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OBJECTIVE—We studied how glucose and ATP-sensitive K�

(KATP) channel modulators affect �-cell [Ca2�]c.

RESEARCH DESIGN AND METHODS—GYY mice (express-
ing enhanced yellow fluorescent protein in �-cells) and NMRI
mice were used. [Ca2�]c, the KATP current (IKATP, perforated
mode) and cell metabolism [NAD(P)H fluorescence] were mon-
itored in single �-cells and, for comparison, in single �-cells.

RESULTS—In 0.5 mmol/l glucose, [Ca2�]c oscillated in some
�-cells and was basal in the others. Increasing glucose to 15
mmol/l decreased [Ca2�]c by �30% in oscillating cells and was
ineffective in the others. �-Cell IKATP was inhibited by tolbut-
amide and activated by diazoxide or the mitochondrial poison
azide, as in �-cells. Tolbutamide increased �-cell [Ca2�]c,
whereas diazoxide and azide abolished [Ca2�]c oscillations.
Increasing glucose from 0.5 to 15 mmol/l did not change IKATP
and NAD(P)H fluorescence in �-cells in contrast to �-cells. The
use of nimodipine showed that L-type Ca2� channels are the
main conduits for Ca2� influx in �-cells. �-Aminobutyric acid and
zinc did not decrease �-cell [Ca2�]c, and insulin, although
lowering [Ca2�]c very modestly, did not affect glucagon
secretion.

CONCLUSIONS—�-Cells display similarities with �-cells: KATP
channels control Ca2� influx mainly through L-type Ca2� chan-
nels. However, �-cells have distinct features from �-cells: Most
KATP channels are already closed at low glucose, glucose does
not affect cell metabolism and IKATP, and it slightly decreases
[Ca2�]c. Hence, glucose and KATP channel modulators exert
distinct effects on �-cell [Ca2�]c. The direct small glucose-
induced drop in �-cell [Ca2�]c contributes likely only partly to
the strong glucose-induced inhibition of glucagon secretion in
islets. Diabetes 58:412–421, 2009

G
lucagon secretion is normally inhibited by hy-
perglycemia and stimulated by hypoglycemia,
but alterations of its physiological regulation
contribute to abnormal glucose homeostasis in

diabetes (1,2). The cellular mechanisms controlling gluca-
gon secretion are still unclear. In particular, whether

glucose directly or indirectly influences �-cells remains
disputed. An indirect inhibition of glucagon secretion by
glucose has variably been ascribed to glucose-induced
release of an inhibitory paracrine messenger from �- or
�-cells, such as insulin (3–5), �-aminobutyric acid (GABA)
(4,6–9), Zn2� (10,11), or somatostatin (12,13).

In contrast, the models attributing glucose inhibition of
glucagon secretion to a direct action in �-cells implicate a
decrease of �-cell [Ca2�]c by the sugar (14). A first
mechanism attributes a key role to ATP-sensitive K�

(KATP) channels. In �-cells, the metabolism of glucose
increases the cytosolic ATP-to-ADP ratio, which closes
KATP channels in the plasma membrane. This leads to
plasma membrane depolarization, opening of high-thresh-
old voltage-dependent Ca2� channels (VDCC, mainly of
the L-type), Ca2� influx, and increase in [Ca2�]c, which
triggers insulin secretion. According to the model, the
KATP current (IKATP) in �-cells is already small at low
glucose, so that the plasma membrane is slightly depolar-
ized to the threshold for activation of low-threshold volt-
age-dependent Na� channels and VDCCs participating in
action potential generation. At high glucose, further clo-
sure of KATP channels depolarizes the �-cell plasma mem-
brane to a potential where low-threshold voltage-
dependent channels inactivate, preventing action potential
generation, arresting Ca2� influx, lowering [Ca2�]c and
eventually inhibiting glucagon secretion (15,16). An alter-
native mechanism of direct inhibition of �-cells by glucose
suggests that the arrest of Ca2� influx occurs indepen-
dently of a modulation of KATP channels and is mediated
by a hyperpolarization of the plasma membrane resulting
from glucose-induced reduction of a depolarizing store-
operated current (ISOC) (17,18).

One major reason for this lack of consensus is that
identification of living �-cells among other islet cells is not
straightforward. We recently developed a new model, the
GYY mouse, allowing rapid identification of living �-cells
thanks to their specific expression of the enhanced yellow
fluorescent protein (EYFP) (19). In the present study, we
used this model to evaluate the impact of glucose on cell
metabolism [NAD(P)H fluorescence], IKATP, and [Ca2�]c in
isolated �-cells. The responses of �-cells were compared
with those of �-cells. We also evaluated the effects of KATP
channel modulators and candidate paracrine factors re-
leased by �-cells on �-cell [Ca2�]c.

RESEARCH DESIGN AND METHODS

Most experiments were performed with our mouse models expressing EYFP
specifically in �- or �-cells and referred to as GYY and RIPYY mice,
respectively (19). NMRI mice were used as controls. The study was approved
by our Commission d’Ethique d’Experimentation Animale.
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Preparations and solutions. Islets were obtained by collagenase digestion
of the pancreas, and single cells were prepared by dispersion in a Ca2�-free
medium. Islet cells were cultured for 1–4 days on coverslips in RPMI 1640
containing 7 mmol/l glucose.

The extracellular solution contained 120 mmol/l NaCl, 4.8 mmol/l KCl, 1.5
mmol/l CaCl2, 1.2 mmol/l MgCl2, 24 mmol/l NaHCO3, and 1 mg/ml BSA (pH
7.4). It was gassed with O2:CO2 (94:6%). The 2.5-mmol/l amino acid mixture
used in some experiments contained 0.5 mmol/l alanine, 0.5 mmol/l leucine,
0.75 mmol/l glutamine, and 0.75 mmol/l lysine. For IKATP and membrane
potential recordings, the extracellular medium was devoid of BSA and
supplemented with 5 mmol/l HEPES. Pipette solution contained 70 mmol/l
K2SO4, 10 mmol/l NaCl, 10 mmol/l KCl, 3.7 mmol/l MgCl2, and 5 mmol/l HEPES
(pH 7.1).
Identification of �-cells of GYY mice with DsRed. To identify �-cells from
GYY mice, islet cells were infected with the AdRIPBgliDsRed adenovirus
ensuring a �-cell specific expression of DsRed (a description is available in an
online appendix at http://dx.doi.org/10.2337/db07-1298.).
[Ca2�]c, NAD(P)H, IKATP, and glucagon secretion measurements. Cells
expressing EYFP (excitation, 490 nm; emission, 535 nm) or DsRed (excitation,
540 nm; emission, 610 nm) were first selected. [Ca2�]c (fura-PE3 or fura-2) and
NAD(P)H fluorescences were monitored at 37°C as described previously (19).
It was verified that EYFP fluorescence did not contaminate [Ca2�]c and
NAD(P)H signals. IKATP was recorded at 31–32°C in the perforated mode by
applying 100-ms-duration pulses of �20 mV from a holding potential of �80
mV as reported previously (20). Membrane potential measurements were
performed at 33°C in the perforated mode in current-clamp. Glucagon
secretion from batches of 200 islets of GYY mice was monitored in perifusion
experiments as described previously (19).
Statistical analysis. Data are shown as representative traces or means � SE
of results obtained with the indicated number of cells or batches of 200 islets
(Fig. 7D only) from at least three different cultures. The statistical significance
of differences between means was assessed by paired Student’s t test.

RESULTS

Effects of glucose on [Ca2�]c in �-cells. Because
EYFP and fura-PE3 excitation spectra do not overlap,
[Ca2�]c could be easily monitored in EYFP-expressing
�-cells. In the presence of 0.5 mmol/l glucose, [Ca2�]c
oscillated in 31% (175 of 555) of �-cells (Fig. 1B) and
was stable at basal levels in the others (Fig. 1A).
Non-oscillating and oscillating �-cells were equally re-
sponsive to arginine and adrenaline, indicating that they
are both physiologically normal (not shown). Increasing
the glucose concentration from 0.5 (G0.5) to 15 mmol/l
(G15) did not affect [Ca2�]c in non-oscillating �-cells
(Fig. 1A; n 	 21) and slightly decreased it in oscillating
�-cells (Fig. 1B). In the latter group, average [Ca2�]c
integrated over the last 17 min of perifusion with G15
was 28% lower than average [Ca2�]c in G0.5 (n 	 35, P 

0.05).

We next tested the effect of glucose on �-cell [Ca2�]c in
the presence of a 2.5-mmol/l mixture of amino acids that
potentiate glucagon secretion (21). This mild stimulatory
condition increased the proportion of �-cells displaying
[Ca2�]c oscillations in G0.5 to 70% (180 of 255), which
made it easier to study the inhibitory effect of high
glucose. Increasing the glucose concentration from 0.5 to
15 mmol/l decreased [Ca2�]c (integrated over the last 27
min in G15) to a similar extent (by 24%; n 	 54, P 
 0.05)
as without amino acids (Fig. 1C). We also monitored
[Ca2�]c in NMRI �-cells identified by their response to
adrenaline applied at the end of the experiment (17,22). In
the presence of G0.5, [Ca2�]c oscillated in 20% (16 of 82) of
�-cells in the absence of amino acids and in 67% (67 of 100)
of �-cells in the presence of 2.5-mmol/l amino acid mix-
ture. The effect of G15 on [Ca2�]c in NMRI �-cells was
similar to that observed in GYY �-cells (Fig. 1D), with a
32% drop in average [Ca2�]c (integrated over the last 27
min in G15) compared with initial [Ca2�]c in low glucose
(n 	 46, P 
 0.01).

[Ca2�]c oscillations had very heterogeneous patterns,
being irregular or mixed, composed of oscillations of
various amplitude and frequency (Fig. 2A and beginning of
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FIG. 1. Glucose slightly decreases oscillating [Ca2�]c in �-cells isolated
from GYY (A–C) and NMRI mice (D, adrenaline-responsive cells). A–D:
The glucose (G) concentration was changed between 0.5 and 15 mmol/l,
and adrenaline (Adr, 10 �mol/l) was added as indicated. C and D: The
perifusion medium was supplemented with a 2.5-mmol/l mixture of amino
acids (mix AA). Data are means � SE of results obtained in 21 (A), 35 (B),
and 54 (C) isolated GYY �-cells and in 46 isolated NMRI �-cells (D).
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Fig. 3B and E). The pattern was not obviously affected by
glucose or amino acids. The oscillations resulted from
concomitant membrane potential oscillations with bursts

of spikes (Fig. 2B). The electrical spiking involved Ca2�

channels because it was abolished in a Ca2�-free medium
(Fig. 2C).

A

B

C

FIG. 2. Spontaneous [Ca2�]c oscillations in isolated mouse �-cells are highly variable and result from synchronous and intermittent Ca2�-dependent
spiking electrical activity. �-Cells were perifused with a medium containing 0.5 mmol/l glucose (G0.5) and a 2.5-mmol/l mixture of amino acids (mix AA).
A: Examples of [Ca2�]c oscillations in three isolated �-cells. B and C: The membrane potential (MP) was recorded in single �-cells in the perforated
mode of the patch-clamp technique, and in B, it was simultaneously monitored with [Ca2�]c. Note the overshoots in the spikes, a typical feature of
�-cells (inset in B). In C, �-cells were first perifused with a medium containing 1.5 mmol/l Ca2� (Ca1.5) and then, when indicated, with a Ca2�-free
medium supplemented with 200 �mol/l EGTA (Ca0). Traces are representative of results obtained in 910 (A), 8 (B), and 3 (C) �-cells from GYY mice.

GLUCOSE, KATP CHANNELS, AND [Ca2�]c IN �-CELLS

414 DIABETES, VOL. 58, FEBRUARY 2009



Closure of KATP channels increases [Ca2�]c in �-cells.

We next tested modulators of KATP channels on �-cell
[Ca2�]c. When [Ca2�]c was low and stable in G0.5, addition
of 10 �mol/l tolbutamide increased [Ca2�]c (Fig. 3A).
Subsequent addition of 100 �mol/l diazoxide reversed the
effects of tolbutamide (Fig. 3A). When [Ca2�]c was oscil-
lating in low glucose, 100 �mol/l diazoxide decreased
[Ca2�]c to basal levels, and this effect was reversed by 100
�mol/l tolbutamide (Fig. 3B). Similar results were ob-
served in the presence of 2.5-mmol/l amino acid mixture
(19). Low diazoxide concentrations (1–3 �mol/l) failed to
affect oscillating or basal [Ca2�]c (Fig. 3C). Diazoxide was
also ineffective at 10 �mol/l in non-oscillating cells peri-
fused with G15 (n 	 8, not shown). Figure 3D shows that
100 �mol/l diazoxide prevented 10 mmol/l arginine from
increasing [Ca2�]c in �-cells. Overall, these data indicate
that [Ca2�]c oscillations in the presence of glucose alone
and Ca2� influx induced by arginine occur only when most
KATP channels are closed.

We next tested whether �-cell [Ca2�]c was affected by
perturbation of cell metabolism. In the presence of 2.5-
mmol/l amino acid mixture, the mitochondrial poison
azide reversibly abolished spontaneous [Ca2�]c oscilla-
tions occurring in G0.5 and lowered [Ca2�]c to basal levels.
Subsequent closure of KATP channels with 500 �mol/l
tolbutamide reversed this inhibition (Fig. 3E). A similar
effect of azide was observed in the absence of amino acids
and occurred in glucose-stimulated �-cells (not shown).
The comparable response of �- and �-cells to azide sug-
gests that the membrane potential is influenced by metab-
olism in both cell types. We therefore compared their
IKATP.
�-Cells possess KATP channels that are insensitive to
glucose. EYFP-expressing cells from GYY mice had a
capacitance of 4.5 � 0.19 pF/cell (n 	 42) versus 6.77 �
0.37 pF/cell (n 	 18) for those from RIPYY mice. These
results agree with previous reports showing that �-cells
are smaller than �-cells (14,23,24).

IKATP was measured in the perforated mode of the
patch-clamp technique in �- and �-cells from GYY mice
and in �-cells from RIPYY mice. For some experiments,
islet cells from GYY mice were infected with the recom-
binant adenovirus AdRIPBgliDsRed 2 days before the
experiments to permit easy identification of �-cells (red)
and �-cells (yellow) before recordings. Insulin immunode-
tection showed that DsRed was exclusively targeted to
�-cells (supplementary Fig. 1A–C, available in the online
appendix) but that only �45% �-cells were fluorescent for
DsRed (43 of 94). Importantly, DsRed and EYFP were
consistently expressed in distinct cell types (supplemen-
tary Fig. 1D).

We first compared IKATP in �- and �-cells from GYY
mice. During perifusion with G15, IKATP was small in
�-cells (39.5 � 9.5 pS/pF, n 	 5) and �-cells (21.5 � 3.5
pS/pF, n 	 5) (Fig. 4A and B). The maximal density of
IKATP was estimated by perifusing the cells with 250 �mol/l
diazoxide and 1 mmol/l sodium azide. IKATP was 30%
smaller (but not statistically different) in �- (490 � 72
pS/pF) than �-cells (695 � 130 pS/pF). Closure of KATP
channels by 250 �mol/l tolbutamide in the presence of G15
decreased IKATP to slightly lower, but not significantly
different, values (29.7 � 7 pS/pF in �-cells and 15.2 � 1.5
pS/pF in �-cells) than those measured in G15 alone (Fig.
4A and B). This indicates that in the sole presence of G15,
most, although not all, KATP channels are closed in �-cells
and in �-cells (25). To determine whether infection had

FIG. 3. Effects of drugs on [Ca2�]c in �-cells. Closure of KATP channels by
tolbutamide induced [Ca2�]c oscillations, whereas opening of KATP chan-
nels with diazoxide and blockade of cell metabolism with sodium azide
lowered [Ca2�]c to basal levels in isolated �-cells from GYY mice. The
perifusion medium contained 0.5 (A--C and E) or 15 mmol/l (C and D)
glucose (G) and a 2.5-mmol/l mixture of amino acids (mix AA) (C, top

trace, and E). A: Sequential addition of 10 �mol/l tolbutamide (Tb) and
100 �mol/l diazoxide (Dz). B: Sequential addition of 100 �mol/l diazoxide
(Dz) and 100 �mol/l tolbutamide (Tb). C: The diazoxide concentration
(Dz) was increased stepwise, and 100 �mol/l tolbutamide (Tb) was
applied as indicated. D: Arginine (Arg; 10 mmol/l) and 100 �mol/l diazox-
ide (Dz) were applied when indicated. E. Sodium azide (2 mmol/l), 500
�mol/l tolbutamide (Tb), and 10 �mol/l adrenaline (Adr) were applied as
indicated. Traces are representative of results obtained in 9 (A), 8 (B), 8
(G15; C), 46 (G0.5 � mix AA; C), 12 (D), and 19 (E) �-cells from GYY mice.
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affected the current density, we performed similar exper-
iments in noninfected �-cells from GYY mice. No effect of
infection was observed: IKATP was 34.2 � 4.5 pS/pF (n 	 6)
in G15, 432 � 92 pS/pF in the presence of diazoxide and

azide, and 23 � 3 pS/pF after addition of 250 �mol/l
tolbutamide (not shown). Overall, these results highlight
the similarities of IKATP between �- and �-cells.

We next investigated whether glucose influences �-cell
IKATP. To validate our measurements, IKATP was first
recorded in �-cells from RIPYY mice. As expected, the
large IKATP in G0.5 was reversibly inhibited from 242 � 72
to 27.5 � 8 pS/pF by G15 (n 	 5; Fig. 4C) and from 211 �
106 to 30 � 15 pS/pF by 250 �mol/l tolbutamide (n 	 4, not
shown). By contrast, glucose did not affect IKATP in �-cells
(38.5 � 8.7 and 39.2 � 9.5 pS/pF (n 	 5) in G0.5 and G15,
respectively; Fig. 4D). However, �-cell IKATP was reduced
by 30% by 250 �mol/l tolbutamide (from 33.2 � 8.7 to
21.0 � 1.7 pS/pF, n 	 12, not statistically different, not
shown) and increased by diazoxide (from 38.5 � 8.7 to
141 � 51 pS/pF, n 	 5; Fig. 4D). In the presence of G15, 2
mmol/l azide reversibly increased IKATP from 33 � 8.2 to
138 � 39 pS/pF (Fig. 4E; n 	 5, P 
 0.05) indicating that
KATP channels in �-cells can be controlled by changes in
cell metabolism.
Glucose does not affect NAD(P)H fluorescence in
�-cells. NAD(P)H fluorescence can be used to monitor
nutrient-induced changes in �-cell metabolism. We there-
fore compared the influence of glucose on NAD(P)H
fluorescence in isolated �-cells and EYFP-negative islet
cells (most of them presumably being �-cells). Figure 5A
shows that increasing the glucose concentration from 0.5
to 15 mmol/l induced a reversible increase of NAD(P)H
fluorescence in EYFP-negative cells (�-cells) (n 	 14) but
had no effect on �-cell NAD(P)H fluorescence (n 	 30).
Azide, which blocks the electron transport chain and
inhibits NAD(P)H oxidation, evoked a small increase of
NAD(P)H fluorescence in �- and �-cells. Similar results
were observed in the presence of 2.5-mmol/l amino acid
mixture (not shown).

The same experiment was performed in NMRI islet
cells. After each NAD(P)H measurement, cells were
loaded with fura-2 on the stage of the microscope, and the
[Ca2�]c response to adrenaline was monitored to distin-
guish �-cells from non–�-cells. Figure 5B shows that G15
reversibly raised NAD(P)H fluorescence in adrenaline-
nonresponsive cells (most of them presumably being
�-cells, n 	 18), whereas it barely affected NAD(P)H
fluorescence in adrenaline-responsive cells (presumably
�-cells, n 	 33). These results suggest that oxidative
metabolism, hence ATP synthesis, is not significantly
accelerated by high glucose in �-cells and may explain the
lack of effect of glucose on IKATP in �-cells.
Effects of glucose on [Ca2�]c in depolarized �-cells.
The above-described experiments showed that glucose
slightly decreased [Ca2�]c without affecting IKATP. Our
conclusion is supported by experiments performed after
maximal closure of KATP channels with 500 �mol/l tolbut-
amide. Increasing the glucose concentration from 0.5 to 15
mmol/l under these conditions again induced a 42% drop of
average [Ca2�]c (Fig. 6A; n 	 26, P 
 0.01). To determine
whether this [Ca2�]c decrease results from a direct inhibi-
tion of VDCCs, glucose was tested in �-cells depolarized with
30 mmol/l K�. Under these conditions, [Ca2�]c was steadily
elevated because of the forced opening of VDCCs, and
glucose was ineffective (Fig. 6B; n 	 19).
GABA and zinc did not decrease �-cell [Ca2�]c, and
insulin, although lowering [Ca2�]c very modestly, did
not affect glucagon secretion. We tested the effect of
three candidate paracrine factors released by �-cells,
GABA, zinc, and insulin, on �-cell [Ca2�]c in a medium
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FIG. 4. �-Cells possess a IKATP with similar characteristics to those of
�-cells, except for its insensitivity to glucose. IKATP was monitored by
pulses of �20 mV from a holding potential of �80 mV using the perforated
mode of the patch-clamp technique. The current density was obtained by
dividing the amplitude of the current by the membrane capacitance of the
cell. IKATP was recorded in �-cells (A) and �-cells (B) from GYY mice
infected with AdRIPBgliDsRed, in noninfected �-cells from RIPYY mice
(C), and in noninfected �-cells from GYY mice (D and E). The glucose (G)
concentration was 15 mmol/l throughout (A-B and E), or changed between
0.5 and 15 mmol/l as indicated (C and D). Sodium azide (1 mmol/l in A and
B or 2 mmol/l in E), 250 �mol/l diazoxide (Dz; A, B, D, and E), and 250
�mol/l tolbutamide (Tb; A and B) were applied when indicated. Each trace
is representative of five experiments.
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containing G0.5 and 2.5-mmol/l amino acid mixture. GABA
(100 �mol/l) and zinc (3 and 30 �mol/l) did not affect
[Ca2�]c except for an initial, small, transient increase by
zinc (Fig. 7A and B). Addition of 100 nmol/l insulin
decreased [Ca2�]c in only 5 of 21 cells, leaving [Ca2�]c
unchanged in the others. On average, insulin slightly
decreased [Ca2�]c from 234 � 10 to 212 � 12 nmol/l (Fig.
7C; n 	 21). However, it failed to affect glucagon secretion
and did not prevent the strong (70%) inhibitory effect of
glucose on glucagon secretion (Fig. 7D).
Ca2� influx through L-type VDCCs. We finally evalu-
ated the importance of Ca2� influx through L-type VDCCs
in �-cells. As illustrated by Fig. 8, 1 �mol/l nimodipine
inhibited the [Ca2�]c increase occurring during the spon-
taneous [Ca2�]c oscillations in G0.5 (by 74%) or induced by
tolbutamide or arginine (by 85% for both agents). By
contrast, as expected (22), the drug did not prevent the
[Ca2�]c elevation elicited by 10 �mol/l adrenaline.

DISCUSSION

In this study, we used our GYY mouse model expressing
EYFP in �-cells (19) to study the mechanisms by which
glucose controls �-cell [Ca2�]c. The validation of our GYY

mouse is extended here by the similarity of key results in
GYY �-cells and NMRI �-cells identified by their response
to adrenaline (22).

In the presence of a low glucose concentration, [Ca2�]c
was found to oscillate in only �30% of �-cells; similar
proportions were reported by others (3,17). As expected,
the percentage of oscillating �-cells increased to �70% in
the presence of a 2.5-mmol/l mixture of amino acids
known to stimulate glucagon release (21). These oscilla-
tions resulted from rhythmic Ca2�-dependent spiking ac-
tivity.
Direct effects of glucose in �-cells. Whether the inhibi-
tion of glucagon secretion by glucose results from direct
or indirect effects remains disputed (3,5,9,16,18,26–28).
Our observation that high glucose induced a small [Ca2�]c
decrease in isolated �-cells supports a direct effect. Sev-
eral mechanisms have been suggested to explain direct
effects of glucose on �-cells. One hypothesis implicates
KATP channels. With only one exception (29), previous
studies agree that �-cells possess KATP channels
(9,11,15,16,23,30,31). However, their possible role in stim-
ulus-secretion coupling remains obscure. Thus, glucagon
secretion has been shown to be stimulated (9,11), unaf-
fected (32), or inhibited (15,33,34) on closure of KATP
channels by sulfonylureas. Species differences can only
partly account for these contradictions (9,14,30), because
results are also controversial within the same species. For
instance, tolbutamide was reported to decrease (33), not
to affect (29), or to increase (17) [Ca2�]c in mouse �-cells.
In the present study, we demonstrated that �-cells display
several essential features of �-cells. IKATP is inhibited by
tolbutamide and increased by diazoxide. Its maximal am-
plitude is only 30% smaller than in �-cells. It is controlled
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FIG. 5. Glucose increases NAD(P)H fluorescence in isolated �-cells but
not in isolated �-cells. NAD(P)H fluorescence is expressed as a per-
centage of the maximum signal recorded in the presence of azide. The
glucose (G) concentration was changed between 0.5 and 15 mmol/l, and
5 mmol/l sodium azide was added when indicated. For all experiments,
NAD(P)H fluorescence was first monitored. Thereafter, islet cells were
loaded with fura-2/AM for 20 min on the stage of the microscope and
then challenged with 10 �mol/l adrenaline. Cells that responded to
adrenaline were considered as �-cells. A: �-Cells from GYY mice were
identified by their EYFP fluorescence before NAD(P)H fluorescence
measurement, and their [Ca2�]c responsiveness to adrenaline was
verified thereafter. The EYFP-negative cells were not responsive to
adrenaline, and most of them were presumably �-cells. B: Isolated cells
from NMRI mouse islets were monitored for NAD(P)H fluorescence,
and their [Ca2�]c responsiveness to adrenaline was verified thereafter.
Adrenaline-responsive and -nonresponsive cells were considered as �-
and �-cells, respectively. Data are means � SE of results obtained in 30
�-cells and 14 EYFP-negative cells from GYY mice (A) and in 18
adrenaline-nonresponsive cells and 33 adrenaline-responsive cells
from NMRI mice (B).

A

B

FIG. 6. Glucose decreases [Ca2�]c in �-cells independently from an
action on KATP and VDCCs. The glucose (G) concentration was changed
between 0.5 and 15 mmol/l, and 10 �mol/l adrenaline (Adr) was added
as indicated. A: Tolbutamide (Tb; 500 �mol/l) was applied as indicated.
B: The KCl concentration (K) in the perifusion medium was changed
from 4.8 to 30 mmol/l as indicated. Data are means � SE of results
obtained in 26 (A) and 19 (B) �-cells from GYY mice.
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by cell metabolism because mitochondrial poisoning of
the cells with azide reversibly increased it. As in �-cells,
KATP channels control the membrane potential and
[Ca2�]c. Thus, closing KATP channels with tolbutamide
triggered a [Ca2�]c rise. In contrast, opening KATP channels
with diazoxide or by decreasing cell metabolism with
azide decreases [Ca2�]c, very likely as a result of plasma
membrane hyperpolarization and arrest of Ca2� influx
through VDCCs. All of these results indicate that there is a
coupling between KATP channel activity and Ca2� influx
through VDCCs in isolated mouse �-cells as in �-cells.

However, we found that IKATP in �-cells was not affected
by glucose, remaining similarly low in the presence of 0.5
and 15 mmol/l glucose. This contrasts markedly with
�-cells in which IKATP is much larger in low than in high
glucose. These results are in keeping with our NAD(P)H
measurements, indicating that stimulation by high glucose
did not significantly increase �-cell metabolism while
producing its expected acceleration of �-cell metabolism.
The reasons for the lack of effect of glucose on �-cell
metabolism are unclear. Unlike �-cells, �-cells do not
express GLUT2 but the higher affinity GLUT1 transporter
(35), and both cell types possess glucokinase (36). Our
results are consistent with previous studies on �-cell
metabolism showing that glucose does not affect NAD(P)H
(37) and flavin adenine dinucleotide fluorescence (38,39)
or the ATP-to-ADP ratio (40). They are at variance with
other data on �-cells reporting an hyperpolarization of the
mitochondrial membrane potential (41), a small increase

FIG. 7. GABA and zinc did not decrease �-cell [Ca2�]c, and insulin,
although lowering [Ca2�]c very modestly, did not affect glucagon
secretion. The medium contained a 2.5-mmol/l amino acid mixture (mix
AA) and 0.5 mmol/l glucose (G). GABA (100 �mol/l), 3 or 30 �mol/l
ZnCl2, 100 nmol/l insulin, and 10 �mol/l adrenaline (Adr) were added
when indicated. Data are means � SE of results obtained in 31 (A), 7
(3 �mol/l ZnCl2; B), 43 (30 �mol/l ZnCl2; B), and 31 (C) �-cells from
GYY mice and from four glucagon secretion experiments with 200 islets
of GYY mice per chamber (D).

A

B
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FIG. 8. Spontaneous [Ca2�]c oscillations and the rise in [Ca2�]c elicited
by tolbutamide or arginine result from Ca2� influx through L-type
channels in �-cells. The glucose concentration was 0.5 mmol/l through-
out. Nimodipine (Nimo; 1 �mol/l), 10 �mol/l adrenaline (Adr; A-C), 100
�mol/l tolbutamide (Tb; B), and 10 mmol/l arginine (Arg; C) were
added when indicated. Data are means � SE of results obtained in 10
(A), 4 (B), and 7 (C) �-cells from GYY mice.
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in ATP concentration (3,10), and an inhibition of IKATP by
glucose (9). The reasons for these discrepancies are
unclear and could be due to differences in experimental
procedures (including selection of cells) and/or species.
The observation that �-cell IKATP was small in the presence
of 0.5 mmol/l glucose suggests that the ATP-to-ADP ratio is
high in low glucose. A previous report from our laboratory
has shown that the ATP-to-ADP ratio is much higher in �-
than �-cells maintained in a low-glucose concentration
(40). It is also possible that KATP channels are more
sensitive to ATP inhibition in �- than �-cells (23).

It is unclear why, at low glucose, [Ca2�]c oscillates in
some �-cells and remains at basal levels in others. The
similar responsiveness of the two groups of �-cells to
adrenaline (this study) and arginine (19) rules out a trivial
explanation of malfunctioning. Oscillating and silent cells
could correspond to two populations of �-cells either
equipped with different sets of VDCCs (42) or maintaining
small differences in input resistance (percentage of closed
KATP channels). The high input resistance measured at 0.5
mmol/l glucose (�5 G in our whole-cell recordings) can
explain why [Ca2�]c is elevated in one-third of the �-cells
in low glucose. This is consistent with the observation that
tolbutamide, which only slightly increased input resis-
tance, abruptly raised [Ca2�]c in all non-oscillating �-cells.
That [Ca2�]c oscillates in some �-cells and remains basal
in others is reminiscent of the situation found in isolated
mouse �-cells perifused with 7–8 mmol/l glucose, a thresh-
old concentration for �-cells. The high input resistance of
�-cells also explains why arginine increases [Ca2�]c in �-
but not in �-cells at a low glucose concentration. Thus,
decreasing the �-cell input resistance with diazoxide pre-
vented the effect of arginine.

It has been suggested that closure of most �-cell KATP
channels might depolarize the plasma membrane to such
an extent that voltage-dependent channels participating in
action potential generation inactivate (15,16,33). Support-
ing this model, low diazoxide concentrations were re-
ported to reverse glucose inhibition of glucagon secretion
by slightly reactivating KATP channels and relieving the
inactivation of voltage-dependent channels (16). Two of
our observations argue against this proposal. Tolbutamide
similarly increased [Ca2�]c at high and low concentrations,
and low diazoxide concentrations did not increase [Ca2�]c,
even in silent cells in G15.

Our findings that glucose did not significantly affect
IKATP and slightly decreased [Ca2�]c in the absence or
presence of a high concentration of tolbutamide, which
was expected to maximally close KATP channels, suggest
that glucose decreases [Ca2�]c independently from an
action on KATP channels. Its lack of effect during depolar-
ization with KCl also indicates that glucose does not
inhibit VDCCs. The small inhibitory effect of glucose on
[Ca2�]c likely results from a change in membrane poten-
tial, the mechanisms of which remain to be identified.
Indirect effects of glucose on �-cells. Other models
propose that glucose-induced inhibition of glucagon secre-
tion is indirect and mediated by �-cell–derived paracrine
factors: GABA, insulin, or zinc (27). This hypothesis is also
contested. GABA has been reported to inhibit glucagon
secretion by activating GABAA receptor channels in �-cells
(6,8,43), but some studies (18,41,44), including the present
one, failed to detect an effect of GABA in �-cells. However,
it is important to bear in mind that GABAA receptors
quickly desensitize and that a prolonged application of the
neurotransmitter might not reproduce the in vivo situa-

tion. Other experiments tested whether GABAA receptor
antagonists prevent the inhibition of glucagon secretion by
glucose, and again, conclusions in favor (6,43) or against
(7,16) the hypothesis were reached. Species differences
have been put forward to explain these conflicting results
(6,16,27).

Because of the inverse regulation of glucagon and
insulin secretion by glucose, insulin is an appealing can-
didate to mediate indirect inhibition of glucagon secretion.
Several reports suggest that insulin can at least partly
mediate the effect of glucose in �-cells (3–5,9,45), but this
hypothesis is refuted by others (18,21,46). In the present
study, we found a very small inhibitory effect of insulin on
[Ca2�]c that did not affect insulin secretion. Zinc, which
helps insulin storage in secretory granules, is coreleased
with insulin and has been suggested to mediate the indi-
rect effect of glucose on �-cells (10,46), possibly by
opening �-cell KATP channels (11). However, this hypoth-
esis is at variance with the observations that chelation of
zinc does not reverse glucose-induced inhibition of gluca-
gon release in mouse islets (16) and that zinc does not
decrease �-cell [Ca2�]c (this study) or even accelerates
[Ca2�]c oscillations (3,18). Again, species differences
might explain these contradictory results.

Although we acknowledge that isolated and cultured
�-cells, as studied here, may behave differently from
�-cells within intact islets, the fact that inhibition of
glucagon secretion by glucose largely occurs over a con-
centration range that is below the threshold for stimula-
tion of insulin secretion (3,9,18,47,48) is difficult to
reconcile with the proposed intervention of �-cell–derived
paracrine factors.

The nature of the VDCCs present in �-cells is another
controversial issue. It has been reported that mouse
�-cells in freshly isolated islets possess at least three types
of VDCCs, T-, N-, and L-type channels (14,16,49), and that
in the absence of cAMP production, N-type channels are
more important than L-type in the control of Ca2� influx
and exocytosis (49,50). However, others have been unable
to identify N-type Ca2� channels in mouse �-cells (24) and
have suggested that Ca2� influx mainly occurs through
L-type channels (17,24,34). Here, using nimodipine, a se-
lective L-type Ca2� channel blocker, we showed that Ca2�

influx stimulated by arginine and tolbutamide or occurring
in the sole presence of glucose takes place mainly through
L-type channels and, to a lesser extent, through non–L-
type channels.

CONCLUSIONS

Our data show that, as in �-cells, KATP channels can
transduce changes in cell metabolism into changes in
membrane potential and Ca2� influx through VDCCs in
mouse �-cells. We also show that, in contrast to �-cells,
isolated �-cells are poorly responsive to glucose that
slightly lowers [Ca2�]c without significantly affecting cell
metabolism or KATP channel activity. Hence, glucose and
KATP channel modulators exert distinct effects on �-cell
[Ca2�]c. The lowering of [Ca2�]c resulting from a direct
action of glucose on �-cells is modest and probably
insufficient to account for the robust inhibition of glucagon
secretion produced by glucose in whole islets (19). It is
therefore likely that glucose-induced inhibition of gluca-
gon secretion in the intact islets results from a combina-
tion of both effects of the sugar and indirect effects by islet
factors.
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