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Nicotinamide pathways as the root cause of sepsis – an
evolutionary perspective on macrophage energetic shifts
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Divergent pathways of macrophage metabolism occur during infection,

notably switching between oxidative phosphorylation and aerobic glycoly-

sis (Warburg-like metabolism). Concurrently, macrophages shift between

alternate and classical activation. A key enzyme upregulated in alterna-

tively activated macrophages is indoleamine 2,3-dioxygenase, which con-

verts tryptophan to kynurenine for de novo synthesis of nicotinamide.

Nicotinamide can be used to replenish cellular NAD+ supplies. We hypoth-

esize that an insufficient cellular NAD+ supply is the root cause of meta-

bolic shifts in macrophages. We assert that manipulation of nicotinamide

pathways may correct deleterious immune responses. We propose evalua-

tion of nicotinamide (Vitamin B3) and analogues, including isoniazid,

nicotinamide mononucleotide and nicotinamide riboside, as potential ther-

apy for infectious causes of sepsis, including COVID-19.

Introduction

Sepsis, not to be confused with ‘septicaemia’ (blood-

stream infection), is life-threatening organ dysfunction

condition caused by the body’s own dysregulated

response to infection [1]. Sepsis can be triggered by

diverse pathogens and noninfectious insults. Why some

people succumb to sepsis from triggers such as influ-

enza or SARS-CoV-2 infection, while others have mild

or asymptomatic infection, are unknown. Heightened

susceptibility with old age is common with many infec-

tions [2,3], as is the association with comorbidities

often described as immunosuppressive, including type

2 diabetes [3–7]. While many eyes focus on pathogen

itself, a closer look at host immune and metabolic

responses to diverse pathogens is critical.

Avenues of investigation from both ageing research

and immunology are converging attention on a path-

way, which connects immune responses with ageing [8–
13]. Nicotinamide adenine dinucleotide (NAD) in its

oxidized (NAD+) and reduced (NADH) forms plays an

essential role in energy metabolism in every eukaryotic

cell [14,15]. Ageing research has shown that NAD meta-

bolism is crucial in determining ‘healthy ageing’ [16].

Declining NAD+ levels and reduced NAD+ : NADH

ratios are associated with age-related declines in cellular

functions [17]. NAD-degrading enzymes including poly

(ADP-ribose) polymerases (PARPs), sirtuins and CD38

have similarly been linked with ageing. Sirtuins are

NAD+-dependent proteins involved in longevity
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associated with caloric restriction [18]. Similarly,

advances in immunology have shown that de novo pro-

duction of nicotinamide, a precursor of NAD+, is a cen-

tral pathway upregulated in many infectious diseases

[8,19]. In the macrophage, a central mediator of

immune responses, de novo NAD+ synthesis was

required to maintain an ‘anti-inflammatory homeostatic

state with robust phagocytic capacity’ [8].

We propose that sepsis due to SARS-CoV-2 or

other viral or bacterial infections is caused by patho-

gens interfering with host NAD metabolism. Elderly

individuals, or those with pre-existing diseases, may

already have certain aberrations in their NAD meta-

bolic pathways that predispose them to more severe

disease [20]. We will review recent understanding of

metabolic shifts in cells of the immune system, partic-

ularly macrophages, and link macrophage metabolic

shifts to intracellular NAD concentration as a focal

point. We use an evolutionary perspective to moti-

vate that alterations in NAD metabolism may be

causal rather than merely correlated with infectious

disease.

Nicotinamide and macrophage
phenotypes

In humans, nicotinamide is acquired from dietary

sources as vitamin B3 and subsequently recycled

through existing nicotinamide pools. Alternatively,

nicotinamide may be synthesized de novo from the

amino acid tryptophan. The rate-limiting enzyme for

de novo nicotinamide synthesis is indoleamine 2,3-dioxy-

genase (IDO), a haem-containing intracellular enzyme

found predominantly in cells of the macrophage/mono-

cyte lineage.

Macrophages have long been described as able to

become activated in one of two ways, simplistically

thought of as ‘pro-inflammatory’ and ‘anti-inflamma-

tory’ or termed by ‘M1’ and ‘M2’ nomenclature. Tech-

nicalities and disputes regarding nomenclature abound

[21], but the principle holds that macrophages have at

least two divergent ways of becoming activated, rather

than the stereotypical pro-inflammatory textbook ver-

sion. M1 macrophages secrete pro-inflammatory cytoki-

nes such as TNF alpha and interleukin 1-b, while M2

macrophages secrete cytokines such as interleukin-10,

which have immune suppressive functions and play a

role in wound healing.

Key enzyme activities differentiate between M1 and

M2 macrophages. From arginine as a substrate, M1

macrophages use nitric oxide synthase to make nitric

oxide, while M2 macrophages use arginase to catabo-

lize arginine to urea [22]. Most strikingly, M2

macrophages express IDO, which diverts tryptophan

to de novo synthesis of nicotinamide rather than

towards serotonin synthesis [23]. IDO-mediated trypto-

phan catabolism in turn depresses T-cell proliferation

and stimulates regulatory T cells, which are cells with

immune suppressive function [24].

Counterintuitively, IDO is induced by pro-inflamma-

tory cytokines such as interferon-c [25]. The IDO-

catalysed de novo nicotinamide synthesis pathway is

therefore upregulated during diverse infectious condi-

tions as a response to pro-inflammatory cytokines [26].

We can infer that the IDO pathway may be part of a

negative feedback loop to dampen inflammation.

Immunometabolism in macrophages

Recent work has led to the burgeoning field of immu-

nometabolism [19,27,28]. Not only do M1 and M2

macrophages differ in the cytokines produced and

enzymes activated, but also they differ in their glucose

metabolism [29,30]. Immune cells, including macro-

phages, lymphocytes and neutrophils, can switch

between the ‘resting’ state, during which the cell under-

goes glycolysis, Krebs cycle and oxidative phosphory-

lation, and an activated state in which aerobic

glycolysis (also known as Warburg-like metabolism)

occurs [29,30]. During Warburg-like metabolism, gly-

colysis (aerobic glycolysis) is completed without fur-

ther completion of a traditional Krebs cycle and

electron transport chain. Warburg-like metabolism,

originally identified as a hallmark of cancer cells, is

often associated with cell division and cell activation

[30–32]. When infected with pathogens, macrophages

shift their metabolism to a Warburg-like metabolism,

with potential pathogen-specific variations [19,33]; for

example, Legionella pnuemophila, Chlamydia trachoma-

tis and Mycobacterium tuberculosis may impact meta-

bolic pathways at different points, all upregulating

aerobic glycolysis [19]. In T and B lymphocytes, shift-

ing to Warburg-like metabolism is associated with

lymphocyte proliferation [34].

Evolutionary perspective on
immunometabolism

To elucidate how macrophage or lymphocyte metabolic

shifts correlate with infection by ‘foreign’ microorgan-

isms, an evolutionary perspective may be of value. All

eukaryotic cells require NAD and NADH for metabo-

lism [15,35]. This commonality stems from the origin

itself of eukaryotic life, when two prokaryotes (an a-
proteobacterium and an archaeon) fused, after which

the a-proteobacterium became the mitochondrion [36].
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Mitochondrial function within the eukaryotic cell lar-

gely revolves around a hydrogen-dependent symbiosis,

mediated through NAD and NADH [37]. Mitochondria

control not only the life but also the death of the cell,

including initiation of programmed cell death pathways

[38]. Viewed in this light, the switch to aerobic glycolysis

(Warburg-like metabolism) during times of immune

activation is indicative of a change in mitochondrial

function, almost as if the cell reverts to a more prokary-

otic form of metabolism, becoming temporarily inde-

pendent of its need for symbiotic mitochondrial

metabolism.

More recently in evolutionary terms, focusing our

attention on human reproductive fitness and immune

tolerance may illuminate triggers for IDO production.

In addition to macrophages, IDO is expressed in pla-

cental tissue and is essential for mammalian immune

tolerance of an allogeneic, but not syngeneic fetus [39].

During sperm–ovum fusion, the ovum actively targets

and destroys male mitochondria, a process known as

mitophagy or allophagy [40,41]. The mechanism of

sensing which mitochondria are paternal remains

unelucidated. Mitochondrial contents are reminiscent

of their bacterial origins, differing from nuclear or

cytoplasmic contents by the presence of unmethylated

CpG motifs in mitochondrial DNA [42], possession of

unique lipids including cardiolipin [43] and synthesis

of double-stranded RNA intermediates [44], which can

trigger innate immune responses if released into the

cytoplasm or circulation [45]. Mitochondria themselves

harbour receptors, such as the mitochondrial antiviral

signalling protein (MAVS), that can be triggered by

double-stranded RNA [46]. It is plausible that mito-

chondrial sensing of double-stranded RNA, or other

mitochondrial patterns, is a mechanism that has been

conserved through evolution, stemming from similar

functions during mitophagy at conception. Mitochon-

drial switching between oxidative phosphorylation and

Warburg-like metabolism may be the response of the

mitochondria to sensing foreign mitochondrial patterns

within the cell, both during reproduction and during

infection. We hypothesize that mitochondrial sensing

of foreign double-stranded RNA or other mitochon-

drial identifiers increases the cellular requirement for

NAD+, thereby prompting increased tryptophan con-

version to nicotinamide via IDO activation. Such a

requirement for increased de novo nicotinamide pro-

duction could explain the requirement for IDO activity

in materno-fetal tolerance at the placenta. Intersection

of NAD pathways with mitochondrial metabolism

points in the direction of mitochondrial metabolic

shifts correlating with altered cellular NAD require-

ments.

NAD requirements of the macrophage
may prompt metabolic shifts

In M2 macrophages, a fully functional Krebs cycle and

oxidative phosphorylation within the mitochondrion

corresponds to increased IDO activity within the cyto-

plasm (Fig. 1). In classically activated macrophages,

however, a shift that can be triggered during diverse

infections, mitochondria undergo only limited function

[19,33]. Sensing of double-stranded RNA is known to

trigger conserved mitochondrial response pathways [47–
49]. We hypothesize that mitochondrial response to

double-stranded RNA precipitates an acute cellular

NAD insufficiency. A detectable increase in IDO activ-

ity would be a measure of the body’s attempt to com-

pensate for insufficient nicotinamide. Elevated IDO

activity for de novo nicotinamide synthesis would be ter-

med an initial M2 shift. If de novo nicotinamide synthe-

sis failed to meet cellular NAD requirements, the

macrophage may shift to classical activation, specula-

tively due to a lower NAD requirement.

A closer look at pathways intersecting
with NAD

Cameron and colleagues showed in vitro that during

Warburg-like metabolism, reactive oxygen species were

upregulated, DNA damage occurred and PARP

enzymes were upregulated, depleting NAD+. M1 macro-

phage activation occurred simultaneously with NAD+

depletion and upregulation of the NAD salvage enzyme,

nicotinamide phosphoribosyltransferase (NAMPT) [50].

The authors attributed early depletion of NAD+ to

PARP activity, but noted that sirtuins and CD38 may

also have been involved with NAD+ depletion. Their

work illustrated that NAD depletion was a key feature

of M1 activation, but multiple hypotheses may apply as

to the initial cause of NAD+ depletion and PARP acti-

vation [50].

Zhang et al investigated low-dose compared with

high-dose endotoxin responses in vitro. They showed

that low-dose endotoxin triggered upregulation of

NAMPT, resulting in NAD salvage from nicoti-

namide, while high-dose endotoxin caused a switch to

de novo nicotinamide synthesis from tryptophan via

IDO [51]. NAD synthesis (via NAMPT or IDO)

affected nuclear NAD+ pools, which could affect tran-

scription of key inflammatory genes.

NAD+ is released from cells during early inflammation

and functions as an extracellular signalling molecule,

resulting in death of naive CD4+ and CD8+ T cells while

relatively sparing activated and memory cells [52]. The

ectoenzyme CD38, an activation marker on T and B
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lymphocytes, functions as an NADase, regulating extra-

cellular concentrations of NAD+ [52]. CD38 can also be

upregulated on airway smooth muscle cells in response

to inflammatory cytokines [53]; thus, the NADase activ-

ity of CD38 is not limited to immune cells [54].

NAD+ also plays a key role in autophagy through

partnering with sirtuins, which are NAD-dependent

deacetylases [55]. Autophagy relates to degradation of

intracellular organelles, often in response to nutrient

stresses [55]. Sirtuins regulate autophagy [55], as well

as circadian rhythms in the cell [56]. The intersection

of mitochondrial, cytoplasmic, nuclear and extracellu-

lar NAD pools is critical for key cellular functions

including DNA repair (via PARP enzymes), autophagy

(via sirtuins) and activation or suppression of sur-

rounding lymphocytes (via CD38) [57].

Interaction of infectious organisms
with de novo nicotinamide synthesis

Interestingly, IDO activity is elevated in human sepsis

and severe inflammatory response syndrome (SIRS),

with higher values predicting mortality [58]. Patients

with sepsis of diverse origins have increased

kynurenine and decreased tryptophan plasma concen-

trations [59–61]. Kynurenine/tryptophan ratios are

higher in patients with severe sepsis than in those with

mild sepsis, and were inversely related to microvascu-

lar reactivity [59]. Kynurenine has blood vessel-relax-

ing properties [62], and it has been suggested that IDO

activity links together immune dysregulation and loss

of microvascular reactivity in sepsis [59].

Many bacteria use NAD and NADH in their own

metabolism. As prokaryotes, bacteria have their own

unique pathways of NAD synthesis. Commensal and

pathogenic flora form a complex cycle of NAD synthe-

sis and consumption, which may regulate the

pathogen–host balance [19,63]. As an example, tuber-

culosis-necrotizing toxin, secreted by Mycobacterium

tuberculosis, with homologues in many bacterial and

fungal pathogens, hydrolyses NAD+ and results in cel-

lular death by necroptosis [64]. Mycobacterium tuber-

culosis can also synthesize niacin [65], leading to

postulates that latent Mycobacterium tuberculosis has

beneficial effects for the human host by increasing

nicotinamide availability [63,66].

Viruses cannot synthesize their own NAD or

NADH but usurp host metabolism to engage with the

Fig. 1. Increased IDO activity towards de novo nicotinamide synthesis is a hallmark of alternatively activated macrophages. Classically

activated macrophages secrete pro-inflammatory cytokines such as tumour necrosis factor-a (TNF-a) and interleukin-1. Alternatively

activated macrophages secrete anti-inflammatory cytokines such as interleukin-10 [21]. In terms of mitochondrial function, classically

activated (M1) macrophages undergo aerobic glycolysis (Warburg-like metabolism) without completion of the Krebs cycle or oxidative

phosphorylation, despite the presence of oxygen. Alternatively activated (M2) macrophages undergo glycolysis followed by the Krebs cycle

and electron transport chain [19]. IDO upregulation in alternatively activated macrophages may be an attempt to compensate for insufficient

NAD production through salvage pathways and dietary uptake.

958 The FEBS Journal 289 (2022) 955–964 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Macrophage nicotinamide pathways M. S. Suchard and D. M. Savulescu



host NAD pathways; for example, acute and chronic

viral infections affect IDO activity and nicotinamide

pathways [67–69]. Cytomegalovirus, influenza virus,

herpesviruses 1 and 2, hepatitis B, hepatitis C and

human immunodeficiency virus (HIV) interact with the

IDO pathway [67–69]. IDO activity is elevated during

HIV infection, resulting in raised kynurenine/trypto-

phan ratios. IDO activity represents an independent

marker of disease progression to acquired immunodefi-

ciency syndrome (AIDS), whereas antiretrovirals

decrease the kynurenine/tryptophan ratio [69]. Nota-

bly, acute viral infection with influenza virus induces

IDO activity [70]. Importantly, in the Human Influ-

enza INSIGHT FLU 003 Plus study, increased IDO

activity was associated with poor clinical outcome

(death, transfer to intensive care or requiring mechani-

cal ventilation) [71].

Patients with severe disease from SARS-CoV-2 infec-

tion (coronavirus disease 2019 or COVID-19) often have

lymphopenia together with high white cell counts, sug-

gesting involvement of myeloid cells in disease pathogen-

esis [72]. Lung pathology in COVID-19 has been

ascribed to hyperinflammatory syndrome or cytokine

release occurring in the later phases of the illness [72],

with some descriptions akin to macrophage activation

syndrome [73,74]. The replication of SARS-CoV-2, simi-

lar to many other viruses [75], comprises a double-

stranded RNA step, which may be sensed by mitochon-

drial antiviral mechanisms [76]. SARS-CoV-2 has been

shown experimentally to upregulate PARP enzymes,

which degrade NAD+ [77]. Higher titres of SARS-CoV-2

differentially regulated various PARP enzymes and

downregulated quinolinic acid phosphoribosyltrans-

ferase, an enzyme required for de novo nicotinamide syn-

thesis from tryptophan, while upregulating NAMPT,

which utilizes nicotinamide to synthesize NAD [77]. In a

transcriptomics analysis, SARS-CoV-2 downregulated

nuclear-encoded mitochondrial genes coding for complex

1 of the mitochondrial electron transport chain [78].

Thus, evidence exists to suggest that SARS-CoV-2 inter-

acts with host NAD+ metabolism. Intriguingly, loss of

smell and taste, symptoms associated with COVID-19,

was recognized in the 1930s as pellagra symptoms, amen-

able to niacin treatment [79].

The link between infection, NAD+

consumption and metabolic shifts in
macrophages

Shifts in macrophage metabolism during infection are

only partially understood, and opposing explanations

may fit the observations described. Our preferred

hypothesis is that viral infection initially triggers

increased consumption of NAD+ or decreased avail-

ability of NAD+ for the human host. The IDO path-

way is then upregulated to replenish NAD+ supplies

(an initial M2 shift), and when capacity of the de novo

pathway is exceeded, a relative deficiency of NAD+

may force a shift to M1 phenotype. Alternative expla-

nations have not been excluded; for example, infection

may initially trigger a shift to an M1 phenotype, spec-

ulatively leading to decreased NAD+ availability, after

which IDO is upregulated in order to meet the need

for de novo synthesis, which would be seen as a sec-

ondary M2 shift. Further work will elucidate these

intricacies, but the understanding that pathogens

induce shifts in human metabolism leads to practical

host-directed interventions. Kynurenine biosynthesis

via IDO upregulation is a signature of infection with a

wide range of pathogens [68]. Increased kynurenine

biosynthesis implies that diverse microbes trigger a

convergent host response of increased de novo nicoti-

namide synthesis, likely secondary to an increased

NAD+ requirement. Interventions targeted at the IDO-

catalysed pathway may therefore ameliorate severe

illness, despite diverse aetiologies.

Novel therapies for sepsis

If the primary pathology is competition for depleted

NAD+ stores, the most rational intervention would be

to increase NAD+ supply. The leading candidate for

investigation for treatment of sepsis, including

COVID-19, should therefore be nicotinamide (Vitamin

B3) and related compounds, in agreement with other

authors [20,77,80–85]. Indeed, in animal models, vita-

min B3 ameliorates polymicrobial sepsis [86], lung

ischaemia–reperfusion injury [87] or experimentally

induced lung fibrosis [88]. In animals, nicotinamide

mononucleotide preserves mitochondrial function and

promotes survival from haemorrhagic shock [89].

Importantly, in a mouse model of SARS-CoV-2 infec-

tion, nicotinamide administration reduced inflamma-

tory cell aggregates, emboli and cell death [90] We will

focus further on the experience with administration of

vitamin B3 and related compounds to humans.

Nicotinamide has been used for a multitude of clinical

indications, including lung diseases, as outlined below.

The stalwart of antituberculosis therapy, isoniazid, was

initially developed as a nicotinamide analogue, but

showed superior performance compared with nicoti-

namide for clinical outcome in Tuberculosis [91]. Indeed,

pyrazinamide – another antituberculosis agent – has

downstream metabolites, which convert nicotinamide to

NAD+ [10]. Thus, at least some of the efficacy of isoni-

azid and pyrazinamide for treatment of sepsis caused by
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tuberculosis may be due to interactions of the drugs with

NAD synthesis and salvage [63].

There is extensive prior experience with nicoti-

namide in human trials for conditions other than

infections [92–98]. Nicotinamide forms part of certain

cancer treatment regimens [93,94]. The recommended

daily dose of nicotinamide is 14–16 mg, and nutri-

tional supplementation dosages are usually below

35 mg�day�1. The upper recommended limit for adults

is, however, 900 mg�day�1 [99], and doses used for

treatment of malignancy are approximately 3 g�day�1.

Impaired oxidative burst activity of neutrophils in type

2 diabetics was improved by nicotinamide supplemen-

tation at 50 mg�kg�1�day�1 [100]. Dosage of nicoti-

namide for clinical trials should thus span

physiological and higher ranges for thorough assess-

ment of clinical impact.

In addition to experience with nicotinamide, three

related compounds interact at various points in NAD

metabolism and are options for human therapeutic trials

for sepsis. Niacin is a clinically licensed therapy for

hypercholesterolaemia; however, its use may be limited

by side effects such as flushing. Ageing experts recom-

mend an alternate product, nicotinamide mononu-

cleotide, as their drug of choice for prevention of age-

related declines, with multiple examples in animal models

[101,102] and safety data in humans [103]. Nicotinamide

mononucleotide may have superior properties to nicoti-

namide in terms of its activity and side effect profile

[102]. Importantly, dramatic clinical improvement was

reported in a case series of nine severe COVID-19

patients treated with a nicotinamide mononucleotide

cocktail (nicotinamide mononucleotide, betaine, sodium

chloride and zinc sulfate) [85]. A third compound, nicoti-

namide riboside, has shown safety in human trials and

ability to raise whole blood NAD+ levels [104]. Some

have suggested that for treatment of COVID-19, admin-

istration of nicotinamide-related compounds should be

accompanied by an inhibitor of PARP enzymes, which

degrade NAD+ [83].

Conclusion

In summary, we advocate adjusting our understanding of

pathogenesis of infectious illness away from a microbe-

oriented view, such that the microbe is seen as ‘causing’

the disease, towards a host NAD–metabolism-oriented

view, where the microbe is seen as triggering an evolu-

tionarily conserved response that shifts NAD metabo-

lism. In certain contexts, such as during reproduction,

shifts in NAD metabolism may be beneficial for the

organism. In the context of disease, such shifts are associ-

ated with adverse consequences. Understanding

interactions of various bacterial and viral pathogens with

the NAD pathway will guide us further. While biochemi-

cal studies will ultimately yield mechanistic explanations,

a more direct approach is to investigate vitamin B3-re-

lated compounds in human trials for sepsis.

The de novo nicotinamide synthesis pathway, catal-

ysed by IDO, poses a therapeutically malleable path-

way integrally linked to host mitochondrial

metabolism and to immune tolerance. Understanding

the relationship between pathogenic infection and

macrophage metabolism, and identifying how to diag-

nose and direct flux through the de novo nicotinamide

synthesis pathway, should lead towards host-directed

therapy for sepsis. Host–microbe competition and

interaction for limited intracellular NAD+ supplies are

the lens through which we should view mitochondrial

metabolic shifts within cells of the immune system.

In conclusion, we strongly suggest that vitamin B3 be

investigated as a therapy for sepsis, including that caused

by COVID-19, ideally as a single agent at high dose

rather than within a multivitamin, which will not allow

accumulation of efficacy data. If nicotinamide is found

to be ineffective, related compounds including isoniazid,

niacin, nicotinamide riboside and nicotinamide mononu-

cleotide are alternate prospects that impact NAD path-

ways at different entry points of the NAD cycle and

warrant further investigation.
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