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Abstract

Motivation: Deciphering gene interaction networks (GINs) from time-course gene expression (TCGx) data is highly
valuable to understand gene behaviors (e.g., activation, inhibition, time-lagged causality) at the system level.
Existing methods usually use a global or local proximity measure to infer GINs from a single dataset. As the noise
contained in a single data set is hardly self-resolved, the results are sometimes not reliable. Also, these proximity
measurements cannot handle the co-existence of the various in vivo positive, negative and time-lagged gene
interactions.

Methods and results: We propose to infer reliable GINs from multiple TCGx datasets using a novel conserved
subsequential pattern of gene expression. A subsequential pattern is a maximal subset of genes sharing positive,
negative or time-lagged correlations of one expression template on their own subsets of time points. Based on
these patterns, a GIN can be built from each of the datasets. It is assumed that reliable gene interactions would be
detected repeatedly. We thus use conserved gene pairs from the individual GINs of the multiple TCGx datasets to
construct a reliable GIN for a species. We apply our method on six TCGx datasets related to yeast cell cycle, and
validate the reliable GINs using protein interaction networks, biopathways and transcription factor-gene regulations.
We also compare the reliable GINs with those GINs reconstructed by a global proximity measure Pearson
correlation coefficient method from single datasets. It has been demonstrated that our reliable GINs achieve much
better prediction performance especially with much higher precision. The functional enrichment analysis also
suggests that gene sets in a reliable GIN are more functionally significant. Our method is especially useful to
decipher GINs from multiple TCGx datasets related to less studied organisms where little knowledge is available
except gene expression data.

Background
Gene interactions are indispensable workers in compli-
cated biological processes and molecular functions. This
fact highly necessitates a large-scale, system-level view of
gene interactions, i.e., gene interaction networks (GINs). A
GIN can be represented by a graph with genes as its nodes
and gene interactions as its edges. The reconstruction of a

complete GIN for a species, such as yeast, is too expensive
to use wet-lab experiments. As more and more high-
throughput genome-wide expression data become avail-
able, computational inference of GINs from expression
data is critically valuable and feasible with much less cost.
Computational methods for reconstructing GINs from

expression data can be categorized into four groups:
gene-pair based, single-gene targeted, gene-module
based, and integrative methods [1]. Gene-pair based
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methods infer the regulation between a pair of genes [2],
usually using Pearson correlation coefficient, Spearman
correlation coefficient [3], time-lagged Pearson correlation
coefficient [4], or mutual information [5]. Single-gene tar-
geted approaches assume that if a target gene is regulated
by a group of other genes, the expression levels of the
gene could be predicted using the expression levels of that
group of genes. Thus, single-gene targeted approaches use
the expression levels of a gene as the prediction target and
the expression levels of other genes (for example, tran-
scription factors) as features, and learn the relationship of
the target genes and other genes using machine learning
algorithms and gene-feature selection methods such as
different regression methods [3] and Random forest
methods [6]. By these two kinds of approaches, gene
interactions were determined using all the conditions or
time points.
On the other hand, gene-module based methods take

advantages of biclustering algorithms [7,8] or item-set
mining algorithms [9] to detect a cluster of genes which
share similar patterns on a subset of gene conditions.
Further, integrative methods infer gene interactions by
combining the knowledge discovered in gene expression
data by different methods above [10,11] or with heteroge-
neous data such as sequence data [8,9]. These methods
are able to reconstruct many gene regulations which have
been previously detected using wet-lab experiments, for
example, in Escherichia coli.
However, computational inference of GINs from

expression data is still a challenging research problem
[3]. For example, in eukaryotes such as yeast, existing
methods had very poor performance to decipher gene
regulations from gene expression data [3]. It has been
reported that the overall performance of gene regulation
inference in yeast was quite low [12] and was hardly
better than guessing [3,13]. On the other hand, the lit-
erature computational methods have their technical lim-
itations [1,3]. For instance, a single dataset is often used
which might contain many random gene co-expressions.
Another limitation is that many existing methods use
global/local proximity measures which are not capable
of detecting positive, negative and time-lagged gene cor-
relation at the same time. However in living systems,
gene regulations can be positive or negative possibly
with time lags, and may also not span all conditions or
time points.
To address these issues, we propose to infer gene inter-

actions using a novel subspace pattern–conserved subse-
quential pattern–from multiple time-course gene
expression (TCGx) datasets. Given a dataset, a subse-
quential pattern contains two subsets of genes such that:
(i) the genes within a subset are all positively or time-lag
positively correlated with each other on their own subsets

of time points, and (ii) every pair of genes–each from a
subset–are negatively or time-lag negatively correlated
with each other on their own subsets of time points.
We develop an efficient algorithm to detect all subse-

quential patterns for a TCGx dataset. Based on these
patterns, a GIN is built. Assume that a reliable gene
interaction would be detected in many times, a reliable
GIN is reconstructed using the conserved gene pairs
which occur in almost all the GINs of the multiple
TCGx datasets. We apply our method on six TCGx
datasets related to yeast cell cycle, and validate reliable
GINs using the following three sources of experimental
knowledge: biopathways from KEGG, protein-protein
interaction networks and transcription factor-gene regu-
lations with experimental DNA binding evidences. We
also compare reliable GINs with those GINs constructed
using a global proximity measure Pearson correlation
coefficient on single datasets. This comparison can
demonstrate whether the most reliable GINs based on
our conserved subsequential patterns achieve much bet-
ter prediction performance of gene interactions. On the
other hand, we investigate the topological properties of
the reliable GINs and perform gene functional enrich-
ment test for each gene set whose genes have edges
with a same transcription factor in a reliable GIN. All
these validations would suggest the usefulness of our
algorithm to decipher reliable GINs from multiple
TCGx datasets, especially for less studied organisms.

Methods
Reconstructing a gene interaction network (GIN) from
multiple time-course gene expression (TCGx) datasets
Given L TCGx datasets for a same species (e.g., Saccharo-
myces cerevisiae), we use the following steps to reconstruct
a reliable GIN. Firstly, we discretize each TCGx dataset to
an item sequence database. Secondly, on each discretized
TCGx dataset, we define and mine a novel subsequential
pattern which is designed to avoid information loss in dis-
cretization by using similarity match of items (which is sig-
nificantly different from identical item match in previous
itemset mining algorithms). Thirdly, we develop a new, effi-
cient algorithm to capture all kinds of highly correlated
gene pairs, positively correlated, negatively correlated and
time-lagged correlated, across subsets of time points.
Fourthly, based on these subsequential patterns, we build
individual GINs for each TCGx dataset. Finally, we infer a
reliable GIN using conserved gene pairs which occur in
almost all individual GINs.

Discretization of a TCGx dataset
Let MNV × NT denote a TCGx dataset with NV genes
and NT time points, and mi,j represents the gene
expression level of gene i at time point j. Let si,j be the
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discretized expression level of gene i at time point j. In
particular,

Si,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

3, if mi,j ≥ 2.5 ∗ δi;
2, if 1.5 ∗ δi ≤ mi,j < 2.5 ∗ δi;
1, if 0.5 ∗ δi ≤ mi,j < 1.5 ∗ δi;
0, if − 0.5 ∗ δi ≤ mi,j < 0.5 ∗ δi;
−1, if − 1.5 ∗ δi ≤ mi,j ≤ −0.5 ∗ δi;
−2, if − 2.5 ∗ δi ≤ mi,j ≤ −1.5 ∗ δi;
−3, if mi,j ≤ −2.5 ∗ δi;

δi is a value to determine the value range of [-2.5 * δi,
2.5 * δi] which covers most of expression values of gene
i. 3, 2, 1, 0, 1, -2, and 3 are seven different discretization
items. Then, S = [si,j]NV ×NT is a sequential transaction
data set transformed from M. In S, each gene is repre-
sented by a sequence of discretization items of its
expressions. The discretization used here is able to elim-
inate insignificant expression difference in M. Note that
there is no gold standard to determine the optimal
number of discretization items. The more number of
discretization items would not capture the similarity
between those mi,js with insignificant value difference,
while the less number of discretization items would lead
to poor discrimination between those mijs with signifi-
cant value difference. The number of discretization
items should be determined by users based on domain
knowledge. Here, we recommend using seven different
discretization items according to the understanding of
our algorithms developed below.
It is worthwhile to note that some previous works of

GIN reference [9] also reconstructed gene interactions
after discretization using previous pattern mining algo-
rithms (those items used in previous pattern mining
algorithms are called traditional items for an easy refer-
ence.). However, those previous pattern mining algo-
rithms failed to pay specific attentions to the difference
between traditional items and discretization items from
gene expression data. In previous pattern mining algo-
rithms [9], the similarity between different items is
meaningless. That is, item ‘1’ is completely different
from item ‘2’. However, discretization items here imply
the inherent similarity of original expression levels. For
example in a discretized TCGx dataset, 2 is more similar
to 3 than 1 is. This similarity is able to avoid some
information loss due to the discretization. For example
with δi = 1, one expression value of mi,j = 2.49 is discre-
tized to 2, while the other of mi,j mi’,j = 2.51 is discre-
tized to 3. If the similarity between item 2 and item 3 is
not considered as in previous pattern mining algorithms,
this pair of similar expressions is lost during discretiza-
tion. Meanwhile, 2 is negatively similar to -3, -2 and -1,
while 0 is not similar to -3 and -2 either positively or
negatively. However, these properties are too difficult, if

not impossible, to be considered by previous itemset
mining algorithms. In a word, previous pattern mining
algorithms would not be able to capture the similarity
between these discretization items. A novel pattern tak-
ing the similarity above into consideration is necessary.

Subsequential patterns on a TCGx dataset
The definition of subsequential patterns: A novel subse-
quential pattern is proposed to overcome these limita-
tions in previous itemset mining algorithms. To provide
the definition of subsequential patterns, we first define
what the similarity between items is.
Let E be a set of discretization items {-3, -2, -1, 0, 1, 2, 3}.

Two items ei and ej in E are considered to be similar if and
only if ej - 1 || ei || ej + 1 or ei - 1 || ej || ei + 1, that is, ||ei -
ej|| ≤ 1. For instance, 2 is similar to 1, 2 and 3, while -3 is
similar to -3 and -2. Based on the similarity, we define a
pair-item as ei :: ej where ej = ei + 1. Thus, our discretization
will result in six pair-items, i.e., -3 :: -2, -2 :: -1, ..., 2 :: 3. In
each pair-item, the two items are assumed to be different.
Without loss of generality, the first item in each pair is
assumed to be smaller than the second. Please note that
-3 :: -1 is not a pair-item. Similarly, two items ei and ej are
considered to be negatively similar if and only if -ej - 1 ≤ ei
≤ -ej + 1 or -ei - 1 ≤ ej ≤ -ei + 1, that is, ||ej - ei||. For exam-
ple, 3 is negatively similar to -3 and -2, while -2 is nega-
tively similar to 1, 2 and 3.
Further, we say an item ei is similar to a pair-item ei’:: ej’

if and only if ei is similar to ei’ and ei is similar to ej’, e.g.,
1 is similar to 1 :: 2 or 0 :: 1. In a similar way, an item ei is
negatively similar to ei’ :: ej’ if and only if ei is negatively
similar to ei’ and ei is negatively similar to ej’.
Furthermore, ei :: ej is similar to e’ :: ej’ if and only if ei is

similar to ei’ :: ej’ and ej is similar to ei’ :: ej’ ; and ei :: ej is
negatively similar to ei’ :: ej’ if and only if ei is negatively
similar to ei’ :: ej’ and ej is negatively similar to ei’ :: ej’.
A subsequential patternis a subsequence of le pair-

items {e0 :: e0 + 1, · · · , ele−1 :: ele−1 + 1}. A subsequential
pattern (positively) matches local expressions of gene i if
there exists 0 ≤ ii <NT - le so that si,ii+jj is similar to ejj ::
ejj + 1, for all 0 ≤ jj ≤ le - 1. Similarly, a subsequential
pattern negatively matches local value movements of
gene i’ if there exists 0 ≤ ii’ <NT - le so that si’,ii’+jj’ is
negatively similar to ejj’ :: ejj’ + 1, for all 0 ≤ jj’ ≤ le - 1. For
example, assume a subsequential pattern is {2 :: 3, 1 :: 2,
-3 :: -2, 0 :: 1}, s1 = {0, 3, 2, -2, 0}, s2 = {0, 0, 2, -2, 0} and
s3 = {-3, -2, 2, 1, 0}, this pattern matches a subset of con-
secutive values in s1 with ii = 1 and negatively matches a
subset of consecutive values in s3 with ii’ = 0, but does
not match any subset of consecutive values in s2.
This novel subsequential pattern has several advan-

tages compared with existing works. (i) The subsequen-
tial pattern is a local pattern and not required to occur
across all time points. (ii) The subsequential pattern is
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able to detect all positive, negative, time-lagged positive
and time-lagged negative correlations of a maximal sub-
list of genes. Of previous works, some only considered
positive correlation between genes, some others found
both positive correlation and negative correlation, and
some others detected positive correlation and time-
lagged positive correlation. None of them could detect a
complete set of the subsequential patterns. (iii) Similar-
ity between items retains the inherent similarity of origi-
nal values which is completely lost in previous works
using itemset mining algorithms. (iv) Discretization
avoids the effect of insignificant expression difference in
bi-clustering algorithms, and at the same time, enables
mining a complete set of patterns efficiently rather than
heuristic detections in bi-clustering algorithms.
The detection of subsequential patterns on a TCGx dataset
We are interested in these frequent subsequential pat-
terns whose length is greater than or equal to a thresh-
old len, that is, le ≥ len, and whose support (defined
below) is not less than a threshold sup. Let a subsequen-
tial pattern (positively) match a sublist of genes, called p,
and negatively match a sublist of genes, called n. The
support of the pattern is ||p|| + ||n||. It is clear that all
genes in p(or in n) have similar expression levels, while
a gene in p has oppositely similar expressions to all
genes in n. Further, a subsequential pattern is closed if
there is no more ei :: ej added before and/or after the
pattern and there is also no more gene inserted in p
and/or in n so that the subsequential pattern still
matches all genes in p and n. Closed subsequential pat-
terns can eliminate redundant subsequential patterns.
Given the discretized version of a TCGx dataset, we

develop an efficient mining algorithm to produce all
closed subsequential patterns. Our algorithm is based
on Apriori [14] with our efficient pruning strategies to
speed up the mining process. The naive Apriori algo-
rithm uses deep-first searching: it starts from an empty
set, then adds a pair-item ei :: ej each time and after
that, checks the support of both p and n for each pat-
tern. In the naive algorithm, many redundant patterns
are detected. Thus, we use backward-checking strategy
to prune those patterns which have been detected by a
pattern occurring before the positions of the patterns,
unitize forward-checking strategy to determine whether
this pattern is closed, and check items in each position
of the pattern to prune duplicate patterns because each
item is represented twice by pair-items. Our algorithm is
able to efficiently detect a complete and non-redundant
set of closed subsequential patterns for all yeast TCGx
datasets (described below) in several seconds. The whole
framework of the method is given in Algorithm 1. The
detail of the pruning strategies is out of the scope of this
paper and will not be given here.

In Algorithm 1, given a dataset, pair-items are
detected for extending the prefix of a pattern in lines
from 3 to 13, while whether a pair-item is frequent is
checked in lines from 14 to 16. The closedness of an
extended pattern is determined in lines from 17 to 20,
and the redundancy of an extended pattern is verified in
lines 21 to 24 A pattern would be output if it is closed
and non-redundant (in line 25).
Algorithm 1 function pApriori(Ss, prefix-of-pattern) to

detect closed subsequential patterns on a given discretized
TCGx dataset
Require:

1) Ss: a given discretized TCGx dataset SNV ×NT with
a set of items -3, -2, -1, ..., 3
2) sup: the minimum number of genes in each
pattern
3) len: the minimum length of the patterns
4) max0: the maximum number of insignificant
expression levels in each pattern 1: let Is be a set of
six pair-items -3 :: -2, -2 :: -1, ..., 2 :: 3.

2: for all each pair-item es in Is do
3: set both p and n to {},
4: for all each gene i in Ss do
5: let ei be the next item in i after prefix-of-pattern
6: if prefix-of-pattern negatively matches i and ei is

negatively similar to es then
7: put i in n
8: else
9: if prefix-of-pattern (positively) matches i and

ei is (positively) similar to es then
10: put i in p
11: end if
12: end if
13: end for
14: if ||p|| + ||n|| <then
15: the resultant pattern is infrequent, and thus

pruned and continue.
16: end if
17: determine whether prefix-of-pattern ∪ es is not

closed using backward-checking and forward-checking
strategies
18: if prefix-of-pattern ∪ es is not closed then
19: call function pApriori(Ss, prefix-of-pattern ∪ es)
20: end if
21: determine whether prefix-of-pattern ∪ es is dupli-

cate using backward-checking strategy and by checking
items in prefix-of-pattern ∪ es
22: if prefix-of-pattern ∪ es is duplicate then
23: the search for prefix-of-pattern ∪ es is pruned,

and continue;
24: end if
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25: output prefix-of-pattern ∪ es as a closed
non-redundant subsequential pattern
26: end for

Reconstructing GINs using subsequential patterns
Based on these subsequential patterns, individual GINs
for a dataset are reconstructed with genes as nodes and
gene co-expression in patterns as edges. In an individual
GIN, two genes have an edge if they occur in a same
pattern of the dataset. Each edge has a label to indicate
the interaction is negative, positive or both.
An integrative GIN for multiple datasets is based on all

nodes and all edges with the occurrence of edges as
weights. Assume that a reliable gene regulation does not
occur by chance and appears in almost all datasets, we
remove those edges whose weight in the integrative GIN
is much less than the number of datasets. The resultant
network is called a reliable GIN for further validation.
Please note that the weight of positive interactions of a
pair of genes is calculated without considering negative
interactions of the pair, or vice versa.
As a summary, the whole framework for GIN recon-

struction from multiple TCGx datasets is shown in
Algorithm 2.
Algorithm 2 Inferring a reliable GIN using conserved

subsequential patterns from multiple TCGx datasets
Require:

1) L TCGx datasets MNV ×NT

2) occ: the minimum weight of a gene pair in reliable
GINs
3) Four parameters for subsequential patterns:

(1) sup: the minimum number of genes in each
pattern
(2) len: the minimum length of the patterns
(3) max0: the maximum number of insignificant
expression levels in each pattern
(4) it: the maximum delayed time points allowed

1: for all each TCGx dataset MNV ×NT do
2: convert M into a sequential transaction dataset

SNV ×NT

3: use function pApriori(SNV ×NT , {}) to mine all
closed subsequential patterns with at least len pair-items
and at most max0 insignificant expression levels
(denoted by -1 :: 0 and 1 :: 0) and occurring in not less
than sup genes
4: reconstruct a GIN with all genes
5: add edges for those pairs of genes which occur in a

same subsequential pattern and have at most it-time-point
delay
6: end for
7: infer an integrative GIN with all genes

8: add edges for those pairs of genes if they have an
edge in a GIN for each of L datasets
9: give weights for all edges using their occurrence in

GINs for L datasets
10: remove those edges whose weights are less than occ
11: the resultant network is a reliable GIN

TCGx datasets
Six TCGx datasets related to yeast cell cycle are used in
this work. Their details are presented in Table 1 includ-
ing the names of the datasets, the number of cell cycles,
the time interval to collect gene expression information,
and the number of time points. In detail for example,
the elu dataset [15] involves 14 time points for a cell
cycle, and the cdc15 dataset [15] involves 24 time points
for three cell cycles (i.e., 8 time points per cell cycle); In
the elu dataset, gene expression information was col-
lected at every 30 minutes, while in the cdc15 dataset,
gene expression levels were collected at every 10 min-
utes. Please note that the expression levels of every gene
in those datasets were normalized (in those previous
works) with the average of the expression levels of a
gene close to 0.
Assume that a reliable gene interaction occurs in

almost all cell cycles, we consider gene expressions in
each cell cycle as an independent dataset (TCGxCC for
short). For a TCGx dataset with h time points covering
two cell cycles, we take the first ⌊h/2⌋ + 1 time points
as a TCGxCC dataset, and the last ⌊h/2⌋ + 1 time
points as the other TCGxCC dataset, where ⌊*⌋ is the
maximum integer value which is smaller than *. For a
TCGx dataset with h time points covering three cell
cycles, we take the first ⌊h/3⌋ + 1 time points as a
TCGxCC dataset, the last ⌊h/3⌋ + 1 time points as another
TCGxCC dataset, and the time points from ⌊h/3⌋-th to
2*⌊h/3⌋-th as the other TCGxCC dataset. Thus in the six
TCGx datasets, there are in total 12 TCGxCC datasets
each of which covers a cell cycle.
These 12 TCGxCC datasets have 3,436 common genes

each with less than 2 missing values. The missing value

Table 1 he description of six time-course gene expression
(TCGx) datasets.

Dataset #cell-cycle time interval #time-points reference

elu 1 30 min 14 [15]

alpha 2 7 min 18 [15]

cdc15 3 10 min 24 [15]

cdc28 2 10 min 17 [26]

alpha30 2 5 min 25 [27]

alpha28 2 5 min 25 [27]

’#cell-cycle’ is the number of yeast cell cycles in each of six datasets.
‘#time-points’ is the number of time points in each dataset.
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mi,j of gene i at time point j is considered to be the
average of the most adjacent mi,j’ and mi,j” where j’ ≺ j ≺
j”, and mi,j’ and mi,j” are not missing values; if there is
no j’ (i.e., all values of gene i before j” are missing), mi,j

is set as mi,j”, while if there is no j” (i.e., all values of
gene i after j’ are missing), mi,j is set as mi,j’.
The parameter settings of our methods are given

below for mining interesting subsequential patterns. In
the transformation of each of the 12 datasets into a dis-
cretized dataset, δi is set to the biggest 80%-th value of
absolute expression levels of gene i for discretizing gene
i. When subsequential patterns are detected on the dis-
cretized version of each of the 12 datasets, sup is set to
5, and max0 to 60%, indicating not more than 60%
insignificant expression denoted by pair-items -1 :: 0
and 1 :: 0; len is set to 25% multiplied by the number of
time points in each cell cycle. This is because the num-
ber of time points per yeast cell cycle is small ranging
from 8 to 14, and a yeast cell cycle usually has several
stages, such as G1, S, G2 and M; thus, many gene regu-
lations cannot be expected to occur across a whole yeast
cell cycle. To build reliable GINs, occ is set to 11, indi-
cating that gene pairs in reliable GINs occur in almost
all individual GINs for each yeast cell cycle. At the same
time, 1-time-point delay is allowed in subsequential pat-
tern mining for those TCGxCC datasets with more than
12 time points; otherwise, no delayed time point is
allowed because of the less number of time points in
each yeast cell cycle.

External validation data
Three kinds of external data are used to validate inferred
reliable GINs: protein-protein interaction networks, bio-
pathways and transcriptional regulatory networks.
Protein-protein interaction networks
Protein-protein interactions are collected from three
sources, DIP [16,17] and STRING [18] (Experimental
protein-protein interactions are used with a score cut-
off greater than 700 [19]). Compared with TCGxCC
datasets, there are 3,101 genes in common with 28,881
protein-protein interactions. A protein-protein interac-
tion is reconstructed if its two proteins have an edge in
the reliable network.
Biopathway data
The data of biopathways in S. cerevisiae is downloaded
from the public repository IntPath [20]. This dataset inte-
grates pathway data from several major public databases
such as KEGG, WikiPathways, BioCyc and so on. This
data and TCGxCC datasets have 3,436 genes in common.
We assume that a gene has a strong relationship with
another gene in a same biopathway. Then, an edge in reli-
able GINs is a true positive prediction if the two genes of
the edge are in a same biopathway.

Regulation networks
Two datasets of transcriptional regulatory networks for
yeast are used as external validation standard. One is
TNET [21]. This dataset contains 157 transcription factors,
and 12,873 regulatory interactions. The other is down-
loaded from the YEAS-TRACT database [22]. This dataset
includes 171 transcription factors, and 41,650 regulatory
interactions. These regulatory interactions are determined
according to DNA binding evidences which are obtained
from wet-lab experiments, such as site-directed mutation
of transcription factor binding sites in its promoter region,
ChIP, ChIP-on-chip, ChIP-seq and so on.
The two datasets have 11,018 interactions in common.

Merging the two datasets together, there are 193 tran-
scription factors and 43,511 regulatory interactions. Of
them, genes in 15,356 regulatory interactions and 122
transcription factors are also in TCGxCC datasets.
Given a reliable GIN, the edges remain only between
those transcription factors and those genes in the regu-
lation data. These regulations with common genes and
transcription factors are used in our validation. An edge
in reliable GINs is a correct prediction if this edge is
also in the regulation data.

Evaluation measures
Given an external experimental data, assume that Ncp of
Np edges with common genes in an integrative GIN are
correct predictions. We use precision=Ncp/Np to see the
percentage of correct interaction prediction in an inte-
grative GIN. Meanwhile, we also use recall=Ncp/Ne,
where Ne is the number of gene interactions in an exter-
nal data, to see the fraction of gene interactions are
inferred by an integrative GIN. There are two kinds of
recall. On one hand, Ne is the total number of gene
interactions in an external data, indicating a global
recall; on the other hand, Ne is the number of interac-
tions in an external data only for those genes are in an
integrative GIN, suggesting a local recall. Please note
that when different predicted GINs are evaluated, Ne for
local recall might change but Ne for global recall does
not change and keeps the same. Generally, the global
recall is smaller than the local one. The local recall is
also meaningful because not all genes are involved in a
biological process/molecular function. We use both
kinds of recall in this work.

Results and discussion
In this section, we evaluate reliable GINs using the three
kinds of external experimental data: protein-protein
interaction networks, biopathways and transcriptional
regulatory networks. We also investigate the degree dis-
tribution of all genes in GINs to see whether it is scale-
free. Meanwhile, we perform gene functional enrichment
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test for regulated genes which have edges with a same
transcription factor in a reliable GIN.

Inference performance by integrative reliable GINs
We vary the different thresholds, occ=11 or 12 and the
percentage of len from 0.25 to 0.3 and then to 0.35, to
build integrative reliable GINs with different numbers of
edges and of genes. Generally, a smaller threshold
results in a larger GIN, while a larger threshold pro-
duces a smaller but more reliable GIN. To show the
usefulness of our method, we also develop baseline
GINs using PCC on the first cell cycle data of the elu
data (called PCC 1CC elu GIN for short), of cdc28
(called PCC 1CC cdc28 GIN for short) and of alpha30
(called PCC 1CC alpha30 GIN for short). These data are
used for inferring GINs because they are obtained by
different biologists. We compare the inference perfor-
mances by integrative reliable GINs and GINs produced
by PCC on the three TCGxCC datasets.
Inference performance of protein-protein interactions
The inference performance of protein-protein interac-
tions is shown in Figure 1(a) and Figure 1(b). It is not
surprised that the integrative GINs have higher preci-
sion than the PCC 1CC elu GINs. In particular, the
most reliable integrative GIN has the precision of 17.5%,
which is much higher than the precision (6.7%) of the
most reliable PCC 1CC elu GIN at a similar level of
global recall. Our integrative GINs also achieve much
better performance than the PCC 1CC cdc28 GINs and
the PCC 1CC alpha30 GINs. In the most reliable inte-
grative GIN, there are 217 inferred gene interactions where
38 interactions are in the protein-protein interaction
networks, while in the second most reliable integrative
GIN, there are 1,288 gene interactions where 149 inferred
interactions are in the protein-protein interaction
networks, resulting in a 11.5% precision.
Inference performance of gene co-occurrence in a same
biopathway
The co-occurrence of two genes states that the two genes
are in a same biopathway. We compared gene interactions
in referred GINs with gene co-occurrence in biopathways,
as shown in Figure 2(a) and Figure 2(b). It is suggested
that the integrative GINs always have better inference
than the PCC 1CC elu GINs, the PCC 1CC cdc28 GINs
and the PCC 1CC alpha30 GINs. In particular, the top
three reliable integrative GINs have the precisions higher
than 0.4, suggesting a high opportunity of inferred gene
interactions to co-occur in a same biopathway.
We also find that although there are 276 biopathways in

total, correctly inferred gene interactions in reliable net-
works mainly occur in 17 biopathways as shown in Table 2.
It is interesting to note that several biopathways, such as
’Cell cycle - yeast’, ’Ribosome biogenesis in Eukaryotes’ and
’Meiosis - yeast’ which are specific to yeast cell cycle, have

more correct predictions of gene interactions and were
ranked 2nd, 3rd and 5th, respectively, in Table 2 according
to the number of the correct predictions.
Inference performance of transcription factor-gene
regulations
The inference of transcription factor-gene regulations
from gene expression data is an extremely challenging
problem in yeast. It is reported in existing works [3,13]
that the performance was hardly better than guessing.
This conclusion is again confirmed by the PCC 1CC elu
GINs, as shown in Figure 3(a) and Figure 3(b), whose
precision (less than 0.04) is worse than guessing (0.04).
In contrast, integrative reliable GINs have better perfor-
mance than the PCC 1CC elu GINs and the PCC 1CC
cdc28 GINs. In some smaller integrative reliable GINs,
the precisions are even higher than 0.1.
However, PCC performs best on the first TCGxCC

dataset of alpha30 when evaluated using all pairs of
transcription factors and genes (in Figure 3(a)), but PCC
has much poor performance on the first TCGxCC data-
sets of elu and of cdc28. This suggests that the perfor-
mance of PCC heavily depends on datasets and the
dependence is hard to investigate.
On the other hand, when PCC is evaluated using

those pairs of transcription factors and genes which are
in inferred GINs, integrative reliable GINs achieves
comparable performance with the PCC 1CC alpha30
GINs (in Figure 3(b)). Integrating the evaluation on all
the three kinds of external experimental data, integrative
reliable GINs outperform those GINs produced by PCC.

The property of reliable GINs
In the reliable GIN with occ = 12 and the percentage of
len equal to 0.25, there are 13,996 gene interactions. We
then make statistics of the degrees of genes in this GIN.
The result is shown in Figure 4(a). It seems that there is
a scale-free distribution of the number of nodes which
have the same degrees. This distribution is very similar
to a scale-free network of p(k) = k-1.82 where k is the
degree of a node and p(k) is the percentage of the nodes
with k degree over the number of all nodes. Thus, the
reliable GIN is a scale-free network as expected. Figure
4(b) also presents this GIN in a network view. For a
clear view, Figure 4(c) in a network view shows another
reliable GIN with occ = 12 and the percentage of len
equal to 0.3. This GIN has 1,495 gene interactions. This
GIN is shown here due to the suitable size for better
view only. This GIN, as shown in Figure 4(c), indicates
modularity property which is important to biological
gene networks [23,24].

Functional enrichment analysis for gene groups
Functional enrichment analysis is performed on a gene
group. In this work, a gene group comprises those genes
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Figure 1 The evaluation based on protein-protein interactions for two kinds of inferred GINs: one kind using our framework, and the
other using PCC on the first TCGxCC datasets (i.e., the first cell cycle data) of elu (1CC elu for short), cdc28 (1CC cdc28 for short) and
alpha30 (1CC alpha30 for short). ‘Pattern’ represents an integrative reliable GIN. The subfigure (a) uses global recall, while the subfigure (b)
uses local recall. Global recall usually decreases when occ increases from a smaller value (11) to a larger value (12) and len from 0.25 to 0.3 and
then to 0.35, while local recall does not have this relation. Thus, there are lines and curves in (a), but not in (b).
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Figure 2 The evaluation using gene pairs occurring in a same biopathway for two kinds of inferred GINs: one kind using our
framework, and the other using PCC on the first TCGxCC datasets (i.e., the first cell cycle data) of elu (1CC elu for short), cdc28 (1CC
cdc28 for short) and alpha30 (1CC alpha30 for short). ‘Pattern’ represents an integrative reliable GIN. The subfigure (a) uses global recall,
while the subfigure (b) uses local recall. Global recall usually decreases when occ increases from a smaller value (11) to a larger value (12) and len
from 0.25 to 0.3 and then to 0.35, while local recall does not have this relation. Thus, there are lines and curves in (a), but not in (b).
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which are associated with a same transcription factor in a
given GIN. In this way, we can further investigate the per-
formance of the inferred GINs for transcription factor-
gene regulations. Two GINs with the similar edge sizes are
used here: an integrative reliable GIN with occ = 12 and
the percentage of len equal to 0.25, and a PCC 1CC elu
GIN with a threshold 0.8. The former has 27 gene groups,
while the latter has 28 groups, if gene groups are required
to have not less than 10 genes. Functional enrichment
analysis of each gene group is performed using the
enrichGO method in R [25] on Gene Ontology (GO)
terms individually from biological processes, cellular com-
ponents and molecular functions. In enrichGO, we use the
Benjamini-Hochberg procedure to control the false discov-
ery rate (q-value = 0.05) in multiple testing.
Then for each GIN, we calculate the percentage of gene

groups which have significant GO terms under given
p-values. We choose four different p-values, i.e., < 10-2,
< 10-3, < 10-4 and < 10-5. The result is shown in Figure 5,
which suggests that the reliable GIN always has higher
percentage than the PCC_1CC_elu GIN under smaller
p-values. In particular, the percentage of the reliable GIN
is much higher than that of the PCC_1CC_elu GIN in
molecular functions (Figure 5(c)).
In functional enrichment analysis, several GO terms in

a gene group may be significant with different subsets of
genes under a given p-value. Thus in each gene group,
we calculate the percentage of genes which are associated

with a GO term under a p-value. The largest percentage
in a gene group is used for this group. Given a p-value,
we then calculate the mean and standard deviation of the
largest gene percentage for all gene groups. The result is
shown in Table 3. Again, the reliable GIN has much
higher value than the PCC 1CC elu GIN. In a word, the
reliable GIN is more functionally meaningful than the
PCC 1CC elu GIN.

Case studies
Interesting patterns in biopathways
To show the usefulness of our method, we investigate
several subsequential patterns of genes using the process
below. We firstly obtained an integrative GIN with occ =
12 and len = 0.3. This parameter setting is used, on one
hand, because it results in a reliable and small GIN for
analysis; on the other hand, because a large GIN would
produce subsequential patterns each with too many
genes which cannot be easily investigated. Then, we
filtered subsequential patterns of genes in each dataset
by removing those genes which are not in the integra-
tive GIN. After that, we select five subsequential pat-
terns of genes for investigation. The five patterns, each
from a dataset, are shown in Table 4.
The first pattern in Table 4 is from the alpha38

dataset. This pattern has 7 genes and 6 of them (in bold
in Table 4) are in the bio-pathway of Ribosome biogenesis
in Eukaryotes. How these genes are involved in the bio-
pathway is shown in Figure 6(a). In Figure 6(a), the three
genes–YGR128C, YLR222C and YCR057C–are involved
in 90S pre-ribosome particle in Ribosome biogenesis in
Eukaryotes, YPL093W and YER006W are critical to
mature pre-60S, and YHR170W is an adapter protein to
help to export pre-ribosomal units to cytoplasm. What is
interesting is that Ribosome biogenesis is closely linked to
such cellular activities as growth and division, while the
datasets used in this work describe how eukaryotic yeast
cells grow, mature and divide to produce daughter cells.
Since the datasets used in this work is about yeast cell

cycle, we select another four subsequential patterns (as
shown in Table 4 respectively from the alpha30, cdc15,
cdc28 and alpha) for the bio-pathway of Cell cycle - yeast.
Each of the four patterns has significant overlapping genes
with the bio-pathway, and they totally have 17 genes in
the bio-pathway. The relation of those 17 genes in the bio-
pathway is shown in Figure 6(b). Figure 6 clearly illustrates
that filtered patterns are useful to uncover those genes in a
same bio-pathway.
The overlapping of a reliable GIN and 4 ribosomal protein
complexes
We also check the overlapping of 4 ribosomal protein com-
plexes and a reliable GIN with occ = 12 and len = 0.25.
The 4 complexes–i.e., cytoplasmic ribosomal large subunit
with 81 proteins, cytoplasmic ribosomal small subunit with

Table 2 The number (indicated in the second column in a
descending order) of interactions of genes which co-occur
in those biopathways.

Pathway name # of gene interactions

Metabolic pathways 192

Cell cycle - yeast 69

Ribosome biogenesis in Eukaryotes 42

Ribosome 33

Meiosis - yeast 31

Biosynthesis of secondary metabolites 27

Cell Cycle and Cell Division 24

Purine metabolism 21

Cytoplasmic Ribosomal Proteins 20

DNA replication 20

Pyrimidine metabolism 16

Nucleotide excision repair 10

Mismatch repair 8

Protein processing in endoplasmic reticulum 8

Base excision repair 7

N-Glycan biosynthesis 6

Oxidative phosphorylation 5

The reliable GIN used here is associated with occ = 12 and the percentage of
len equal to 0.25.
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Figure 3 The evaluation using regulatory interactions between transcription factors and genes for two kinds of inferred GINs: one
kind using our framework, and the other using PCC on the first TCGxCC datasets (i.e., the first cell cycle data) of elu (1CC elu for
short), cdc28 (1CC cdc28 for short) and alpha30 (1CC alpha30 for short). ‘Pattern’ represents an integrative reliable GIN. The subfigure (a) uses
global recall, while the subfigure (b) uses local recall. Global recall usually decreases when occ increases from a smaller value (11) to a larger value (12)
and len from 0.25 to 0.3 and then to 0.35, while local recall does not have this relation. Thus, there are lines and curves in (a), but not in (b).
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57 proteins, mitochondrial ribosomal large subunit with 44
proteins, and mitochondrial ribosomal small subunit with
32 proteins–are downloaded from http://yeast-complexes.
russelllab.org/complexview.pl?rm=download. They respec-
tively have 38, 18, 24 and 17 proteins in the time-series
datasets. For each complex, we get a subnetwork only with
those edges whose proteins are both in the complex. These
subnetworks are shown in Figure 7 with 20, 4, 6 and 10
proteins respectively for 4 complexes. It seems that the pro-
teins in a same complex have significant connections in the
reliable GIN. For example, the complex of cytoplasmic ribo-
somal large subunit have three connected subnetworks
derived from the reliable GIN, demonstrating that many
gene interactions in the reliable GIN are consistent with
domain knowledge from protein complexes. Please note

that our algorithm is not specifically designed for protein
complex prediction and those genes in a pattern might
indicate different properties of gene behaviors, such as in
protein-protein interactions, biopathways, transcriptional
regulations and/or other GO functions, while protein com-
plexes are only one of these gene behaviors.

Conclusion
In this work, we developed a framework of how to recon-
struct a reliable gene interaction network from multiple
time-course gene expression datasets. We proposed a
novel subsequential pattern to capture potential gene
interactions on each time-course gene expression dataset.
We then reconstructed individual gene interaction net-
works using these patterns. After that, we built the reliable

Figure 4 The distribution of gene interactions in integrative reliable GINs. (a) The degree distribution of genes in the integrative reliable
GIN with occ = 12 and the percentage of len equal to 0.25. (b) The network view of the integrative reliable GIN with occ = 12 and the
percentage of len equal to 0.25. (c) The network view of the smaller integrative reliable GIN with occ = 12 and the percentage of len equal to
0.3. This smaller GIN is for better view only. Each node in (b) and (c) represents a gene, and an edge denotes a gene interaction.
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Figure 5 Functional enrichment analysis: The percentage of gene groups with significant GO terms. In each gene group, genes are
associated with a same transcription factor in a given GIN. (a) GO terms: biological processes. (b) GO terms: cellular components. (c) GO terms:
molecular functions. ‘Pattern’ represents an integrative reliable GIN. Y-axis represents the percentage of gene groups which have a GO term
under corresponding p-value requirements over all gene groups whose size is not less than 10. Gene groups whose size is less than 10 are not
used in functional enrichment analysis.
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Table 3 Functional enrichment analysis: The statistics of the percentage of genes in each gene group where genes are
associated with a same transcription factor in a given GIN.

p value Biological Processes Cellular Components Molecular Functions

reliable GIN PCC elu1 GIN reliable GIN PCC elu1 GIN reliable GIN PCC elu1 GIN

< 0.00001 0.14 ± 0.23 0.09 ± 0.20 0.12 ± 0.20 0.10 ± 0.22 0.02 ± 0.08 0.00 ± 0.00

< 0.0001 0.23 ± 0.27 0.11 ± 0.21 0.14 ± 0.21 0.11 ± 0.22 0.04 ± 0.11 0.00 ± 0.02

< 0.001 0.27 ± 0.32 0.19 ± 0.29 0.22 ± 0.26 0.21 ± 0.31 0.08 ± 0.16 0.03 ± 0.12

< 0.01 0.33 ± 0.36 0.28 ± 0.32 0.31 ± 0.35 0.26 ± 0.37 0.14 ± 0.21 0.07 ± 0.19
1: the PCC 1CC elu GINs. In the format of XXX ± YYY, XXX(YYY) is the mean(standard deviation) of the percentages of genes in gene groups which have
significant GO terms under a given p-value.

Each gene group may be associated with several significant GO terms. The largest percentage of genes is used for a gene group. If a gene group has no
significant GO term, the percentage is 0.

Table 4 Five subsequential patterns for case studies.

ID dataset #genes1 genes bio-pathway

1 alpha38 6/7 YGL111W, YGR128C, YHR170W, YLR222C, YCR057C, YPL093W, YER006W Ribosome biogenesis in
Eukaryotes

2 alpha30 6/10 YGL116W, YGR099W, YGR109C, YIL026C, YLR103C, YMR031C, YPL144W, YPR113W, YDR113C,
YER111C

Cell cycle - yeast

3 cdc15 7/12 YGL003C, YBR009C, YIL140W, YJL187C, YML027W, YMR199W, YNL030W, YOL007C YOR114W,
YOR195W, YPL256C, YDL003W

4 cdc28 6/10 YGL027C, YJL187C, YLL022C, YLR103C, YMR199W, YPL153C, YDL003W, YDL018C YDR097C,
YFL008W

5 alpha 6/14 YBR089W, YKL032C, YLR103C, YML102W, YCL061C, YNL233W, YNL339C, YPL256C YPR202W,
YDL003W, YDL101C, YBL003C YER001W, YER111C

1: in this column, X/Y denotes that the subsequential pattern contains Y genes and × genes are in the corresponding bio-pathways. Genes in bold are contained
in the bio-pathways.

Figure 6 The overlapping of five subsequential patterns of genes and the two bio-pathways. (a) the overlapping of the first subsequential
pattern in Table 4 and the bio-pathway of Ribosome biogenesis in Eukaryotes. (b) the overlapping of the last four subsequential patterns in Table 4 and
the bio-pathway of Cell cycle - yeast. Genes in bold are those genes involved in the corresponding bio-pathways, while genes in gray are not covered
by the four subsequential patterns. Arrows in bold denote molecular interactions or relations, while lines with big dots represent inhibitions.
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gene interaction network using those gene interactions
which are conserved in individual gene interaction net-
works. We validated the reliable gene interaction network
using three kinds of external data whose gene relation was
determined by wet-lab experiments. The results demon-
strated that our algorithm is substantially useful to deci-
pher gene interaction networks from multiple time-course
gene expression data, especially for less studied organisms
where little knowledge is available except gene expression
data.
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