs

i (t)∥
+ βs ∇b(t,Xs

i (t))
∥∇b(t,Xs

i (t))∥
+ ηs

  (3)

 := fA
(
θs, b(t, Xs

i (t)), Vs
i (t), Xs

i (t)
)

+ ηs
  (4)
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where

 θs := (γs, vs
0, vs

1,βs)  

are species- dependant equation parameters. The function  fA  can be seen as the deterministic drift 
of the random walk, gathering all the mechanisms included in the model. The inter- individual vari-
ability of the swimmers of a same species comes from the swimmer- dependent initial condition, the 
resulting biofilm matrix they encounter during their run, and the stochastic term.

Inferring the parameters  θs  can then be stated in a Bayesian framework as solving the non linear 
regression problem

 As
i (t) ∼ N

(
fA
(
θs|b(t, Xs

i (t)), Vs
i (t), Xs

i (t)
)

, ϵs)
  (5)

from the data  b(t, X) ,  X
s
i (t) ,  V

s
i (t)  and  A

s
i (t) , with truncated normal prior distributions

 θs ∼ N (0, 1), ϵs ∼ N (0, 1),  (6)

and additional constrains on the parameters

 γs ≥ 0, vs
0 ≥ 0, vs

1 ≥ 0, ϵs ≥ 0.  

(a) Trajectory sampling. (b) Trajectory descriptors

(c) Ground truth (red) vs fitted model
(blue) trajectories (d) �� qqplot (e) �� qqplot

Figure 6. Inference assessment on synthetic data. (a) Predicted vs true trajectories. Trajectories are recovered by sampling the parameter posterior 
distribution starting from the same initial condition than in the data. We represent a ground truth trajectory extracted randomly from the original dataset 
in red, the corresponding sampled trajectories with thin gray lines, and the trajectory obtained with the posterior means in orange. Note that in this 
simulation, the stochastic part is the same for all simulations, so that the only source of uncertainties comes from the inference procedure. (b) Trajectory 
descriptors. Trajectories are re- computed replacing the original parameters (ground truth) by the inferred parameters. The trajectory descriptors 
introduced in Characterizing bacterial swimming in a biofilm matrix through image descriptors are computed on the synthetic data (blue curves) and on 
the data obtained with the inferred parameters (orange curves). Number of trajectories are n = 72 for the ground truth and n = 100 after inference. (c) 
Ground truth vs fitted trajectories. The ground truth, that is the original trajectories (blue) and fitted (red) trajectories are displayed and show common 
characteristics. (d- e) Qqplot of fitted model output vs ground truth. After inference, the fitted model is used to re- compute the synthetic dataset. We 
plot the x (d) and y (e) components of the accelerations in a qqplot: the fitted model output quantiles are plotted against the quantiles of the original 
dataset (ground truth) with blue dots, together with the  y = x  line (red).
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We note that Equation (5) can be seen as a likelihood equation of the parameter  θs  knowing 

 A
s
i (t), b(t), Vs

i (t)  and  X
s
i (t) . The parameter  ϵs  can now be seen as a corrector of both modelling errors 

in the deterministic drift and observation errors between the observed and the true instantaneous 
acceleration. Alternative settings where these uncertainties sources are separated and a true state 
for position and acceleration is inferred can be defined (see Annex Various inference models). The 
inference problem is implemented in the Bayesian HMC solver Stan (Stan Development Team, 2018) 
using its python interface pystan (Riddell et al., 2021). Inference accuracy is thoroughly assessed on 
synthetic data (see Appendix 1 Assessment of the inference with synthetic data and Figure 6).

Analysis of the confocal microscopy dataset
We now solve the inference problem (5)- (6) on the confocal microscopy dataset to identify population- 
wide swimming model parameters in order to decompose the swimmer kinematics in three mech-
anisms: biofilm- related speed selection, density- induced direction changes and random walk. The 
inference process is assessed by comparing the descriptors obtained on trajectories predicted by the 
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Figure 7. Inference result on the experimental images. (a) To validate the inference process, a synthetic dataset is assembled by computing Equation 
1 with the inferred parameters and the trajectory descriptors introduced in section Characterizing bacterial swimming in a biofilm matrix through image 
descriptors are computed and can be compared to the data descriptors in Figure 5. Acceleration, speed, distance and displacement distributions are 
displayed in the upper panel, with quantiles 0.05, 0.5 and 0.95 (plain lines) and mean (dashed line). The mean values observed in the image data are 
also displayed for comparison (black dashed line). The number of trajectories are identical than in Figure 5: n = 517 (B. pumilus), n = 237 (B. sphaericus) 
and n = 279 (B. cereus). Interactions between the host biofilm and, respectively, acceleration and speed distributions are displayed in the lower panel 
with isolines enclosing 5, 50% and 95% of the points, centered in the densest zones. (b) Inferred parameter posterior distributions after analysis of the 
confocal swimmer images, and posterior mean (dashed line). We used 4000 points for the computation of the Gaussian KDE.
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fitted model (Figure 7a) with descriptors of real trajectories (Figure 5). The mean values of accelera-
tion and speeds are accurately predicted for the three species ( Figure 7a panels  ∥A∥  and  ∥V∥ , dashed 
lines). Relative positions of distance, displacement and visited area mean values are also correctly 
simulated (Figure 5 and Figure 7a, upper panel). B. sphaericus presents the lowest predicted acceler-
ations and speeds while B. pumilus has the widest speed and acceleration distributions and B. cereus 
shows the highest accelerations, consistently with the data. The visited area and the distances are 
slightly over estimated, but the relative position and the shape of the distributions are conserved. The 
amount of null velocities for B. sphaericus is under estimated by the fitted model and not rendered 
for B. pumilus. The distance distributions of the three species are accurately predicted by the fitted 
model. When displaying conjointly the distance and the displacement (Figure 7a, right lower panel), 
the distribution of B. sphaericus is correctly predicted by the simulations, but B. cereus and B. pumilus 
displacements are underestimated. Some qualitative features can be recovered, such as the higher 
distribution of distance- distribution couples for B. cereus or higher displacement for B. cereus 
compared to B. sphaericus.

Descriptors of swimming adaptations to the host biofilm are also correctly preserved for the main 
part (Figure 5 and Figure 7 a, lower panel). B. pumilus is the species that crosses the highest biofilm 
densities in the fitted model simulations, showing the highest speeds in this crowded areas, and 
that visits the most frequently areas with high density gradients, consistently with the data. As in the 
confocal images, the simulated B. sphaericus and B. cereus favor smoother zones of the biofilm with 
lower biofilm densities. The B. cereus fitted model correctly renders the highest acceleration variance 
observed in the data for low biofilm gradients, while B. sphaericus speed and acceleration variance is 
the lowest for all ranges of biofilm densities and gradients, both in the data and in the fitted model 
predictions. The drop of speeds and accelerations for increasing biofilm densities and gradients is well 
predicted for B. pumilus, but is smoother in the simulation compared to the data for B. sphaericus and 
B. cereus. In particular, the sharp drop of speeds for  b ≃ 0.25  observed in the data for B. cereus and 
B. sphaericus is underestimated by the fitted model.

All together, the model reproduces very accurately the mean values of acceleration, speed and 
visited area, renders relative positions and the main characteristics of distributions for distance, 
displacement and interactions with the host biofilm matrix, but produces less variable outputs than 
observed in the data, meaning that the model is less accurate in the distribution tails. The main 
features of the swimmer adaptation to the underlying biofilm are however correctly predicted by the 
model.

To further inform the fitted model accuracy, the coefficient of determination  R
2
det  of the determin-

istic components  fA(θs, b(t), Vs
i , Xs

i (t))  of Equation 4 is computed (Table 2), in order to quantify the 
goodness of fit of the friction and gradient terms of (Equation 2) that represent interactions with the 

Table 2. Reference acceleration and speed, and acceleration variance decomposition between 
stochastic and deterministic terms.
The number  N   of acceleration time points is indicated for each specie. Then, reference values 
for acceleration  Aref   and speed  Vref   used for adimensionalization are computed by averaging the 
corresponding values by specie. Descriptive statistics of acceleration variance decomposition are 
then computed in order to illustrate the contribution of the deterministic terms in the observed 
acceleration distribution, and the part of the residual mechanisms that are not included in the 
model. We indicate for each species the acceleration variance  σ(A) , the part of the variance 
explained by the deterministic terms  R

2
det  (see Materials and methods sec.Inference validation on 

experimental data) and the variance of the stochastic term  ϵ2 . We note that in order to compare 
species at vizualisation step, they are re- normalized with the average of the species reference values: 

 Aref =  78.31 and  Vref =  6.55.

data N  Aref   Vref   σ(A)  R
2
det[%]  ϵ2 

B.pumilus 33,916 81.08 7.89 0.87 58.80 0.36

B.sphaericus 20,152 44.93 4.74 0.58 48.50 0.30

B.cereus 23,160 108.92 7.03 0.63 32.72 0.42

https://doi.org/10.7554/eLife.76513
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biofilm. These results highlight that B. cereus bacteria do present an important stochastic part in the 
accelerations, while the B. pumilus species is the best represented by our deterministic modelling.

The three species present very different inferred parameter values (Figure  7 b and Table  3), 
showing that the model inference captures contrasted swimming characteristics of these Bacillus. Due 
to the mechanistic terms introduced in Equation 1, these differences can be interpreted in term of 
speed and direction adaptations to the host biofilm. First, B. pumilus shows the highest v0 value, and 
the highest amplitude between v0 and v1, inducing a higher ability for B. pumilus to swim fast in low 
density biofilm zones and strong deceleration in crowded area. In comparison, B. sphaericus presents 
the smallest amplitude between v0 and v1 showing a poor adaptation to biofilm density. B. cereus 
has the highest  γ  value, showing a reduced relaxation time toward the density dependant speed: 
in other words, B. cereus is able to adapt its swimming speed more rapidly than the other species 
when the biofilm density varies. B. cereus swimmers are also better able to change their swimming 
direction in function of the biofilm variations they encounter along their way, their  β  distribution being 
markedly higher than the other species which have very low  β . Finally, the stochastic parameter  ϵ  is 
also contrasted, from a low distribution for B. sphaericus to high values for B. cereus. All together, 
the inference complete the observations made in Figure 5: B. pumilus poorly adapts its swimming 
direction to the host biofilm (low  β ) but has a wide range of possible speeds when the biofilm density 
varies (high v0, low v1), that it can reach quite rapidly (intermediary  γ ) with intermediary stochastic 
correction ( ϵ ). In contrast, B. cereus reaches lower speed values (intermediary v0, low v1) but is more 
agile to adapt its swimming to its environment by changing rapidly its speed when the biofilm density 
is more favorable (highest  γ ) and adapting its swimming direction to biofilm variations, with higher 
stochastic variability (large  ϵ ). Finally, B. sphaericus is the less flexible of the three bacteria: less fast 
(smallest difference between v0 and v1), they are also less responsive to biofilm variations (small  γ  and 

 β ) with low random perturbations (small  ϵ ).
Finally, after inference, the impact of each term in the overall acceleration data can be quantified 

and analyzed by displaying its relative contribution in a ternary plot (Appendix 2—figure 6). This 
relative contribution can be measured thanks to the swimming model which integrates these different 
mechanisms in the same inference problem. The direction selection is the least influential mechanism 

Table 3. Inference outputs for the three species.
The posterior mean, standard deviation and inferred confidence interval are indicated for each 
parameter and each specie. Convergence diagnosis index  neff   and  Rhat  are provided.

species param mean std
confidence interval [2.5%–

97.5%] neff Rhat

B. pumilus γ 0.77 3.95×10–3 [0.77–0.77] 4,507 1

v0 0.14 8.67×10–3 [0.12–0.16] 3,879 1

v1 1.69×10–3 1.69×10–3 [5.18×10–5−6.26×10–3] 4,821 1

β 9.84×10–3 5.07×10–3 [1.45×10–5−2.07×10–2] 5,223 1

ε 0.62 2.48×10–3 [0.61–0.62] 5,307 1

B. sphaericus γ 0.61 4.53×10–3 [0.60–0.62] 4,965 1

v0 2.75×10–4 2.75×10–4 [4.91×10–6−1.01×10–3] 4,019 1

v1 4.84×10–3 4.77×10–3 [9.39×10–5−1.45×10–2] 5,001 1

β 4.25×10–3 3.33×10–3 [−2.18×10–3−1.15×10–2] 4,668 1

ε 0.32 1.55×10–3 [0.31–0.32] 5,943 1

B. cereus γ 0.83 1.11×10–2 [0.80–0.86] 2,700 1

v0 6.44×10–2 1.07×10–2 [3.22×10–2−9.66×10–2] 2,510 1

v1 6.65×10–3 6.33×10–3 [1.50×10–4−2.15×10–2] 4,061 1

β 2.78×10–2 9.04×10–3 [1.39×10–2−5.56×10–2] 4,230 1

ε 0.9 4.17×10–3 [0.89–0.92] 4,852 1

https://doi.org/10.7554/eLife.76513
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for the three species, with a slightly higher impact for B. cereus (50% and 95% isolines slightly shifted 
towards  A(∇b)  in Appendix 2—figure 6a). When zooming in, the three Bacillus show differences 
in the balance between speed selection and the random term (Appendix 2—figure 6b): while B. 
pumilus is slightly more influenced by the friction term than by stochasticity, these mechanisms are 
perfectly balanced in B. sphaericus accelerations, while B. cereus is more influenced by the random 
term.

Interpretation of the bacterial swimming at the light of their morphology
Kinematics descriptors and swimming parameters can then be reinterpreted through the insights 
provided by the morphology of each bacteria species as shown in Figure 2. As observed in Figure 2, 
B. pumilus and B. sphaericus are flagellated whereas B. cereus is equipped by a unique brush- like 
bundle of thin flagella at its tail. This morphology can be linked to their swimming patterns. The flagella 
could be linked to the run- and- tumble behaviour of B. pumilus and B. sphaericus, as shown for other 
flagellated bacteria such as E. coli, the tumbling events of which are induced by reverse rotation of the 
cellular motor of its multiple flagella (Patteson et al., 2015). Additional functional characteristics may 
discriminate B. pumilus and B. sphaericus, since run- and- reverse swimming is the natural behaviour of 
B. sphaericus even in the Newtonian control buffer, whereas B. pumilus drastically reduces its speed 
in high- density biofilms (Figure 7, a) and starts tumbling in the host biofilm (Figure 4). B. pumilus has 
the highest number of flagella and is the bacteria that reaches the highest speeds specially in the 
Newtonian buffer and in low- density areas, indicating that this characteristic may be an advantage 
for swimming fast in the extracellular matrix. The kind, size and disposition of the flagella bundle may 
help B. cereus swimmers to adapt their runs to their environment by changing directions to follow 
lower density areas (higher impact of direction selection term of the three Bacillus in Appendix 2—
figure 6) or to adapt rapidly when biofilm density varies (largest  γ ). B. cereus being the bacteria 
with the strongest stochastic part (highest  ϵ , density shifted towards  A(ϵ)  in Appendix  2—figure 
6), this morphology could also help the swimmer to go through the biofilm by random navigation, 
which helps to maintain comparable straight trajectory with or without biofilm when the stochastic 
part is higher than the speed selection term (Appendix  1—figure 1, Appendix  2—figure 3 and 
Appendix 2—figure 6). Finally, B. sphaericus bacteria are much longer than the other two species, 
which may explain why this species is the least motile in terms of acceleration and kinematics, both in 
biofilms and in the Newtonian control buffer.

Discussion
Modelling and analysis of swimming trajectories
When analyzing microbial swimming trajectories, two general strategies can be found in the literature. 
The first one aims at designing statistical tests quantifying similarities with or deviations from typical 
motion of interest such as diffusion (Patteson et al., 2015). Another strategy consists in providing a 
generative model of the data, analyzing it (Chepizhko and Peruani, 2013; Chepizhko et al., 2013) 
and comparing model outputs with real data (Koorehdavoudi et  al., 2017; Jabbarzadeh et  al., 
2014), possibly after inference. The model that is studied in this paper belong to the second category: 
the model includes deterministic mechanisms describing interactions with the host biofilm, together 
with a random correction counterbalancing the modelling errors. The parameter inference allows 
to interpret the data variance relatively to speed or direction adaptations to the host biofilm versus 
residual effects gathered in the stochastic term. This method is comparable to ANOVA- like multi-
variate analysis: the parametric phenomelogical mappings between explicative co- variables and a 
swimming behaviour (for example the function defining speed selection from biofilm density) are 
gathered in the same inference problem, enabling to decompose acceleration variability between the 
different swimming behaviours. This integrative method allows for multi- data integration and co- anal-
ysis. Furthermore, the fitted model allows to simulate typical swimming trajectories of a given species.

Population-wide swimming characteristics vs true-state inference
In this study, we do not aim to recover ’true’ swimmer trajectories (a.e. the blue trajectory in 
Appendix 2—figure 4), that is identifying through smoothing techniques an approximation of the 
specific realization of the stochastic modeling and observation errors that lead to a given ’observed’ 
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trajectory. Rather, the goal is to identify common characteristics shared by a population of trajectories 
by inferring the ‘population- wide’ parameters (the parameters  α ,  β , v0, v1,  γ , and  ϵ ) that best explain 
the whole set of observed accelerations in a same population of swimmers. For this reason, we did not 
introduce swimmer- specific terms nor individual noise: they would have increased the model accuracy, 
but to the price of a blurrier characterization of the species specificities.

This choice determined our inference framework. Despite several alternative options for recov-
ering hidden states, in particular SSM (space state models) which are common in spatial ecology 
(Auger‐Méthé et al., 2021), the Bayesian method we opted for is a simpler non- linear regression 
problem that proved to be sufficient to recover macroscopic features of swimmer trajectories and 
species stratification. We discuss in Appendix 3 Various inference models the different options that 
were tested and present in Materials and methods Sec. Inference the method for noise model selec-
tion. Among other interesting features, the Bayesian method provides confidence intervals on the 
final parameter estimation, and on the resulting trajectories as in Figure 6a.

Predictive capabilities of the model
The deterministic terms of the model explain only half of the variance (Table 2). A major part of the 
underlying mechanisms is not correctly described by our model which is a common feature since it is 
a phenomenological model which only considers interactions with the underlying biofilm at a macro-
scopic level, without taking into account nanoscale physical mechanisms. A more detailed description 
of the underlying physics could have been designed as in Martinez et al., 2014, but it would have 
made more complex the analysis of the interactions between the host biofilm and the swimmer trajec-
tories and the extraction of species- specific patterns. However, we note that our model correctly 
renders observations made through macroscopic trajectory descriptors, even though the inference 
process has not been made based on these observables. Furthermore, several repetitions of the 
same models with different samples of the stochastic terms give very similar values for the trajec-
tory descriptors (see Appendix 2—figure 5 and section Influence of inference and stochastic terms 
on the trajectory descriptors), showing that these descriptors are robust to stochastic perturbations. 
Hence, the model (2) can be used to produce synthetic data sharing the same global characteristics 
than the original ones specifically taking into accounts interactions between the swimmers and the 
host biofilm. Furthermore, these predictions also reproduce the species stratification observed in the 
original data using the global descriptors.

Biological interpretation of the fitted models
The direction selection term of the equation driven by  β  has little impact in the swimmer model fitted 
on real data. However, the parameter  β  can have a sensible impact on the kinematics as shown in the 
sensitivity analysis, and on the trajectories in mock biofilms (Appendix 2—figure 1). This could indi-
cate that direction selection based on biofilm gradients is marginally effective in real- life swimming 
trajectories in a biofilm matrix. On the contrary, the speed selection term is more effective for the 
three Bacillus, showing that these micro- swimmer are able to adapt their swimming velocity to the 
biofilm density faced during their run. This term acts as an inertial term which enhances the stochastic 
term to provide direction and velocity changes.

The model has been used to decipher different adaptation strategies to the host biofilm of the 
three species during their swim. It confirms that B. sphaericus are the less motile bacteria in the 
biofilm, with reduced speeds and adaptation capabilities as indicated by the smallest model param-
eter values and a stereotypic run- and- reverse behaviour inside or outside the biofilm. B. pumilus on 
the contrary drastically changes its swimming behaviour in the biofilm compared to the Newtonian 
control buffer, which is reflected in the model by a high amplitude between v0 and v1 and a high  γ  
that indicates a rapid adaptation for varying biofilm densities. B. cereus shows the highest adaptation 
ability to the biofilm matrix, with the highest  γ  and  β  reflecting biofilm- induced speed and direction 
changes. Furthermore, the high stochastic effects (highest ∈) higher than the speed selection term 
tuned by  γ  (see Appendix 2—figure 6) allows this swimmer to conserve straight runs in the biofilm 
(see Appendix 2 Sec. Friction and random term in Langevin equations.) in the same way than in the 
control Newtonian fluid.

This characterization methodology could be used to drive species selection for improved biofilm 
control. Furthermore, the model can be used to predict new trajectories and the resulting biofilm 
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vascularization, in a similar framework as in Houry et al., 2012. Coupled with a model of biocide 
diffusion, these simulations could be used to test numerically the efficiency of mono- or multi- species 
swimmer pre- treatment to improve the removal of the host biofilm.

Flagellated bacteria in polymeric solutions
Characterization of flagellated bacteria motility in polymeric solutions is a very active research area 
(Martinez et al., 2014; Patteson et al., 2015; Zöttl and Yeomans, 2019; Qu and Breuer, 2020; Qu 
et al., 2018). Speed and direction variations have been measured for various polymeric fluids with 
different visco- elastic properties. For the model bacteria E. coli in polymeric solutions, enhanced 
viscosity decreases tumbling while increased elasticity speeds up the swimmers (Patteson et  al., 
2015; Zöttl and Yeomans, 2019). In our experiments on the contrary, we observed decreased speeds 
and strong enhancement of reverse events for the flagellated B. sphaericus and B. pumilus in the 
biofilm compared to the Newtonian control buffer. However, the experimental set- up shows strong 
differences: the complex rheology of S. aureus biofilms may strongly differ from polymeric fluids 
even if under certain condition they can be considered as visco- elastic fluids (Gloag et al., 2020), 
impacting differently the swimmer behaviours. Furthermore, the physiology of the motor cell in the 
Gram- positive Bacillus differs from the one of the Gram- negative E. coli (Terahara et al., 2020; Szur-
mant and Ordal, 2004; Subramanian and Kearns, 2019). Finally, the particular brush- like flagella 
bundle of B. cereus may allow this species to conserve the same swimming in Newtonian and crowded 
environments, by adapting its swimming speed to the local density and otherwise randomly selecting 
swimming directions across the host biofilm. To generalize this approach to other contexts, this study 
should be reproduced for other swimmers and other host biofilms, together with polymeric fluids and 
porous media, including biochemical interactions.

Materials and methods
Infiltration of host biofilms by bacilli swimmers
Infiltration of S. aureus biofilms by bacilli swimmers were prepared in 96- well microplates. Submerged 
biofilms were grown on the surface of polystyrene 96- well microtiter plates with a μ clear base (Greiner 
Bio- one, France) enabling high- resolution fluorescence imaging (Bridier et  al., 2010). 200 μL of 
an overnight S. aureus RN4220 pALC2084 expressing GFP (Malone et  al., 2009) cultured in TSB 
(adjusted to an OD 600  nm  of 0.02) were added in each well. The microtiter plate was then incubated 
at 30°C for 60  min  to allow the bacteria to adhere to the bottom of the wells. Wells were then rinsed 
with TSB to eliminate non- adherent bacteria and refilled with 200 μL of sterile TSB prior incubation at 
30  celsius  for 24 h. In parallel, B. sphaericus 9 A12, B. pumilus 3 F3 and B. cereus 10B3 were cultivated 
overnight planktonically in TSB at 30 °C. Overnight cultures were diluted 10 times and labelled in red 
with 5 μM of SYTO 61 (Molecular probes, France). After 5 min of contact, 50 μL of labelled fluorescent 
swimmers suspension were added immediately on the top of the S. aureus biofilm. All microscopic 
observations were collected within the following 30 min to avoid interference of the dyes with bacte-
rial motility. Three replicates were conducted. The same protocol has been repeated without the host 
biofilm (control experiments): the swimmers are added to the buffer only which is a Newtonian fluid.

Confocal laser scanning microscopy (CLSM)
The 96 well microtiter plate containing 24 hr S. aureus biofilm and recently added bacilli swimmers 
were mounted on the motorized stage of a Leica SP8 AOBS inverter confocal laser scanning micro-
scope (CLSM, LEICA Microsystems, Germany) at the MIMA2 platform (https://www6.jouy.inra.fr/ 
mima2_eng/). Temperature was maintained at 30  celsius  during all experiments. 2D+T acquisitions 
were performed with the following parameters: images of 147.62 × 147.62  µm  were acquired at 8000 
 Hz  using a 63×/1.2 N.A. To detect GFP, an argon laser at 488  nm  set at 10% of the maximal intensity 
was used, and the emitted fluorescence was collected in the range 495–550  nm  using hybrid detectors 
(HyD LEICA Microsystems, Germany). To detect the red fluorescence of SYTO61, a 633  nm  helium- 
neon laser set at 25% and 2% of the maximal intensity was used, and fluorescence was collected in 
the range 650–750  nm  using hybrid detectors. Images were collected during 30 s (see Table 1 for 
sampling period).

https://doi.org/10.7554/eLife.76513
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Bacterial swimmers navigate within a three- dimensional biofilm matrix and confocal microscope 
refreshment time is not small enough to allow 3D+T images. To limit 3D trajectories, a focal plane near 
the well edge has been selected, where the well wall physically constrains the swimmer trajectories in 
one direction, which select longer trajectories in the 2D plane that can be tracked in time. Therefore, 
experimental data are composed of two- dimensional trajectories captured between the swimmer 
arrival and departure times in the focal plane, and the associated 2D+T biofilm density images that 
change over time due to swimmer action.

To check that the host biofilm structure is identical near the well’s edge compared to other 2D 
slices, we took 4 replicates of S. aureus biofilms that were imaged in 3D using a stack of 6 horizontal 
images, starting from  z = 0  near the well’s edge, to  z = 6∆z , at the interface between the biofilm 
and the bulk solution. To study the between and within biofilm density variability in the horizontal 
images, we subsampled them with a regular Cartesian 4 × 4 grid, resulting in a 4 × 6 x(4 × 4)=384 2D 
images database supplemented by metadata (stack,  z  and  x − y  coordinate of the subsample), before 
computing a clustered pairwise correlation similarity matrix and a permanova.

Transmitted electron microscopy
Materials were directly adsorbed onto a carbon film membrane on a 300- mesh copper grid, stained 
with 1% uranyl acetate, dissolved in distilled water, and dried at room temperature. Grids were exam-
ined with Hitachi HT7700 electron microscope operated at 80  kV  (Elexience – France), and images 
were acquired with a charge- coupled device camera (AMT).

Post-processing of image data
See Figure  1 for a sketch of the datastream from microscope raw images to model inputs and 
Appendix 1—figure 1 for data visualization at each step of the post- processing pipeline.

Swimmer tracking has been applied on the red channel of the raw temporal stacks with IMARIS 
software (Oxford Instruments) using the tracking function after automated spots detection to get 
position time- series for each swimmer. Time- series with less than 8 time steps were filtered out.

Then, swimmer speed and acceleration time- series were computed from their position by finite- 
difference approximations and trajectory descriptors were extracted. The RGB green channel corre-
sponding to the biofilm density temporal images were converted into grayscale and rescalled between 
0 and 1 (linear scalling).

Trajectory descriptors are defined as follows. The mean acceleration and speed values, 
distance and displacement are computed with  ∥A∥s

i = 1
Ts

i−2
∑

t ∥As
i (t)∥ ,  

∥V∥s
i = 1

Ts
i−1

∑
t ∥Vs

i (t)∥ , 

 
distsi = ∆t

∑Ts
end,i−∆t

Ts
0,i

∥Vs
i (t)∥  and  disps

i = ∥X(Ts
end,i) − X(Ts

0,i)∥ . To compute the visited area, each trajec-

tory piece was subsampled by computing  X
s
i (tk) = k

ns
Xs

i (t) + (1 − k
ns

)Xs
i (t + ∆t)  for  k = 0, ns , with  ns = 10  

and the pixels included in the ball  B(Xs
i (tk), r)  with radius  r = 2  were labeled. The total area of the 

labelled pixels is defined as the visited area of the swimmer    of species  s .
To assess run- and- tumble behaviour, the angle  θ

s
i (t)  and the mean velocity  ̄V

s
i (t)  between two 

consecutive speed vectors are defined with  θ
s
i (t)  =  arccos((Vs

i (t) · Vs
i (t −∆t))/(∥Vs

i (t)∥∥Vs
i (t −∆t)∥))  and 

 ̄V
s
i (t) = (∥Vs

i (t)∥ + ∥Vs
i (t −∆t)∥)/2 , for  t ∈ (Ts

0,i + ∆t, Ts
end,i) .

Post- processed data are available at https://forgemia.inra.fr/bioswimmers/swim-infer/ 
SwimmerData.

Computation of the forward swimming model
Time integration of equations (2) has been solved with an explicit Euler scheme regarding positions 

 x
s
i,t  and velocities  v

s
i,t  of the swimmer    of species  s  at time  t :

 xs
i,t+1 = xs

i,t + vs
i,tdt  (7)

 vs
i,t+1 = vs

i,t + dvs
i,t  (8)

where  dvs
i,t  is given by Equation 2, and depends on  θs ,  V

s
i,t ,  x

s
i,t ,  b(t, xs

i,t)  and  ∇b(t, xs
i,t) . In practice, 

the biofilm density and gradient maps  b  and  ∇b  are discretized with a Cartesian grid corresponding 
to the image pixels.

https://doi.org/10.7554/eLife.76513
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During random walks, swimmer may exit the biofilm domain. When the swimmer reaches the 
domain boundary, a new swimmer is introduced with a velocity oriented towards the interior of the 
domain while the original trajectory is stopped at the boundary.

Sensitivity analysis
A local sensitivity analysis (Figure  1) is performed by comparing basal simulation obtained with 

 γ = β = ϵ = 1  (v0 and v1 where taken as in Appendix 1—table 3) with 3 simulations where  γ ,  β  and  ϵ  
are alternatively set to 0, resulting in 3 alternative models where the speed or the direction selection 
or the random term is turned off. The interaction between the speed selection term (set by  γ ) and the 
random term is illustrated in Appendix 2—figure 3 where 5 repetitions of the same trajectory of a 
simplified Langevin equation (11) are displayed with or without friction ( γ = 1  or  γ = 0 ), but with the 
same random seed for the stochastic term so that the stochastic part is strictly identical.

To analyze the impacts of the non- dimensionalized swimming parameters  γ , v0, v1,  β ,  ϵ  on the loco-
motion behaviour, a global sensitivity analysis has been performed. The parameter space  [0, 1]5  was 
uniformly sampled with n = 1000 points using the Fourier Amplitude Sensitivity Test (FAST) sampler of 
the SALib library that is the function  SALib. sample. fast_ sampler. sample (Cukier et al., 1973; Saltelli 
et al., 1999). We note that the interval  [0, 1]  covers a large parameter domain for some parameters, 
in particular  β  which remains small after inference. For this parameter, the sensitivity analysis will show 
potential impact on the output, that may be ineffective in the parameter range of the inferred model.

For each point in the parameter space, a forward simulation is conducted on a population of swim-
mers on a representative biofilm extracted from the dataset (first batch of the B. pumilus dataset). 
Trajectory descriptors are then extracted and taken as observable of the sensitivity anaylsis that 
requires both the parameters sampling and the associated descriptors. Sobol indices of first order are 
then returned and pairwise partial correlations matrix has been calculated. Convergence of the Sobol 
indices has been checked by taking sub- samples containing less than  1, 000  points.

Inference
Numerical implementation
The inverse problem (4)- (6) has been implemented using a Hamiltonian Monte Carlo (HMC) method 
to solve this Bayesian inference problem.

The three replicates for each swimmer species are pooled (trajectories and biofilm density maps) 
and the input data required for the inference procedure (velocity  yV  and acceleration  yA  times series 
for the whole batch of swimmers, biofilm densities  yb  and gradient  yGb  extracted at swimmer posi-
tions) were assembled in a customed data structured. Normal standard prior distributions were set 
for all swimming parameters  θ = (γ, v0, v1,β, ϵ) . Additional positivity constrained were imposed for all 
parameters but  β . Therefore, the implemented model can be summarized as:

 θ ∼ N (0, 1), γ ≥ 0, v0 ≥ 0, v1 ≥ 0, ϵ ≥ 0  

 yA ∼ N (fA
(
γ, v0, v1,β|yb, yV, yb, yGb, dt

)
, ϵ)  

A warmup of 1000 runs is followed by the Markov chains construction (4,000 iterations for 4 
Markov chains). Markov chain convergence is assessed by direct visualization (Appendix 1—figure 4) 
by checking for biaised covariance structures in pair- plots (Appendix 1—figure 5). Standard conver-
gence index were additionnaly computed: effective sample size per iteration ( neff  ) and potential scale 
reduction factor ( Rhat ).

Noise model selection
Different noise models have been evaluated for the regression model (5) to take into account batch 
or individual effects. Namely, we decomposed the noise in Equation 5 by replacing  η

s
  by  η

s
i  and/

or  η
s,b

  for individual    and experimental batch  b . Model selection has been conducted by computing 
the WAIC for the different noise models. A huge degradation of the WAIC has been observed for 
individual or batch dependant noises, indicating that the enhancement of the inference accuracy 
provided by the additional parameters can be considered as over- fitting and discarded.

https://doi.org/10.7554/eLife.76513
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Inference validation on synthetic data
Ground truth data construction
Ground truth synthetic data (see section Assessment of the inference with synthetic data) were 
computed by solving Equations 2; 8 with  γ = 10 ,  v0 = 5 ,  v1 = 1 ,  β = 10 ,  ϵ = 40  and biofilm maps taken 
from the first batch of the B. pumilus dataset. The number of swimmers was fixed to  N = 50  and the 
number of time steps was taken identical to the experimental data that is  Nt = 224 . Resulting mean 
speeds and accelerations were  Aref = 68.29 ,  Vref = 7.47  and were used to rescale the data before infer-
ence together with the ground truth parameters (Appendix 1—table 3). In total, the acceleration 
dataset contains 9,523 samples for each spatial direction.

Comparing ground truth data with the fitted model
After inference, a new dataset is obtained by solving Equation 8 with the fitted parameters. The same 
initial conditions for speeds and positions as the ground truth data are taken. Trajectories are stopped 
after the same number of time step as in the corresponding trajectory of the ground truth dataset. To 
discard spurious stochastic uncertainties, the same random seed as the ground truth simulations was 
taken, so that the unique uncertainty source was inference errors.

Checking the sensitivity to biofilm image noise
To produce Appendix 1—figure 6, the biofilm density and the biofilm density gradient maps have 
been noised with an additive gaussian noise with increasing variance, before inference: we set

 ϵb ∼ N (0,
√

lσb) and ϵ∇b ∼ N (0,
√

2l
∆x σb)  

where  σb  is the variance observed in the original data, and  ϵb  and  ϵ∇b  are respectively the noise applied 
to the biofilm density and the biofilm density gradient. The parameter  l ∈ [0, 0.01, 0.02, 0.03, 0.04, 0.05]  
is increased to apply a noise from 0% to 5%.

Inference validation on experimental data
Comparing microscopy data with the fitted model
The same procedure is repeated on the microscopy data: after inference, a new dataset is obtained by 
solving Equation 8 with the fitted parameter, taking the same initial conditions for speeds and posi-
tions. Trajectories are stopped after the same number of time step as in the corresponding trajectory 
of the ground truth experimental dataset.

Measuring the deterministic reconstruction
The deterministic coefficient of determination  R

2
det  was computed to measure how much the dataset 

is explained by the deterministic part of the model. Setting  A
s,det
i = fA

(
γ, v0, v1,β|yb, yV, yb, yGb, dt

)
 :

 
R2,s

det = 1 −
∑

i(yAs
i−As,det

i )2
∑

i(yAs
i− ¯yAs)2   

where  ¯yAs  is the acceleration mean.  R
2,s
det  is expected to tend towards 1 when the stochastic term 

 η = N (0, ϵ)  becomes negligible with respect to  Adet .

Plots and statistics
To allow inter- species comparisons in plots, the data and model outputs are re- normalized with 
common reference values  Aref   and  Vref   defined as the average of the species reference values (see 
Table  2 for values). Uni- dimensional distributions (Figure  5 upper panel, Figure  6b upper panel, 
Figure 7a, upper panel, and Figure 7b) were obtained with the gaussian_kde function of  scipy. stats. 
T tests for mean comparison were performed using  scipy. stats ttest_ind.

Two- dimensional distribution plots (Figures 5 and 6 b, Figure 7a lower panels) were obtained 
by first plotting the two- dimensional point cloud and approximating the point distribution with a 
gaussian KDE using  scipy. stats gaussian_kde function. Then, the gaussian kde is evaluated at each 
point of the point cloud and quantiles 0.05, 0.5, and 0.95 of the resulting values are computed. Finally, 
quantile isovalues are plotted and the point cloud and the KDE are removed (see Appendix 4—figure 

https://doi.org/10.7554/eLife.76513
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1 and Sec. KDE computation for details): this procedure ensures to enclose 5, 50% and 95% of the 
original points, centered in the densest zones of the initial point cloud.

Ternary plots (Appendix 2—figure 6) were obtained by first computing the contribution of each 
term of equation (4) to acceleration estimate. Namely, note

 
s(b)s

i = ∥γ(vs
0 + b(t, Xs

i (t))(v
s
1 − vs

0) − ∥Vs
i (t)∥) Vs

i (t)
∥Vs

i (t)∥
∥,

  

 
s(∆b)s

i =
∥∥∥∥βs ∆b(t, Xs

i (t))
∥∆b(t, Xs

i (t))∥

∥∥∥∥ , and s(η)s
i = ∥ηs∥

  

We compute the proportions  A(k)s
i   for  k ∈ {b,∇b, η} ,

 
A(k)s

i = s(k)s
i

s(b)s
i +s(∇b)s

i +s(η)
s

i
.
  

Points  (A(b)s
i , A(∇b)s

i , A(η)s
i )  are then plotted in ternary plots using the Ternary python package 

(Weinstein et al., 2019) and approximated by gaussian KDE. Isolines are finally plotted as previously 
described.

To construct the plot in Appendix 1—figure 2, pairwise correlation of the biofilm density in the 
384  samples has been computed (scikit- learn pairwise_distances, ‘correlation’ metric parameter 
Pedregosa et al., 2011), and the resulting similarity matrix has been displayed using Seaborn package 
clustermap function (Waskom, 2021) after hierarchical clustering (scipy.cluster.hierarchy linkage func-
tion Virtanen et al., 2020). Additional permanova has been computed to assess the significance of 
between- group dissimilarities using stats.distance package permanova function (scikit- bio develop-
ment team, 2020 ).

Code availability
All the image pre- and post- processing, calculations and statistics have been performed with custom 
scripts using the standard python libraries numpy (Harris et al., 2020), scipy (Virtanen et al., 2020), 
imageio (Klein, 2021), and pandas (McKinney, 2010). The forward swimming problem computation 
is computed using customed scripts built upon numpy (Harris et al., 2020) and H5py (https://www. 
h5py.org). Sensitivity analysis has been conducted with the SALib library (Cukier et al., 1973; Saltelli 
et al., 1999) (Sobol index, function  SALib. analyze. fast. analyze) and the pingouin library (Vallat, 2018) 
(PCC, pcorr method). The Bayesian inference has been conducted using the STAN library (Stan Devel-
opment Team, 2018) through its python interface pystan (Riddell et al., 2021). All plots have been 
made with the matplotlib python library (Hunter, 2007).

The whole python code have been made available and accessible at the following git repository 
https://forgemia.inra.fr/bioswimmers/swim-infer.

Acknowledgements
This work has benefited from the facilities and expertise of MIMA2 MET – GABI, INRAE, AgroParis-
tech, 78,352 Jouy- en- Josas, France. C Péchoux is warmly acknowledged for TEM observations. Finan-
cial support was provided by the French National Research Agency ANR- 12- ALID- 0006. Guillaume 
Ravel received funding from the Mathnum department at INRAE.

Additional information

Funding

Funder Grant reference number Author

Mathnum department - 
INRAe

Guillaume Ravel

Agence Nationale de la 
Recherche

ANR-12-ALID-0006 Romain Briandet

https://doi.org/10.7554/eLife.76513
https://www.h5py.org
https://www.h5py.org
https://forgemia.inra.fr/bioswimmers/swim-infer


 Research article Computational and Systems Biology

Ravel et al. eLife 2022;0:e76513. DOI: https://doi.org/10.7554/eLife.76513  22 of 41

Funder Grant reference number Author

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Guillaume Ravel, Formal analysis, Investigation, Methodology, Project administration, Software, 
Visualization, Writing – original draft, Writing – review and editing; Michel Bergmann, Methodology, 
Validation, Writing – review and editing; Alain Trubuil, Conceptualization, Methodology, Validation, 
Writing – review and editing; Julien Deschamps, Data curation, Validation, Writing – review and 
editing; Romain Briandet, Conceptualization, Data curation, Funding acquisition, Investigation, Meth-
odology, Validation, Writing – review and editing; Simon Labarthe, Conceptualization, Formal analysis, 
Funding acquisition, Investigation, Methodology, Project administration, Software, Supervision, Vali-
dation, Writing – original draft, Writing – review and editing

Author ORCIDs
Romain Briandet    http://orcid.org/0000-0002-8123-3492
Simon Labarthe    http://orcid.org/0000-0002-5463-7256

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.76513.sa1
Author response https://doi.org/10.7554/eLife.76513.sa2

Additional files
Supplementary files
•  Transparent reporting form 

Data availability
Data and code have been deposited at https://forgemia.inra.fr/bioswimmers/swim-infer and https:// 
doi.org/10.5281/zenodo.6560673.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Labarthe S, Ravel 
G, Deschamps J, 
Briandet R

2022 Inferring characteristics 
of bacterial swimming 
in biofilm matrix from 
time- lapse confocal laser 
scanning microscopy: 
compagnon code and data

https:// doi. org/ 10. 
5281/ zenodo. 6560673

Zenodo, 10.5281/
zenodo.6560673

References
Auger‐Méthé M, Newman K, Cole D, Empacher F, Gryba R, King AA, Leos‐Barajas V, Mills Flemming J, 

Nielsen A, Petris G, Thomas L. 2021. A guide to state–space modeling of ecological time series. Ecological 
Monographs 91:1470. DOI: https://doi.org/10.1002/ecm.1470

Beech IB, Sunner J. 2004. Biocorrosion: towards understanding interactions between biofilms and metals. 
Current Opinion in Biotechnology 15:181–186. DOI: https://doi.org/10.1016/j.copbio.2004.05.001, PMID: 
15193324

Bridier A., Dubois- Brissonnet F, Boubetra A, Thomas V, Briandet R. 2010. The biofilm architecture of sixty 
opportunistic pathogens deciphered using a high throughput CLSM method. Journal of Microbiological 
Methods 82:64–70. DOI: https://doi.org/10.1016/j.mimet.2010.04.006, PMID: 20433880

Bridier A., Briandet R, Thomas V, Dubois- Brissonnet F. 2011. Resistance of bacterial biofilms to disinfectants: a 
review. Biofouling 27:1017–1032. DOI: https://doi.org/10.1080/08927014.2011.626899, PMID: 22011093

Bridier A, Sanchez- Vizuete P, Guilbaud M, Piard J- C, Naïtali M, Briandet R. 2015. Biofilm- associated persistence 
of food- borne pathogens. Food Microbiology 45:167–178. DOI: https://doi.org/10.1016/j.fm.2014.04.015, 
PMID: 25500382

Bridier A, Piard JC, Pandin C, Labarthe S, Dubois- Brissonnet F, Briandet R. 2017. Spatial Organization Plasticity 
as an Adaptive Driver of Surface Microbial Communities. Frontiers in Microbiology 8:1364. DOI: https://doi. 
org/10.3389/fmicb.2017.01364, PMID: 28775718

https://doi.org/10.7554/eLife.76513
http://orcid.org/0000-0002-8123-3492
http://orcid.org/0000-0002-5463-7256
https://doi.org/10.7554/eLife.76513.sa1
https://doi.org/10.7554/eLife.76513.sa2
https://forgemia.inra.fr/bioswimmers/swim-infer
https://doi.org/10.5281/zenodo.6560673
https://doi.org/10.5281/zenodo.6560673
https://doi.org/10.5281/zenodo.6560673
https://doi.org/10.5281/zenodo.6560673
https://doi.org/10.1002/ecm.1470
https://doi.org/10.1016/j.copbio.2004.05.001
http://www.ncbi.nlm.nih.gov/pubmed/15193324
https://doi.org/10.1016/j.mimet.2010.04.006
http://www.ncbi.nlm.nih.gov/pubmed/20433880
https://doi.org/10.1080/08927014.2011.626899
http://www.ncbi.nlm.nih.gov/pubmed/22011093
https://doi.org/10.1016/j.fm.2014.04.015
http://www.ncbi.nlm.nih.gov/pubmed/25500382
https://doi.org/10.3389/fmicb.2017.01364
https://doi.org/10.3389/fmicb.2017.01364
http://www.ncbi.nlm.nih.gov/pubmed/28775718


 Research article Computational and Systems Biology

Ravel et al. eLife 2022;0:e76513. DOI: https://doi.org/10.7554/eLife.76513  23 of 41

Chepizhko O, Altmann EG, Peruani F. 2013. Optimal noise maximizes collective motion in heterogeneous media. 
Physical Review Letters 110:238101. DOI: https://doi.org/10.1103/PhysRevLett.110.238101, PMID: 25167531

Chepizhko O, Peruani F. 2013. Diffusion, subdiffusion, and trapping of active particles in heterogeneous media. 
Physical Review Letters 111:160604. DOI: https://doi.org/10.1103/PhysRevLett.111.160604, PMID: 24182247

Conrad JC, Poling- Skutvik R. 2018. Confined Flow: Consequences and Implications for Bacteria and Biofilms. 
Annual Review of Chemical and Biomolecular Engineering 9:175–200. DOI: https://doi.org/10.1146/annurev- 
chembioeng-060817-084006, PMID: 29561646

Cukier RI, Fortuin CM, Shuler KE, Petschek AG, Schaibly JH. 1973. Study of the sensitivity of coupled reaction 
systems to uncertainties in rate coefficients I Theory. The Journal of Chemical Physics 59:3873–3878. DOI: 
https://doi.org/10.1063/1.1680571

Derlon N, Peter- Varbanets M, Scheidegger A, Pronk W, Morgenroth E. 2012. Predation influences the structure 
of biofilm developed on ultrafiltration membranes. Water Research 46:3323–3333. DOI: https://doi.org/10. 
1016/j.watres.2012.03.031, PMID: 22534121

Doulgeraki AI, Di Ciccio P, Ianieri A, Nychas GJE. 2017. Methicillin- resistant food- related Staphylococcus aureus: 
a review of current knowledge and biofilm formation for future studies and applications. Research in 
Microbiology 168:1–15. DOI: https://doi.org/10.1016/j.resmic.2016.08.001, PMID: 27542729

Flemming HC, Neu TR, Wingender J. 2016a. The Perfect Slime: Microbial Extracellular Polymeric Substances 
(EPS. IWA Publishing. DOI: https://doi.org/10.2166/9781780407425

Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016b. Biofilms: an emergent form 
of bacterial life. Nature Reviews. Microbiology 14:563–575. DOI: https://doi.org/10.1038/nrmicro.2016.94, 
PMID: 27510863

Flemming HC, Wuertz S. 2019. Bacteria and archaea on Earth and their abundance in biofilms. Nature Reviews. 
Microbiology 17:247–260. DOI: https://doi.org/10.1038/s41579-019-0158-9, PMID: 30760902

Gloag ES, Fabbri S, Wozniak DJ, Stoodley P. 2020. Biofilm mechanics: Implications in infection and survival. 
Biofilm 2:100017. DOI: https://doi.org/10.1016/j.bioflm.2019.100017, PMID: 33447803

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, 
Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, Del Río JF, Wiebe M, Peterson P, 
Gérard- Marchant P, et al. 2020. Array programming with NumPy. Nature 585:357–362. DOI: https://doi.org/10. 
1038/s41586-020-2649-2, PMID: 32939066

Houry A, Gohar M, Deschamps J, Tischenko E, Aymerich S, Gruss A, Briandet R. 2012. Bacterial swimmers that 
infiltrate and take over the biofilm matrix. PNAS 109:13088–13093. DOI: https://doi.org/10.1073/pnas. 
1200791109, PMID: 22773813

Hunter JD. 2007. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering 9:90–95. DOI: 
https://doi.org/10.1109/MCSE.2007.55

Jabbarzadeh M, Hyon Y, Fu HC. 2014. Swimming fluctuations of micro- organisms due to heterogeneous 
microstructure. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 90:043021. DOI: https://doi. 
org/10.1103/PhysRevE.90.043021, PMID: 25375607

Klein T, Zihlmann D, Derlon N, Isaacson C, Szivak I, Weissbrodt DG, Pronk W. 2016. Biological control of biofilms 
on membranes by metazoans. Water Research 88:20–29. DOI: https://doi.org/10.1016/j.watres.2015.09.050, 
PMID: 26458189

Klein A. 2021. Welcome to imageio’s documentation! 2.19.3. Imageio. https://imageio.readthedocs.io/
Köck R, Becker K, Cookson B, van Gemert- Pijnen JE, Harbarth S, Kluytmans J, Mielke M, Peters G, Skov RL, 

Struelens MJ, Tacconelli E, Navarro Torné A, Witte W, Friedrich AW. 2010. Methicillin- resistant Staphylococcus 
aureus (MRSA): burden of disease and control challenges in Europe. Eurosurveillance 15:41. DOI: https://doi. 
org/10.2807/ese.15.41.19688-en

Koorehdavoudi H, Bogdan P, Wei G, Marculescu R, Zhuang J, Carlsen RW, Sitti M. 2017. Multi- fractal 
characterization of bacterial swimming dynamics: a case study on real and simulated Serratia marcescens. 
Proceedings. Mathematical, Physical, and Engineering Sciences 473:20170154. DOI: https://doi.org/10.1098/ 
rspa.2017.0154, PMID: 28804259

Lee SW, Phillips KS, Gu H, Kazemzadeh- Narbat M, Ren D. 2021. How microbes read the map: Effects of implant 
topography on bacterial adhesion and biofilm formation. Biomaterials 268:120595. DOI: https://doi.org/10. 
1016/j.biomaterials.2020.120595, PMID: 33360301

Li Y, Briandet R, Trubuil A. 2014. Tracking swimmers bacteria and pores within a biofilm. 2014 IEEE 11th 
International Symposium on Biomedical Imaging ISBI 2014. Beijing, China. DOI: https://doi.org/10.1109/ISBI. 
2014.6867869

Li G, Ardekani AM. 2016. Collective Motion of Microorganisms in a Viscoelastic Fluid. Physical Review Letters 
117:118001. DOI: https://doi.org/10.1103/PhysRevLett.117.118001, PMID: 27661719

Malone CL, Boles BR, Lauderdale KJ, Thoendel M, Kavanaugh JS, Horswill AR. 2009. Fluorescent reporters for 
Staphylococcus aureus. Journal of Microbiological Methods 77:251–260. DOI: https://doi.org/10.1016/j.mimet. 
2009.02.011, PMID: 19264102

Martinez VA, Schwarz- Linek J, Reufer M, Wilson LG, Morozov AN, Poon WCK. 2014. Flagellated bacterial 
motility in polymer solutions. PNAS 111:17771–17776. DOI: https://doi.org/10.1073/pnas.1415460111, PMID: 
25468981

Mayorga- Martinez CC, Zelenka J, Grmela J, Michalkova H, Ruml T, Mareš J, Pumera M. 2021. Swarming Aqua 
Sperm Micromotors for Active Bacterial Biofilms Removal in Confined Spaces. Advanced Science (Weinheim, 
Baden- Wurttemberg, Germany) 8:e2101301. DOI: https://doi.org/10.1002/advs.202101301, PMID: 34369099

https://doi.org/10.7554/eLife.76513
https://doi.org/10.1103/PhysRevLett.110.238101
http://www.ncbi.nlm.nih.gov/pubmed/25167531
https://doi.org/10.1103/PhysRevLett.111.160604
http://www.ncbi.nlm.nih.gov/pubmed/24182247
https://doi.org/10.1146/annurev-chembioeng-060817-084006
https://doi.org/10.1146/annurev-chembioeng-060817-084006
http://www.ncbi.nlm.nih.gov/pubmed/29561646
https://doi.org/10.1063/1.1680571
https://doi.org/10.1016/j.watres.2012.03.031
https://doi.org/10.1016/j.watres.2012.03.031
http://www.ncbi.nlm.nih.gov/pubmed/22534121
https://doi.org/10.1016/j.resmic.2016.08.001
http://www.ncbi.nlm.nih.gov/pubmed/27542729
https://doi.org/10.2166/9781780407425
https://doi.org/10.1038/nrmicro.2016.94
http://www.ncbi.nlm.nih.gov/pubmed/27510863
https://doi.org/10.1038/s41579-019-0158-9
http://www.ncbi.nlm.nih.gov/pubmed/30760902
https://doi.org/10.1016/j.bioflm.2019.100017
http://www.ncbi.nlm.nih.gov/pubmed/33447803
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
https://doi.org/10.1073/pnas.1200791109
https://doi.org/10.1073/pnas.1200791109
http://www.ncbi.nlm.nih.gov/pubmed/22773813
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1103/PhysRevE.90.043021
https://doi.org/10.1103/PhysRevE.90.043021
http://www.ncbi.nlm.nih.gov/pubmed/25375607
https://doi.org/10.1016/j.watres.2015.09.050
http://www.ncbi.nlm.nih.gov/pubmed/26458189
https://imageio.readthedocs.io/
https://doi.org/10.2807/ese.15.41.19688-en
https://doi.org/10.2807/ese.15.41.19688-en
https://doi.org/10.1098/rspa.2017.0154
https://doi.org/10.1098/rspa.2017.0154
http://www.ncbi.nlm.nih.gov/pubmed/28804259
https://doi.org/10.1016/j.biomaterials.2020.120595
https://doi.org/10.1016/j.biomaterials.2020.120595
http://www.ncbi.nlm.nih.gov/pubmed/33360301
https://doi.org/10.1109/ISBI.2014.6867869
https://doi.org/10.1109/ISBI.2014.6867869
https://doi.org/10.1103/PhysRevLett.117.118001
http://www.ncbi.nlm.nih.gov/pubmed/27661719
https://doi.org/10.1016/j.mimet.2009.02.011
https://doi.org/10.1016/j.mimet.2009.02.011
http://www.ncbi.nlm.nih.gov/pubmed/19264102
https://doi.org/10.1073/pnas.1415460111
http://www.ncbi.nlm.nih.gov/pubmed/25468981
https://doi.org/10.1002/advs.202101301
http://www.ncbi.nlm.nih.gov/pubmed/34369099


 Research article Computational and Systems Biology

Ravel et al. eLife 2022;0:e76513. DOI: https://doi.org/10.7554/eLife.76513  24 of 41

McKinney W. 2010. Data Structures for Statistical Computing in Python. Python in Science Conference. Austin, 
Texas. DOI: https://doi.org/10.25080/Majora-92bf1922-00a

Muok AR, Claessen D, Briegel A. 2021. Microbial hitchhiking: how Streptomyces spores are transported by 
motile soil bacteria. The ISME Journal 15:2591–2600. DOI: https://doi.org/10.1038/s41396-021-00952-8, 
PMID: 33723381

Patteson AE, Gopinath A, Goulian M, Arratia PE. 2015. Running and tumbling with E. coli in polymeric solutions. 
Scientific Reports 5:1–11. DOI: https://doi.org/10.1038/srep15761, PMID: 26507950

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., 
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. 
(2011). Scikit- learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Piard J, Kim S, Deschamps J, Li Y, Dorel C, Gruss A, Trubuil A, Briandet R. 2016. Travelling through Slime–
Bacterial Movements in the Eps Matrix. London, United kingdom: IWA Publishing.

Qu Z, Temel FZ, Henderikx R, Breuer KS. 2018. Changes in the flagellar bundling time account for variations in 
swimming behavior of flagellated bacteria in viscous media. PNAS 115:1707–1712. DOI: https://doi.org/10. 
1073/pnas.1714187115, PMID: 29434037

Qu Z, Breuer KS. 2020. Effects of shear- thinning viscosity and viscoelastic stresses on flagellated bacteria motility. 
Physical Review Fluids 5:103. DOI: https://doi.org/10.1103/PhysRevFluids.5.073103

Riddell A, Hartikainen A, Carter M. 2021. pystan. 3.0. pystan. https://pystan.readthedocs.io/en/latest/
Saltelli A, Tarantola S, Chan KP- S. 1999. A Quantitative Model- Independent Method for Global Sensitivity 

Analysis of Model Output. Technometrics 41:39–56. DOI: https://doi.org/10.1080/00401706.1999.10485594
Samad T, Billings N, Birjiniuk A, Crouzier T, Doyle PS, Ribbeck K. 2017. Swimming bacteria promote dispersal of 

non- motile staphylococcal species. The ISME Journal 11:1933–1937. DOI: https://doi.org/10.1038/ismej.2017. 
23, PMID: 28398350

scikit- bio development team. 2020. scikit- bio: A Bioinformatics Library for Data Scientists, Students, and 
Devel- opers. Scikit- Bio. http://scikit-bio.org

Stan Development Team. 2018. The Stan Core Library. 2.18.0. Stan Governing Body. https://mc-stan.org/users/ 
interfaces/stan

Subramanian S, Kearns DB. 2019. Functional Regulators of Bacterial Flagella. Annual Review of Microbiology 
73:225–246. DOI: https://doi.org/10.1146/annurev-micro-020518-115725, PMID: 31136265

Szurmant H, Ordal GW. 2004. Diversity in chemotaxis mechanisms among the bacteria and archaea. 
Microbiology and Molecular Biology Reviews 68:301–319. DOI: https://doi.org/10.1128/MMBR.68.2.301-319. 
2004, PMID: 15187186

Terahara N, Namba K, Minamino T. 2020. Dynamic exchange of two types of stator units in Bacillus subtilis 
flagellar motor in response to environmental changes. Computational and Structural Biotechnology Journal 
18:2897–2907. DOI: https://doi.org/10.1016/j.csbj.2020.10.009, PMID: 33163150

Vallat R. 2018. Pingouin: statistics in Python. Journal of Open Source Software 3:1026. DOI: https://doi.org/10. 
21105/joss.01026

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, 
Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, 
Kern R, Larson E, Carey CJ, et al. 2020. Author Correction: SciPy 1.0: fundamental algorithms for scientific 
computing in Python. Nature Methods 17:261–272. DOI: https://doi.org/10.1038/s41592-020-0772-5, PMID: 
32094914

Waskom ML. 2021. seaborn: statistical data visualization. Journal of Open Source Software 6:3021. DOI: https:// 
doi.org/10.21105/joss.03021

Weinstein B, SimonC, Morgan W, Knight V, Swanson- Hysell N, Evans M, Badger TG, Greco M, Zuidhof G. 2019. 
marcharper/python- ternary. 1.0.6. Python. https://doi.org/10.5281/zenodo.2628066

Yu Z, Schwarz C, Zhu L, Chen L, Shen Y, Yu P. 2021. Hitchhiking Behavior in Bacteriophages Facilitates Phage 
Infection and Enhances Carrier Bacteria Colonization. Environmental Science & Technology 55:2462–2472. 
DOI: https://doi.org/10.1021/acs.est.0c06969, PMID: 33381966

Zöttl A, Yeomans JM. 2019. Enhanced bacterial swimming speeds in macromolecular polymer solutions. Nature 
Physics 15:554–558. DOI: https://doi.org/10.1038/s41567-019-0454-3

https://doi.org/10.7554/eLife.76513
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1038/s41396-021-00952-8
http://www.ncbi.nlm.nih.gov/pubmed/33723381
https://doi.org/10.1038/srep15761
http://www.ncbi.nlm.nih.gov/pubmed/26507950
https://doi.org/10.1073/pnas.1714187115
https://doi.org/10.1073/pnas.1714187115
http://www.ncbi.nlm.nih.gov/pubmed/29434037
https://doi.org/10.1103/PhysRevFluids.5.073103
https://pystan.readthedocs.io/en/latest/
https://doi.org/10.1080/00401706.1999.10485594
https://doi.org/10.1038/ismej.2017.23
https://doi.org/10.1038/ismej.2017.23
http://www.ncbi.nlm.nih.gov/pubmed/28398350
http://scikit-bio.org
https://mc-stan.org/users/interfaces/stan
https://mc-stan.org/users/interfaces/stan
https://doi.org/10.1146/annurev-micro-020518-115725
http://www.ncbi.nlm.nih.gov/pubmed/31136265
https://doi.org/10.1128/MMBR.68.2.301-319.2004
https://doi.org/10.1128/MMBR.68.2.301-319.2004
http://www.ncbi.nlm.nih.gov/pubmed/15187186
https://doi.org/10.1016/j.csbj.2020.10.009
http://www.ncbi.nlm.nih.gov/pubmed/33163150
https://doi.org/10.21105/joss.01026
https://doi.org/10.21105/joss.01026
https://doi.org/10.1038/s41592-020-0772-5
http://www.ncbi.nlm.nih.gov/pubmed/32094914
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.5281/zenodo.2628066
https://doi.org/10.1021/acs.est.0c06969
http://www.ncbi.nlm.nih.gov/pubmed/33381966
https://doi.org/10.1038/s41567-019-0454-3


 Research article Computational and Systems Biology

Ravel et al. eLife 2022;0:e76513. DOI: https://doi.org/10.7554/eLife.76513  25 of 41

Appendix 1

Illustration of the datastream
Data acquisition
Illustrations of the image data at different steps of the data stream are displayed in Appendix 1—
figure 1, from raw microscopy data to rescalled biofilm density map with trajectories. The contrast of 
the original 2 chanel image has been enhanced for visualization. The RGB biofilm density temporal 
images (see Materials and methods) were converted into grayscale and rescalled between 0 and 
1 (linear scalling). In this images, for illustrations, trajectories are mapped into the biofilm density 
map and rescaled density map at initial condition of the first B. pumilus batch. In the dataset, the 
trajectories are associated with the corresponding biofilm map:  X

s
i (t)  is associated with the value 

 b(t, Xs
i (t))  for swimmer    of species  s  at time  t . As the biofilm density map is also a time- series, the 

trajectories can hardly be represented on the underlying biofilm that also changes in time.

Original 2 chanel image Swimmer tracking Swimmer trajectories in 
normalized biofilmO i i l 2 h l i S i ki Swimmer trajectories in

Appendix 1—figure 1. Illustration of image data along the post- processing process. Raw data (2 chanel images) 
are first displayed. Then, trajectory tracking are obtained. Finally, the biofilm density map is rescalled, and mapped 
to grayscale. Images dimensions are 147x147μm.

Assessing the 3D structure of the biofilm
We check that the selection of a 2D focal plan does not induce an additional bias by over- selecting 
biofilm areas with specific structures near the well’s edge. To do so, we assembled an additional 
dataset of 4 replicates of S. aureus 3D images (see Materials and methods, section 4.2, and 
Appendix 1—figure 2.A for the dataset assembly) of horizontal image subsamples, and computed 
their within and between dissimilarities (see Materials and methods), section Plots and statistics. 
The resulting pairwise correlation matrix is displayed in Appendix  1—figure 2 after hierarchical 
clustering. It shows that the  z  direction does not structure the information, since the images are 
not clustered according to their  z  coordinates contrary to the stack or the  x − y  coordinate labels. 
Permanova analysis shows that the differences between stacks and  x − y  subsamples are significant 
( p − value = 1e − 4 ) but not between horizontal images ( p − value = 1 ).

https://doi.org/10.7554/eLife.76513
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Appendix 1—figure 2 continued on next page
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Appendix 1—figure 2 continued

Appendix 1—table 1 Continued on next page

Appendix 1—figure 2. Assessment that the biofilm structure does not strongly vary in the  z  direction. 
(A) Subsampling procedure. We illustrate the subsampling procedure in one of the 4 replicates. The 2D images 
constituting the 3D stack are sampled with a 4 × 4 cartesian grid. We can also visually observe that the biofilm 
variation between horizontal images are weak. Images dimensions are 147x147μm. (B) Pairwise correlation matrix. 
The correlation dissimilarity between sample pairs is displayed (black = 0 value, indicating identical samples, to 
light orange >1, indicating dissimilar samples) after hierarchical clustering. We indicate the stack, z  and  x − y  
label in the 3 first columns with a color code. We can observe that the samples are not gathered by, z  but rather by 
stacks and  x − y  groups, indicating that images with identical  x − y  labels are clustered together, showing that 
they are more similar to samples with the same  x − y  coordinates in other  z  slices, than other samples in the same 
 z  slice with other  x − y  coordinates.

Illustration of pore formation
As strongly documented in Houry et al., 2012, swimmers can dig pores in a exogenous biofilm, 
which enhance the biofilm innervation and facilitate the penetration of macromolecules. To illustrate 
the pore formation, we show two successive images taken from a 2D temporal stack of B. sphaericus 
swimmers in a S. aureus host biofilm in Figure 3. In the dashed ellipse, we can see a swimmer that 
has moved in the two successive images, letting behind it an empty space free from host bacteria.

t t + Δt

Appendix 1—figure 3. Illustration of pore formation. Extractions of two successive images of B. sphaericus 
swimming in a S. aureus biofilm are displayed. The dashed ellipse indicates a zone where a swimmer moves 
between the two successive images, which creates a pore along its swimming path. Images dimensions are 76 x 78 
μm.

Statistical tests
T- tests were performed to compare mean differences between 1D distribution of Figure 5. Resulting 
p- values are displayed in Appendix 1—table 2.

Appendix 1—table 1. P- values of pairwise comparison between distributions in biofilms.
Pairwise comparison were performed between 1D distributions displayed in Figure 5 using T- test 
and p- values are displayed. Non- significant values are indicated in bold.

https://doi.org/10.7554/eLife.76513
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 ∥A∥  ∥V∥  dist   disp  Area 

B. cereus B. sphaericus B. cereus B. sphaericus B. cereus
B. 
sphaericus B. cereus B. sphaericus B. cereus B. sphaericus

B.pumilus  5.e − 9  1.e − 10  4.e − 2  1.e − 13  1.e − 5  2.e − 3  8.e − 3  7.e − 10  7.e − 1  4.e − 14 

B.cereus  5.e − 51  2.e − 13  3.e − 1  5.e − 15  1.e − 12 

Appendix 1—table 2. P- values of pairwise comparison between distributions in the control 
Newtonian buffer.
Pairwise comparison were performed between 1D distributions displayed in Figure 5 using T- test 
and p- values are displayed. Non- significant values are indicated in bold.

 ∥A∥  ∥V∥  dist   disp  Area 

B. cereus
B. 
sphaericus B. cereus

B. 
sphaericus B. cereus B. sphaericus B. cereus B. sphaericus B. cereus

B. 
sphaericus

B.pumilus  3.e − 11  9.e − 4  9.e − 3  2.e − 2  1.e − 10  2.e − 2  2.e − 21  1.e − 14  4.e − 2  6.e − 1 

B.cereus  9.e − 1  2.e − 7  2.e − 12  8.e − 1  1.e − 1 

Assessment of the inference with synthetic data

Appendix 1—table 3. Inference results on synthetic data.
The normalized ground- truth parameter values (i.e. ground truth parameter rescaled with  Aref   
and  Vref  ) are compared with the inference outputs on synthetic data: posterior distribution mean 
and standard deviation are indicated, together with the inferred confidence intervals for the true 
parameters. Convergence diagnosis indices are also given, with  neff   the effective sample size per 
iteration and  Rhat  the potential scale reduction factors, indicating that convergence occurred for all 
parameters.

parameter ground truth mean std
confidence interval [2.5%–
97.5%]  neff   Rhat 

 γ  1.094 1.08 1×10- 2  [1.06 − 1.1] 3,569 1.0

 v0 0.669 0.66 1×10- 2  [0.64 − 0.68] 3,710 1.0

 v1 0.134 0.13 2×10- 2  [0.09 − 0.17] 3,431 1.0

 β 0.146 0.16 6, 2×10- 3  [0.15 − 0.17] 5,050 1.0

 ϵ 0.586 0.59 3×10- 3  [0.58 − 0.59] 4,906 1.0

To assess the inference method, synthetic data are built and will be used as reference for 
assessment. We arbitrarily fix a parameter vector and solve system (1) from random initial positions, 
in a host biofilm arbitrarily chosen in the image dataset. We then extract the swimmer positions at 
given time- steps and recover accelerations and speeds with the same post- processing pipeline as 
for microscopy images and solve the inverse problem (5)- (6). If the inference process correctly works, 
we expect to recover the original parameters (the ground truth).

The ground truth parameters are correctly recovered by the inference procedure (Appendix 1—
table 3), indicating that the parameters are correctly identifiable and that the inverse problem 
is well- posed. An error of respectively 1.28, 1.34, 2.98% and 0.68% on the parameters  γ  , v0, 
v1 and  ϵ  is observed in this controlled situation,  β  being inferred with lower accuracy (9.59 %). 
This estimate is robust to noise on the biofilm data, with highest impact on  β  (Appendix 1—
figure 6). To assess the impact of parameter inference uncertainties on trajectory computation, 
the posterior parameter distribution is sampled and new trajectories are computed, replacing 
the ground- truth parameters by the sampled ones. The swimmer ground truth trajectories 
are accurately recovered: the sampled trajectories tightly frame the original swimmer path as 
illustrated on a randomly chosen trajectory (Figure 6a). We note that an identical random seed 
has been taken for these simulations, including the ground truth trajectory, in order to turn off the 
stochastic uncertainties and only focus on the propagation of inference errors during simulations 
of swimmer trajectories.

https://doi.org/10.7554/eLife.76513
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Finally, we re- assemble a synthetic dataset by replacing the ground- truth parameters by the 
inferred ones, that is the posterior mean. Qqplot of the fitted model accelerations versus the ground 
truth accelerations give an excellent accuracy (Figure 6d–e), with all the points lying on the bisector, 
except slight divergences on the distribution tails. The fitted model trajectories visually reproduce 
the qualitative characteristics of the original dataset (Figure 6c). The trajectory descriptors of section 
Characterizing bacterial swimming in a biofilm matrix through image descriptors are then computed 
on both datasets (ground truth and inferred) and compared (Figure 6b). The kinematics descriptors, 
that is acceleration and speed distributions, are very accurately recovered with a relative error of 
0.1%, 3.2%, 5% for respectively the mean, quantiles 0.05 and 0.95 of the acceleration (resp. 0.9%, 
2.5%,2% for speed). Some small discrepancies can be observed on the distance and displacement 
distributions, even if the mean and the quantiles 0.05 and 0.95 are close. The interactions between 
the host biofilm and the acceleration and speed distribution are also recovered with high accuracy. 
We note that part of the observed discrepancies comes from an additional source of variability 
of the simulation framework: when a swimmer reaches a domain boundary during a simulation, 
its trajectory is stopped and a new swimmer is randomly introduced elsewhere in the biofilm (see 
Materials and methods for more details). This simulation strategy seems to be responsible of the 
over- representation of short trajectories in the inferred dataset, compared to the ground truth 
(Figure 6b upper panel, distance and displacement distributions).

Markov chains convergence and correlation
Markov chain (Appendix  1—figure 4) and markov chain pairplots (Appendix  1—figure 5) are 
displayed. Direct visualization of the posterior sampling allows to detect convergence failure (strong 
autocorrelation or stationnary markov chain). Markov chain pairplot informs on potential correlation 
between different parameters posterior samples, showing an interaction between parameter and 
an identification issue. In Appendix 1—figure 4, the markov chains correctly converged for all the 
parameter. No strong correlation can be observed in Appendix 1—figure 5.

https://doi.org/10.7554/eLife.76513
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Appendix 1—figure 4. Inference convergence validation. The markov chain (upper panel) and the posterior 
distribution (lower panel) of each parameter is displayed, showing good convergence of the stochastic sampling of 
the posteriors.

https://doi.org/10.7554/eLife.76513
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Appendix 1—figure 5. Pairplot of parameter markov chains. No strong covariance effect can be observed, 
showing that the model can not be reduced by analytical dependence between parameters. Slight correlation is 
observed between the parameters v0, v1 and  γ  : this feature is not surprising since  γ  , v0 and v1 are in the same term 
of equation (2). The correlation is however too low to expect a model reduction.

Impact of noise on biofilm data
The impact of noise on the parameter inference is assessed by noising the biofilm density and the 
biofilm density gradients with an additive gaussian noise with increasing variance (Appendix 1—
figure 6). The noise variance is scaled with the variance observed in the original data. Namely, we set

 ϵb ∼ N (0,
√

lσb)  (9)

and

 ϵ∇b ∼ N (0,
√

2l
∆x σb)  (10)

where  σb  is the variance observed in the original data,  ϵb  and  ϵ∇b  are respectively the noise 
applied to the biofilm density and the biofilm density gradient and  ∆x  is a pixel width. The parameter 

 l ∈ [0, 0.01, 0.02, 0.03, 0.04, 0.05]  is increased to apply a noise from 0% to 5%.
We can observe that the estimate of only two parameters is impacted by noising the biofilm 

inputs: the estimate of  β  and v1. The parameter  β  is also the parameter which is the less accurately 
inferred when no noise is added (5%). Its estimation relative error increases up to 35% when 5% 
noise is added. The parameter  β  tunes the direction selection, which is the less effective process in 
the swimmer model. The other parameters are recovered with correct accuracy (kept under 18% for 
v1, and under 6% otherwise).

https://doi.org/10.7554/eLife.76513
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Appendix 1—figure 6. Impact of noise level on parameter inference. We plot the relative error of the estimate 
of the different equation parameters for increasing noise applied on the biofilm density and the biofilm density 
gradients input data.

https://doi.org/10.7554/eLife.76513
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Appendix 2

Numerical exploration
To illustrate the impact of each parameter on the interplay between the host biofilm and the swimmers 
trajectories, the model (2) was first computed on two mock biofilms. The first one is a square linear 
density gradient and the second is composed of large pores on a textured background mimicking the 
dense biofilm zones (Appendix 2—figure 1a). A basal simulation is computed with  γ = β = ϵ = 1  and 
will be used later on as reference for comparisons. These three parameters are alternatively set to zero 
to assess the resulting trajectories when the speed selection, the direction selection or the random term 
is shut down. Suppressing speed selection results in rectilinear trajectories ( γ = 0 , Appendix 2—figure 
1c), which is rather counter- intuitive since the remaining terms are designed to tune the direction. 
A discussion of this phenomenon is provided in Appendix 2 Influence of inference and stochastic 
terms on the trajectory descriptors. When suppressing direction selection ( β = 0 , Appendix 2—figure 
1d), the trajectories are no longer drifted downwards the gradient in the upper panel as in the basal 
simulation, and no longer follow the pores (lower panel). If the stochastic term is shut down ( ϵ = 0 , 
Appendix 2—figure 1e), the trajectories directly go down the gradients and are trapped in the center 
of the image in the upper panel. When a pore is found along the run, the swimmer keeps following it 
without being able to escape the pore any longer unlike the basal situation (lower panel).

The link between the model parameters and the global trajectory descriptors introduced in Section 
Characterizing bacterial swimming in a biofilm matrix through image descriptors is less intuitive. 
A global sensitivity analysis of the trajectory descriptors (mean acceleration and speed, distance, 
displacement and visited areas) with respect to the parameters  γ , v0, v1,  β  and  ϵ  is conducted in 
Model sensitivity analysis by computing their first order Sobol index (SI) and their pairwise correlation 
coefficient (PCC). The sensitivity analysis shows that the mean speed is mainly influenced by  γ  and 
 ϵ  with slightly negative and positive impact respectively, while acceleration is rather influenced by 

 β  and  ϵ  with positive impact. The link between the parameters and the other descriptors is more 
complex, including non linear effects (strong SI and small PCC) and parameter interactions (higher SI 
residuals, see Appendix 2—figure 2).

(a) Mock biofilm (b) Basal (c) γ = 0 (d) β = 0 (e) ε = 0

Appendix 2—figure 1. To illustrate the influence of each term of Equation 2, they are alternatively turned off (c 
to e), and swimmer trajectories are computed on mock biofilms. (a) displaying marked density gradients (upper 
pannel) or marked pores (lower pannel). Trajectories can be compared to a basal simulation (b) when all the terms 
have the same intensity (1).

Model sensitivity analysis
The link between the model parameters and the global trajectory descriptors introduced in Section 
Characterizing bacterial swimming in a biofilm matrix through image descriptors is not intuitive. 
A global sensitivity analysis of the trajectory descriptors (mean acceleration and speed, distance, 
displacement and visited areas) with respect to the parameters  γ , v0, v1,  β  and  ϵ  is conducted by 
computing their first order Sobol index (SI) and their pairwise correlation coefficient (PCC).

https://doi.org/10.7554/eLife.76513
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Appendix 2—figure 2. Sensitivity analysis of state observable respectively to state- equation parameters. The 
sensitivity of different state observables to parameter shifts is systematically studied through sensitivity analysis 
methods. (a) Sobol indices are displayed for each output through barplots indicating the part of variance explained 
by a given parameter. The bars do not reach the value 1, indicating a residual variance reflecting interactions 
between parameters. (b) Pairwise correlation coefficient (PCC) of the observable respectively to the input 
parameters are displayed. A negative PCC indicates a negative impact on the output, and conversely. We note 
that the red dot indicating the PCC of  β  for  V   is confounded with the purple one indicating the PCC of  ϵ .

The residual variance is small for the median speed and acceleration but slightly larger for the 
distance, displacement and visited area indicating larger effects of parameter interactions for these 
outputs, that is output variations induced by joint shifts of the parameters (Appendix 2—figure 2). 
The SI of the parameters v0 and v1 are negligible, except for the displacement and the visited area. 
The parameters  γ ,  β  and  ϵ , that is the three weights associated to each component of the state 
Equation 2, are more influential. Distance and speed have several main drivers. The distance is 
impacted nearly equally by  γ ,  β  and  ϵ  and the PCC of these parameters is quite small, indicating that 
these parameters may induce indistinctly negative or positive variations of the travelled distance, 
except for  ϵ  which is slightly negatively correlated. The median speed is mainly impacted by  ϵ  (slightly 
positively) and  γ  (slightly negatively), with relatively small PCC (Appendix 2—figure 2). The mean 
acceleration, the displacement and the visited area are preponderantly impacted by a main driver: 
the mean acceleration and the visited area are particularly impacted by  ϵ , the stochastic term weight, 
with positive influence. The displacement is mainly influenced by  γ  with no preponderant variation 
direction (null PCC, Appendix 2—figure 2).

Friction and random term in Langevin equations
To illustrate the interplay between the friction and the random term during a random walks, we solve 
the problem

 

dv = − γvdt︸︷︷︸
friction

+ ηdt︸︷︷︸
random term  

(11)

 v(0) = (0, 0)  (12)

 X(0) = (0, 0)  (13)

in an unconstrained domain, with  η  a 2 dimensional white noise with unitary variance. The friction 
parameter  γ  is alternatively set to 1 (Appendix 2—figure 3, upper panel) or 0 (Appendix 2—figure 
3, lower panel). We note that the random seed is the same for the simulations with or without 
the friction term, so that the stochastic contribution is completely identical in the upper and lower 
panels. The trajectories produced without the friction term are much more regular and rectilinear 
that those produced with the friction term, that are much chaotic.

The reason of that behaviour may come from the null mean of the white noise. Roughly speaking, 
in average, the acceleration shows small variations around zero which leads after temporal integration 
to regular speeds and rectilinear- like trajectories. By contrast, the friction term reduces the particle 
inertia, enhancing the impact of the stochastic term, which produces much more chaotic trajectories.

https://doi.org/10.7554/eLife.76513
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Appendix 2—figure 4 continued on next page

Appendix 2—figure 3. Illustration of the interplay between friction and stochastic terms in Langevin equation. 
Trajectories produced by different repetitions of Equation 11 are displayed with  γ = 1  (upper panel) and  γ = 0  
(lower pannel). We note that the same random seed has been taken for the simulations of the same column with or 
without the friction term, meaning that the stochastic term is strictly identical in both simulations.

Impact of the stochastic term
We illustrate the impact of the random walk term on the overall swimmer trajectory with 
Appendix 2—figure 4. In this figure, we display two trajectories computed from model (2) with 
identical parameters ( α ,  β , v0, v1,  γ  and  ϵ ), initial condition, host biofilm and time length. Different 
random samplings of the stochastic term of Equation (2) lead to these very different trajectories. 
This example illustrate the difference between identifying population- wide characteristics and 
inferring true trajectories: while the later try to detect the differences between the two trajectories 
(i.e. in this example, identifying and smoothing the different stochastic samples leading to these 
trajectories), the former focuses on the common features between these apparently different 
trajectories.

https://doi.org/10.7554/eLife.76513
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Appendix 2—figure 4. Influence of the stochastic process on swimmer trajectories. We plot two different 
trajectories computed with the model (2), including the same parameters  α ,  β , v0, v1,  γ   and  ϵ , the same initial 
condition and identical host biofilm. The only uncertainty source comes from the different random samplings of 
the stochastic term. In this simulation, the ground truth (with default random seed) is plotted in blue.

Influence of inference and stochastic terms on the trajectory descriptors
We wonder if the uncertainty sources involved in the inference process and in the stochastic term of 
the random walk have a decisive impact on the trajectory descriptors. To address this question, a first 
dataset is assembled by integrating in time Equation 2 for given parameters (see Appendix 1—table 
3), initial conditions and host biofilm. Then, this dataset is used as inputs of the inference method 
to infer the initial parameters (ground truth). Another dataset is produced by replacing the initial 
parameters by the inferred parameters. We note that we take the same seed for the random number 
generator than for the initial dataset, so that the only uncertainty that has been introduced until this 
step comes from the inference procedure. Finally, we produce a last dataset by solving the model 
with the same inferred parameters as in the second dataset, but changing the seed of the random 
number generator. Hence, this last dataset involves uncertainties coming from the stochastic terms 
and from the inference process. This variation results in modifying the sampling of the stochastic 
terms and leads to strong modifications of the trajectories, like in Appendix 2—figure 4.

At end, the trajectory descriptors are computed and plotted in Appendix 2—figure 5. We can 
see that the trajectory descriptor distributions are very similar across the different dataset, except 
for the total distance and the displacement where discrepancies can be noted. However, these 
differences are relatively small compared to the mean and the width of the distributions. We can 
also observe that the interactions with the underlying biofilm is very well conserved, even when 
the sampling of the stochastic term is very different. This observation grounds the initial guess that 
these trajectory descriptors captures common global features of the different trajectories rather than 
specificities of given trajectories.

https://doi.org/10.7554/eLife.76513
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Appendix 2—figure 5. Low influence of the stochastic term on the trajectory descriptors. To assess the influence 
of the random term on the population- wide trajectory descriptors and overall prediction accuracy, we repeated the 
experiment displayed in Figure 6a. A synthetic database was first assembled (ground truth) and prediction were 
performed with a fitted model (After inference). Then, a second repetition of the prediction of the fitted model 
was computed with another seed for the random number generator, resulting in modifying the sampling of the 
stochastic terms and strong modifications of individual trajectories, like in Figure 4. The population- wide trajectory 
descriptors are however slightly impacted by this random effect, indicating that the main characteristics of the 
trajectory populations marginally depend on the stochastic term.

Relative impact of the different swimming processes on the species swim
The ternary plot presented in Appendix  2—figure 6 shows the balance between the different 
swimming processes. The contribution of each term of equation (4) to acceleration estimate was 
first computed. Namely, the relative value of the speed selection term  ∥s(b)s

i∥ , the direction selection 
term  ∥s(∇b)s

i∥  and the stochastic term  ∥s(η)s
i∥  where

 
s(b)s

i = ∥γ(vs
0 + b(t, Xs

i (t))(v
s
1 − vs

0) − ∥Vs
i (t)∥) Vs

i (t)
∥Vs

i (t)∥
∥,

  

 
s(∇b)s

i = ∥βs ∇b(t,Xs
i (t))

∥∇b(t,Xs
i (t))∥

∥, and s(η)s
i = ∥ηs∥.

  

The proportions  A(k)s
i   of each process was computed with

 
A(k)s

i = s(k)s
i

s(b)s
i +s(∇b)s

i +s(η)
s

i
.
  

for  k ∈ {b,∇b, η} . As the contribution of the direction selection was limited compared to the other 
processes, we zoomed in the plot near the edge  ∥s(∇b)s

i∥ = 0  to allow inter- species comparisons.
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 Research article Computational and Systems Biology

Ravel et al. eLife 2022;0:e76513. DOI: https://doi.org/10.7554/eLife.76513  38 of 41

Appendix 2—figure 6. Respective influence of stochastic effects, speed or direction adaptation to the host 
biofilm. We plot in a ternary plot the respective influence of the speed selection ( V  ), the direction selection 
( D ) and the random term ( ϵ ) of Equation 1 in the acceleration distribution of each species. Each squared 
instantaneous acceleration is mapped in the ternary plot coordinates through the relative contribution of  V2 , 
 D2  and  ϵ2 , and this point cloud is approximated in the ternary plot coordinates with a gaussian kernel to display 
the point distributions. The 0.05, 0.5 and 0.95 quantile isovalues of these distributions are plotted. (a) The entire 
ternary plot is displayed. The dashed line represents the zoom box represented in Fig. (b), where the same isolines 
are displayed, but with a zoom in in the  y  direction to highlight differences between species. The number of 
trajectories are identical than in Figure 5: n = 517 (B. pumilus), n = 237 (B. sphaericus) and n = 279 (B. cereus).

https://doi.org/10.7554/eLife.76513
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Appendix 3

Various inference models
Different inference models were designed and tested from the dimensionless state equation (2).

SSM model
The inference model can be stated as a space- state model (SSM) which is a framework commonly 
used in spatial ecology to infer a true state, that is true positions and trajectories, and population- 
wide random walk parameters from time- serie data (Auger‐Méthé et al., 2021). The SSM inference 
model is a generalization of Hidden Markov Models (HMM).

Note  z
s
i (t)  the true (hidden) position of the individual    of the species  s  at time  t . The state model 

on acceleration (4) can be rewritten as

 
dvs

i (t)
dt = γ(vs

0 + b(t, zs
i (t))(v

s
1 − vs

0) − ∥νs
i (t)∥) vs

i (t)
∥vs

i (t)∥
+ βs ∇b(t,zs

i (t))
∥(t,zs

i (t))∥
+ ηs

mod  (14)

 
zs

i (t)
dt = vs

i (t)  (15)

In this equation,  v
s
i   is the true hidden swimmer velocity. Starting from observed initial conditions 

 z
s
i (0) ,  v

s
i (0) , Equation 16 can be integrated in time to recover hidden  z

s
i (t) ,  v

s
i (t)  for all times  t .

Then, a likelihood equation can be written to compare the true hidden state to the observations.

 Xs
i (t) ∼ zs

i (t) + ηs
obs  (16)

We note a link between  ηmod  and  ηobs  in Equations 15 and 16 and the random state  η  in Equation 
4. Namely, noting  σmod  and  σobs  the standard deviation of the gaussian noises  ηmod  and  ηobs , direct 
finite- difference of  A

s
i (t)  from the true state gives an estimate of the noise variance on the acceleration 

of the non- linear regression model

 
ϵ =

√(σmod
∆t

)2 +
(√

6σobs
∆t2

)2
.
  

Compared to problem (5), the main advantages are that the likelihood is written on the original 
data, that is the observed position, and not a post- processed observed acceleration, subject to 
finite- difference errors. Furthermore, the true trajectories are recovered and modelling errors  η

s
mod  

and observation errors  η
s
obs  are separated. The main drawback of this methodology is that the state 

space is very large since it includes all the positions and speeds at every time for every swimmers, 
which leads to intractable computations.

Mixing SSM and non-linear inference models
An intermediary strategy has been designed by selecting swimmer trajectories that we want to infer 
by SSM, the remaining trajectories being kept to compute an acceleration dataset  A

s
i (t) . Namely, 

note  Dssm  the set of swimmer index kept for SSM, and  DA  the set of swimmer index kept for non- 
linear regression. We set, for  i ∈ Dssm 

 
dvs

i (t)
dt = γ(vs

0 + b(t, zs
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+ ηs

mod  (17)

 
zs

i (t)
dt = vs

i (t)  (18)

for given initial conditions  z
s
i (0) ,  v

s
i (0) , and for  j ∈ DA 

 
As

j (t) = γ(vs
0 + b(t, Xs

j (t))(v
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1 − vs
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j (t))∥
+ ηs

  
(19)

where  X
s
j (t) ,  V

s
j (t)  and  A

s
j (t)  are observed positions, speeds and accelerations. This model is 

completed by a likelihood equation

 Xs
i (t) ∼ zs

i (t) + ηs
obs, for i ∈ DSSM  (20)
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 As
i (t) ∼ fA(θs|b, Xs

j (t), Vs
j (t), As

j (t)) + ηs
  (21)

where  fA  is defined in equation (4).
This setting kept some advantages of the SSM, like inferring some true hidden trajectories or 

separating the estimate of modeling and observation errors, while limiting the computational load 
if  DSSM  is not too large.

We finally kept the regression model for several reasons. First, we are interested in recovering 
population wide parameters to characterize strain- specific swims, and not identifying true trajectories. 
Second, we can consider that the observation error with confocal microscopy is several order of 
magnitudes under the spatial characteristic lengths involved in equation (2), so that observation 
errors can be neglected. Hence, the objective of separating the uncertainty sources between model 
and observation errors, which is a main advantage of the SSM or mixed inference settings, becomes 
secondary. Furthermore, enhancing the state space dimension provided additional uncertainties, 
worsening the inference precision on synthetic data. We then opted for the simple regression model 
that provided sufficient parameter identifiability for limited computational load.

https://doi.org/10.7554/eLife.76513
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Appendix 4
KDE computation
We illustrate the process of visualization of multiple point distributions in the same graph using KDE 
and isolines enclosing specific proportions of the data in Appendix 4—figure 1. A point cloud is 
first approximated with a Gaussian KDE. Then, the value of the gaussian KDE is evaluated in each 
point of the original point cloud, which allows to map the 2D map into a 1D set where order relation 
can be defined. Specific quantiles of the resulting values are computed (namely quantile 0.05, 0.5 
and 0.95). By definition, the quantile 0.05 separate 5% of the points of the original dataset (the 5% 
lowest Gaussian KDE values) from the remainder of the data set. The isoline corresponding to the 
quantile 0.05 then also separates in the 2D map the 5% lowest Gaussian KDE values from the others.

Appendix 4—figure 1. Illustration of the Gaussian KDE isovalues computation. Starting from a random 2D 
point distribution (left panel), a gaussian KDE is computed using the  scipy. stats function (middle panel). Then, 
the gaussian KDE is evaluated at the original point positions, and quantiles of the resulting values are computed 
(quantiles 0.05, 0.5 and 0.95). Gaussian KDE isolines corresponding to this quantiles are finally computed (right 
panel). This isolines enclose respectively 5, 50% and 95% of the points of the original distribution, centered in the 
densest area of the initial point cloud. This procedure gives a good representation of the shape of the data, but 
allows to display several distributions in the same graph, enabling comparison while avoiding superimposition 
issues.

https://doi.org/10.7554/eLife.76513
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