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With the gradual understanding of tumor development, many tumor therapies have been
invented and applied in clinical work, and immunotherapy has been widely concerned as
an emerging hot topic in the last decade. It is worth noting that immunotherapy is
nowadays applied under too harsh conditions, and many tumors are defined as “cold
tumors” that are not sensitive to immunotherapy, and brain tumors are typical of them.
However, there is much evidence that suggests a link between DNA damage repair
mechanisms and immunotherapy. This may be a breakthrough for the application of
immunotherapy in brain tumors. Therefore, in this review, first, we will describe the
common pathways of DNA damage repair. Second, we will focus on immunotherapy and
analyze the mechanisms of DNA damage repair involved in the immune process. Third, we
will review biomarkers that have been or may be used to evaluate immunotherapy for brain
tumors, such as TAMs, RPA, and other molecules that may provide a precursor
assessment for the rational implementation of immunotherapy for brain tumors. Finally,
we will discuss the rational combination of immunotherapy with other therapeutic
approaches that have an impact on the DNA damage repair process in order to open
new pathways for the application of immunotherapy in brain tumors, to maximize the effect
of immunotherapy on DNA damage repair mechanisms, and to provide ideas and
guidance for immunotherapy in brain tumors.
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INTRODUCTION

DNA is a nucleic acid that is a key material essential for the body to function properly. However,
DNA is affected by various endogenous and exogenous factors every day, such as ionizing radiation,
benzene, Epstein-Barr virus and other physical, chemical and biological factors (1), and internal due
to the activation of proto-oncogenes (2). Fortunately, the body has a variety of DNA repair
pathways to correct and repair the damaged location in a timely manner to ensure the stability and
integrity of the eukaryotic genome. There are currently known DNA damage repair pathways,
namely: mismatch repair (MMR), base excision repair (BER), nucleotide excision repair (NER),
org January 2022 | Volume 12 | Article 8292681
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homologous recombination repair (HRR), nonhomologous end-
joining (NHEJ). Among them, both HRR and NHEJ are used to
repair double strand breaks (DSBs) (3). Once the damage
mechanism is dysregulated, the stability of the genome will be
disrupted and cells will suffer various damages such as
inflammation, aging and even cancer (4, 5). For example,
MMR defects can increase the risk of hereditary colon cancer
(6), and BER defects can increase the risk of lung cancer (7).
Meanwhile, the exploration of tumor immunotherapy is rapidly
evolving. Unlike traditional tumor treatments, tumor
immunotherapy aims to restore the body’s normal anti-tumor
immune response by initiating the tumor immune cycle to
accomplish the recognition and clearance of tumor cells (8).
This property allows immunotherapy to maintain longer survival
or even achieve clinical cure by the body’s own action once the
immune system in the body is awakened. Currently, the
following immunologic agents are approved by the FDA and
used in clinical work (Table 1). However, immunotherapy is
extremely selective in terms of target populations and not all
tumor patients benefit from immunotherapy. For example, brain
tumors are a class of “cold tumors” in the immunological sense.
Due to their unique tumor immune microenvironment (TME),
they are the least sensitive to immunotherapy. Currently,
surgery, radiation and chemotherapy are still widely accepted
in brain tumors. Meanwhile, neurorestorative treatment have
also emerged in recent years and have been shown to repair the
function of damaged nerves in some sense (9). For example,
olfactory ensheathing cells, with their superior ability to integrate
and repair nerves (10, 11), interact with glial scars to stimulate
vascular and axonal growth (12), in order to repair brain nerves
after tumor damage and help restore brain function (13). In
contrast to these rapid developments, immunotherapy, which
has achieved superior therapeutic results in other tumors,
remains ineffective in brain tumors. But, since tumor cells also
depend on DNA damage repair pathways for their survival and
reproduction as normal cells do (14), then rational disruption of
the DNA damage repair pathways of tumor cells is a major way
to overcome tumors. This mechanism has been used in brain
tumor cell therapy for a long time, and many radiotherapy and
chemotherapy treatments are based on it. Then, the use of DNA
damage repair mechanism to improve the effect of brain tumor
immunotherapy is a breakthrough, and whether this mechanism
can be used to complete the immunotherapy of “cold tumors” is
the focus of this paper. The purpose of this paper is to discuss this
idea in the following four aspects. First, we review the specific
process of DNA damage repair and identify key site that may
influence immunotherapy. Second, the repair mechanisms
involved in the action of the most common immunotherapy,
immune checkpoint inhibitors, will be described. Subsequently,
we will screen existing or potential site from the DNA damage
repair process, assess their place in brain tumor immunotherapy,
and discuss their feasibility and predictiveness as biomarkers for
brain tumor immunotherapy. Finally, based on the process of
DNA damage repair, it is reasonable to think about the feasibility
of combining immunotherapy with other therapeutic approaches
applying this principle, which is currently a hot research
Frontiers in Immunology | www.frontiersin.org 2
direction for the rational inclusion of immunotherapy in the
brain tumor population. To explore the place of DNA damage
repair in immunotherapy of brain tumors and its broad
development prospect, and to provide some clinical guidance.
DNA DAMAGE REPAIR PATHWAYS

There are five common DNA damage repair pathways that play a
key role in maintaining genome stability, and they are briefly
described below (Figure 1).

Mismatch Repair (MMR)
The main targets of MMR in the correction of DNA damage are
base-base mismatches and insertion/deletion mispairs. Essential
proteins in the MMR process, to which MutSa and MutSb are
sensitive to these misconfigurations (15). MutSa (MSH2-MSH6)
recognizes mismatches and smaller nucleotide alterations and
functions as a molecular switch after identifying the repair
pathway to be initiated. MutSb (MSH2-MSH3) is responsible
for detecting larger nucleotide insertion/deletion and bends the
DNA double helix after damage is detected, providing the basis
for subsequent repair (16). During the execution of MMR,
MutSa/MutSb is the first to spot the damage areas and recruit
at the damage sites. In the meantime, MutLa is assigned to exert
endonuclease activity to cleave the single strand of DNA at the
mismatch site. Subsequently, PCNA, EXO1 and other proteins
act on the site to separate the mismatched part from the DNA
strand. Finally, polymerase d and DNA ligase 1 (LIG1) function
together to fill the gap that appears after the trimming,
completing the MMR process (17).

Base Excision Repair (BER)
The BER pathway is often used to correct the deamidation and
alkylation of bases in DNA molecules. The core component of
the BER pathway is DNA glycosylase, which can be divided into
two categories according to their functions (18). One class is
monofunctional DNA glycosylases, such as UNG, MBD4, MYH,
etc. The other has both 3’AP lyase activity and glycosylase
activity, and the common ones are OGG1, NTH1, etc. (19)
The DNA glycosylase then catalyzes the cleavage of the
damaged site, exposing an AP site. Apurinic/apyrimidinic
endonuclease 1 (APE1) cis-activates the DNA strand at the
location of the AP site, yielding an independent 3’-hydroxyl
fragment of DNA (16). This fragment will serve as a template to
guide XRCC1 and DNA polb to reinsert the missing bases and
complete the filling of the processed deletion site (20). Finally,
the break site is ligated by DNA ligase 3 (LIG3), and the whole
BER process is completed (21).

Nucleotide Excision Repair (NER)
NER is the only one among all DNA damage repair pathways that
can correct UV-photolesions. In addition, NER also plays an
important role in the repair of reactive oxygen species (ROS)
induced base alterations, and intrastrand crosslinks (22). NER has
been divided into two pathways depending on the target audience.
January 2022 | Volume 12 | Article 829268

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhao et al. DDR in Brain Tumor Immunotherapy
TABLE 1 | FDA-approved immunotherapies.

Immunotherapy
category

Mechanism Therapy FDA-approved cancers Year of
approval

Checkpoint
inhibitors

Anti-CTLA-4 Ipilimumab Melanoma 2011
Advanced renal cell carcinoma 2018
MSI-H/dMMR metastatic colorectal cancer
Hepatocellular carcinoma(HCC) 2020
Metastatic or recurrent non-small cell lung cancer
Malignant pleural mesothelioma

Anti-PD-1 Pembrolizumab Melanoma 2014
Non-small cell lung cancer(NSCLC) 2015
Head and neck squamous cell carcinoma(HNSCC)
Classical Hodgkin lymphoma(CHL) 2017
Advanced or metastatic urothelial carcinoma
MSI-H/dMMR solid tumors
Advanced gastric cancer
Recurrent or metastatic cervical cancer 2018
Primary mediastinal large B-cell lymphoma (PMBCL)
Advanced or metastatic Merkel cell carcinoma(MCC)
Advanced renal cell carcinoma(RCC) 2019
Esophageal cancer
Hepatocellular carcinoma(HCC)
Endometrial carcinoma
Metastatic small cell lung cancer (SCLC)
MSI-H/dMMR metastatic colorectal cancer 2020
Tumor mutational burden-high (TMB-H) solid tumors
Non-muscle invasive bladder cancer (NMIBC)
Recurrent or metastatic cutaneous squamous cell carcinoma
(cSCC)
Advanced esophageal or gastroesophageal (GEJ) carcinoma 2021
Triple-negative breast cancer (TNBC)

Nivolumab Melanoma 2014
Non-small-cell lung cancer 2015
Renal cell carcinoma
Classical Hodgkin lymphoma(cHL) 2016
Head and neck squamous cell carcinoma
Urothelial carcinoma(UC) 2017
MSI-H/dMMR colorectal cancer
Hepatocellular carcinoma(HCC)
Metastatic small cell lung cancer(SCLC) 2018
Advanced, recurrent or metastatic esophageal squamous cell
carcinoma (ESCC)

2020

Malignant pleural mesothelioma
Metastatic or recurrent non-small cell lung cancer
Advanced or metastatic gastric cancer, gastroesophageal
junction cancer, and esophageal adenocarcinoma

2021

Esophageal or gastroesophageal junction (GEJ) cancer
Cemiplimab Metastatic cutaneous squamous cell carcinoma (CSCC) 2018

Locally advanced basal cell carcinoma (laBCC) 2021
Advanced non-small cell lung cancer (NSCLC)

Anti-PD-L1 Atezolizumab Advanced or metastatic urothelial carcinoma 2016
Non-small cell lung cancer (NSCLC)
Triple-negative breast cancer(TNBC) 2018
Small cell lung cancer(SCLC) 2019
Melanoma 2020
Hepatocellular carcinoma(HCC)

Avelumab Metastatic Merkel cell carcinoma(MCC) 2017
Advanced or metastatic urothelial cell carcinoma
Advanced renal cell carcinoma(RCC) 2019

Durvalumab Urothelial cell carcinoma 2017
Non-small cell lung cancer (NSCLC) 2018
Extensive-stage small cell lung cancer (ES-SCLC) 2020

Cytokines
modulation

Interferon alfa-2b,recombinant Intron A Hairy cell leukaemia 1986
AIDS-related Kaposi sarcoma 1988
Melanoma 1995

(Continued)
Frontiers in Immuno
logy | www.frontiersin.org
 3
 January 2022 | Volume 12 | Art
icle 829268

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhao et al. DDR in Brain Tumor Immunotherapy
One is global genomic repair (GG-NER), which plays a role
in correcting genome-wide errors. The other is TC-NER, which
only targets errors in the transcriptional strand of active genes
for repair. These two are different in the early stage but are
consistent in the late stage (23). In GG-NER, XPC and UV-DDB
are the key genes in the process, DDB can be divided into DDB1
and DDB2 (XPE), and in general, XPC can directly identify DNA
molecules with abnormal helix structure (24). However, there
exist some complex situations that do not support correction in
the above manner. Such cases would require that the damaged
site is first identified by DDB2 and subsequently DDB1 is
Frontiers in Immunology | www.frontiersin.org 4
recruited and forms a complex structure with it. XPC can
identify the DDB complex anchored to the DNA double helix
and through this process complete the exclusion of the abnormal
helix and the recruitment of TFIIH. The TC-NER pathway does
not use the above-mentioned genes to exclude the distorted helix,
but rather RNAP II, CSB, and CSA to initiate the error site
recognition mechanism. The next link in both pathways is the
same. Both direct the XPA to verify the site of injury and then
complete the recruitment of replication protein A (RPA) (25).
The role of RPA lies in its ability to bind to the template strand,
which is ssDNA complementary to the damaged DNA strand,
TABLE 1 | Continued

Immunotherapy
category

Mechanism Therapy FDA-approved cancers Year of
approval

Follicular lymphoma 1997
Interferon alfa-2a,recombinant Roferon-A Hairy cell leukaemia 1986

AIDS-related Kaposi sarcoma 1988
Chronic myelogenous leukaemia 1997

Interleukin-2,recombinant Aldesleukin Melanoma 1998
Renal cell carcinoma 1992

Stimulates TNF, IL-12 and IFNg Imiquimod Basal cell carcinoma 2004
CAR T-cell
therapy

CD19-directed Tisagenlecleucel B-cell precursor acute lymphoblastic leukemia (ALL) 2017
Large B-cell lymphoma 2018

Axicabtagene
ciloleucel

Large B-cell lymphoma 2017
Relapsed or refractory follicular lymphoma (FL) 2021

Brexucabtagene
Autoleucel

Mantle cell lymphoma (MCL) 2020

Lisocabtagene
maraleucel

Diffuse large B-cell lymphoma (DLBCL) 2021

B-cell maturation antigen (BCMA)-directed Idecabtagene
vicleucel

Relapsed or refractory multiple myeloma 2021

Vaccines Autologous APCs with recombinant human
PAPGM-CSF

Sipuleucel-T Prostate cancer 2010

Oncolytic viruses Genetically modified HSV-1 designed to replicate
within tumours and produce GM-CSF

Talimogene
laherparepvec

Melanoma 2015

Bispecific
antibodies

CD19 and CD3 bispecific antibody Blinatumomab B cell acute lymphocytic leukaemia 2014
Amivantamab-
vmjw

Advanced or metastatic non-small cell lung cancer (NSCLC) 2021
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to keep it free from interference by other related factors and to
ensure the accuracy of genetic information (26). Immediately
afterwards, TFIIH forms a complex with XPB, XPD to unwind
the helical structure at the wrong site (27). Subsequently, XPF
and XPG incise the 5’ and 3’ single/double strand junction
respectively. Meanwhile, PCNA, pold, and polϵ are responsible
for reconstructing the correct DNA fragment based on the
template strand and filling it in the deletion. Finally, the
scattered DNA fragments are connected by LIG1/XRCC1-
ligase3 to restore the integrity of the DNA structure (28).

Non-Homologous End Joining (NHEJ)
DSB is one of the most serious types of DNA damage, because it
involves a wider region and more damaged fragments, which is
more likely to cause damage to genomic stability and enhance
susceptibility to many diseases. NHEJ and HR are two common
DNA damage repair pathways that target DSBs. NHEJ can
function in any process of the cell cycle, thanks to its repair
independent of homologous sequences. DNA double-strand
breaks are initially recognized by Ku70 (XRCC6)/Ku80
(XRCC5), which binds to the exposed broken ends after
damage. This process has several important functions. First,
Ku70/Ku80 binds to the break end and protects it from
damage by other related enzymes. Second, this process
provides the conditions for subsequent anchoring of DNA
PKcs, which has a low affinity for the DNA duplex and can
reach more than one hundred times the original affinity in the
presence of Ku70/Ku80. Furthermore, the binding of Ku70/Ku80
to the broken ends can also improve the binding ability of
XRCC4, LIG4, etc. to DNA ends, laying the foundation for the
final processing (29). After Ku70/Ku80 binds to DNA broken
ends, DNA PKcs interacts with Ku70/Ku80 to form a complex
and complete anchoring (30). At the same time, Artemis is
activated and given the ability to cut the DNA strand (29). Next,
the DNA ends are treated by Artemis by endo-nucleation and
XRCC4 activates LIG4 and forms a complex with it to act on the
treated broken ends. The ligation of the DNA strand is done with
the help of XLF, PNK and other substances. The NHEJ pathway
is efficient and convenient for repairing damaged DNA double
strands in a short period of time. Unfortunately, this approach is
not precise enough, and the repair process is prone to fragment
deletion and incorrect insertion.

Homologous Recombination (HR)
The HR pathway is another repair pathway for DSBs besides
NHEJ. Compared with NHEJ, the HR pathway can make the
genome more precise and even identical to that before the injury.
However, in contrast, the HR pathway exists only in S and G2
phases because sister chromatid must be present in the HR
process to provide the homologous sequences necessary for
repair. First, the damaged DNA ends are recognized by the
MRE11-RAD50-NBS1 (MRN) complex, and then the damaged
DNA segments are excised along the 5’ to 3’ direction in
association with the C-terminal interacting protein (CtIP) to
form single-stranded DNA (31). After this, BLM, EXO1 work
together to provide the conditions for RPA anchoring on ssDNA,
and the binding of RPA to ssDNA both replaces the faulty part of
Frontiers in Immunology | www.frontiersin.org 5
the structure and ensures the conformational stability of the
exposed part of ssDNA. After this process is completed, Rad51,
the most important protein in the HR pathway, will play a role in
the replacement of RPA with the help of proteins such as
BRCA2, Rad52, paralogs of Rad51 (32) and search for a
template homologous to the damaged segment on the sister
chromatid, which is also known as D-loop formation, which is
crucial for the HR pathway to ensure accurate repair. Finally,
DNA polymerase is used to synthesize a new DNA fragment
based on the selected template, and LIG1 completes the ligation
of the newly synthesized fragment to the initial fragment to
repair the damaged DNA double strand (33).
DNA DAMAGE REPAIR IS RELATED TO
INNATE IMMUNITY AND TUMOR IMMUNE
ESCAPE

In Table 1, we have listed several methods currently approved by
the FDA for tumor immunotherapy. Among them, immune
checkpoint inhibitors (ICI) have been shown to have powerful
immunotherapeutic activity. The role of DNA damage repair in
the process of innate immunity has been confirmed. Next, since
FIGURE 2 | cGAS-STING pathway and ICI mechanism of action. In cGAS-
STING pathway, cGAS binds to dsDNA and is subsequently activated to
produce cGAMP. The latter interacts and activates STING on the
endoplasmic reticulum membrane. STING then further confers TBK1 activity
and sets the stage for TBK1 phosphorylation of IRF3, thus completing the
recruitment of TBK1 and IRF3 by STING. Type I IFN is generated under the
influence of IRF3 and functions to activate the immune system.
January 2022 | Volume 12 | Article 829268
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this section has already been reviewed by researchers, we will
briefly describe important pathways in the immune response,
explain the role of DNA damage repair in the process of tumor
immune escape, and further analyze the mechanism of ICI
targeting PD-1/PD-L1 (Figure 2).

cGAS-STING Pathway
STING enables surveillance of tumor cells and participates in the
innate anti-tumor immune process by inducing apoptosis. cGAS
generates cGAMP that can interact with STING by binding to
dsDNA (34). It also confers the ability to phosphorylate IRF3 by
TBK1, thus completing the recruitment of TBK1 and IRF3 (35).
Subsequently Type I IFN, which has an activating effect on the
immune system (36, 37), is produced and exerts direct and
indirect antitumor effects by promoting the production of
perforin and granzyme by CTL and NK cells (10, 38, 39).

Association of PD-1 and PD-L1 With
Tumor Immune Escape
PD-1 is mainly expressed on activated T cells, B cells and
macrophages (40). T cells can gain the ability to eliminate tumor
cells by expressing PD-1 (41). However, tumor cells and APCs can
express PD-L1, the ligand of PD-1 (42, 43) (Figure 1). By binding to
PD-1, TIL apoptosis is induced on the one hand and CD4+
differentiation into regulatory cells (Treg) is stimulated on the
other hand (44, 45). Weakening the recognition of tumor cells by
T cells (46) and completing the immune escape (47). Anti-PD-1/
PD-L1 destroys this process to wake up the immune response and
prevent tumor cells from escaping.
TARGETED DNA DAMAGE REPAIR TO
EXPLORE IMMUNOTHERAPY
BIOMARKER

Glioblastoma (GBM) in brain tumors, one of the most lethal solid
tumors, has a median survival rate of only 12-15 months despite
various therapeutic modalities such as surgical resection, radiation
therapy chemotherapy, and others have been carried out (48).
Aggressive tumors like GBM possess cancer-resistant stem cells
(CSCs) with a high capacity for self-renewal. The ability to acquire
such strong self-healing characteristics is mainly due to the
outstanding DNA damage repair capacity of GBM cells. Then, it
is possible to increase the immunotherapy of brain tumors by
disrupting the DNA damage repair process of brain tumors. And to
identify cells or factors that may have a directive effect on TME, and
use them as biomarkers to assess the feasibility and predict the effect
of immunotherapy. Therefore, we tried to find biomarkers that have
been applied or have potential value in the DNA damage repair
pathway to provide guidance for the development of
immunotherapy in brain tumors.

Approved Biomarkers
GSCs
Glioma stem cells (GSCs) are a highly treatment-resistant
population of GBM microenvironment components that
Frontiers in Immunology | www.frontiersin.org 6
assume a crucial role in tumor initiation, progression, and
recurrence (49). During the early stages of tumorigenesis,
GSCs have a major role in maintaining the reproductive
potential of tumor cells. For example, the overexpression of
transcription factors (TFs), Oct4 and Sox2 in GBM has been
reported to promote tumor proliferation (50). In addition to this.
Compared to the rest of the cells, a higher number of PD-L1 and
immunosuppressive factors could be detected on the surface of
GSCs, while the degree of CD80/CD86 expression was reduced
(51). Moreover, GSCs interact with immune cells both to inhibit
the antitumor effects of immune cells in the aforementioned
manner (52), and to obscure their recognition by T cells through
passive downregulation of MHC-I and antigen processing
mechanisms to complete the immune escape process (53, 54).
Khosravi et al. also reported similar results that GSCs can help
tumor cells escape from the recognition correction of the
immune system by upregulating specific immunosuppressive
factors (55). Gangoso E et al. have further deepened their
understanding. They believe that no matter what kind of
treatment, when GSCs are discovered by the immune system,
their DNA methylation and transcription processes will respond
accordingly, and help them by secreting more chemokines. The
DNA methylation and transcriptional processes of GSCs that
survive are preserved, completing the process of downward
transmission of immune evasion ability (56). In addition, the
recruitment of macrophages, Tregs and myeloid-derived
suppressor cells (MDSC) in the microenvironment is also
inextricably linked to GSCs (57, 58). From this point of view,
GSCs is a key biomarker for glioma immunotherapy, and some
oncolytic viruses (OVs) targeting the effects of GSCs have been
deeply studied. The concept of OVs is to selectively kill tumor
cells without accidentally injuring normal cells. This is
manifested by weakening or eliminating virulence factors so
that they do not pose a threat to the growth and reproduction
of normal cells. However, the virus itself retains the ability to
fight against tumor cells, which is the most important basis for its
function. Additionally, the OVs have the ability to recruit
immune cells, that can continue the removal of tumor cells
through the immune pathway (59, 60). Zika virus (ZIKV) is a
typical example (61). ZIKV acts on the basis of GSCs, to which it
is extremely sensitive, and can inhibit the proliferation of glioma
cells by inducing apoptosis of GSCs, break the supporting effect
of GSCs on immune escape, and further activate CD8+ T cells to
complete the clearance of tumor cells (62). Also, because of the
high enrichment of integrins aVb3/aVb5 in GSCs, OVs can
target GSCs by acting on integrins (63). It has also been
demonstrated that GSCs achieve tumor cell invasion and
metastasis by affecting the extracellular matrix (64). Thus,
GSCs and therapies targeting GSCs have become the focus of
immunotherapy for brain tumors, and the use of GSCs as
biomarkers may provide a major reference for the treatment of
brain tumors.

TAMs
Tumor-associated macrophages (TAMs) are the most abundant
cells in the GBM microenvironment, accounting for roughly
30%-50% of all cells in TME (65). TAMs strictly include both
January 2022 | Volume 12 | Article 829268
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microglias and macrophages of embryonic or bone marrow
origin. There are numerous literature TAMs have been
reported to have immunosuppressive effects on TME (66, 67).
TAMs can be stimulated by a variety of cytokines and thus
activate differentiation potential into M1-type TAMs, which have
suppressive effects on tumor cells, and M2-type TAMs, which
promote tumor cell proliferation and metastasis (68, 69).
Lipopolysaccharide and IFN-g , etc . can induce the
differentiation of TAMs to M1-type and endow M1-type
TAMs with the function of secreting pro-inflammatory
cytokines and activating other immune cells, such as natural
killer cells (NK) and dendritic cells (DC). M1-type TAMs can
both directly induce tumor cell death through their own
cytotoxic effects and indirectly serve anti-tumor purposes by
phagocytosis, which enables the process of neoantigen
presentation on the surface of tumor cells and provides
conditions for adaptive immunity to proceed (70). Both have
prominent contributions to probing tumor cells and slowing
their proliferation. In contrast, M2-type TAMs are strongly
associated with the malignant biological behavior of GBM cells
(71). M2-type TAMs can be activated by a variety of cytokines,
such as interleukin-4 (IL-4), colony-stimulating factor-1 (CSF-1)
and tumor growth factor-b (TGF-b). These cytokines play
different roles in the biological behavior of GBM cells. For
example, tumor cells can achieve the recruitment of microglias
by secreting CSF-1 and contribute to their differentiation to M2-
type (72). And the function of TGF-b is highlighted in its
provision of conditions for tumor cell metastasis (73). In
addition, M2-type TAMs have remarkable ability in inducing
GBM cytogenesis and immune escape, based on which they
assume important functions in the process of tumor cell growth
and metastasis. It has been reported that M2-type TAMs
contribute to the vascular proliferation of GBM cells by
releasing insulin-like growth factor binding protein 1 (IGFBP1)
and IL-6 to contribute to the expansion of tumor blood vessels in
TME and the enhancement of blood supply to tumor tissues (74).
Meanwhile, M2-type TAMs can also secrete IL-10 through the
JAK2/STAT3 signaling pathway to induce GBM cell genesis and
promote tumor progression (75). Not only that, M2-type TAMs
also have the ability to recruit Treg, and the number of Treg in
the microenvironment shows a positive correlation with poor
prognosis during tumor cell progression (70). As well as the
inhibition of CTL cells in TME, which are responsible for the
poor response of GBM to immunotherapy based on T-cell
principles (70). With the increasing attention to the field
involving TAMs, there are more and more reports about the
involvement of M2-type TAMs in tissue remodeling, induction
of hypersensitivity responses, domination of immune
microenvironment formation, and promotion of GBM
progression (76–79). TAMs are gradually becoming key targets
in the fight against GBM (80, 81). Therefore, there are now a
number of therapies targeting TAMs that are continuously being
investigated. Basically, they are all based on the principle of
blocking the migration of monocytes into TME and inhibiting
the production of M2-type TAMs. Lee, Chanhee et al. found that
artificially interfering with TAMs to convert them to M1-type
Frontiers in Immunology | www.frontiersin.org 7
and preventing them from converting to M2-type could inhibit
the proliferation of GBM (82). This provides a new possibility for
controlling GBM growth and attenuating GBM resistance to
immunotherapy, and may provide a guiding role in the
treatment of GBM.

ATM
The ATM gene encodes a protein that is an important cell cycle
checkpoint kinase that phosphorylates important sites such as
CHK2, p53, MRN complex and plays a prominent role in the HR
pathway (83). ATM, an important factor in DNA damage repair,
signals in association with PARP-1 to activate E3 ubiquitin ligase
within one hour of recognition of a DNA double-strand break. And
further recruit STING to achieve activation of nuclear factor NF-kB.
Activated NF-kB has been shown to play an important role in
tumor progression and clearance of tumors by the immune system
(41, 84). Wang L et al. came to a similar conclusion that the ATM-
CHK2 axis could be a potential target during tumor therapy and
that selective inhibition of the checkpoint signaling axis ATM-
CHK2 could activate the body’s intrinsic innate immunity and
enhance ICI therapeutic efficacy, which has been demonstrated in
ARID1A-deficient tumors (85). In addition, Sato H et al. first
elucidated that DNA double-strand breaks can upregulate PD-L1
expression in an ATM-dependent manner (86). Hu et al.
demonstrated that ATM inhibition can activate the cGAS-STING
pathway by promoting cytoplasmic leakage of mitochondrial DNA
and downregulating mitochondrial transcription factor A (TFAM)
and in this way enhance the effect of ICI treatment. Therefore,
mutations in ATM can be used to predict the clinical efficacy of ICI
as an ICI therapeutic target and biomarker (87). In addition, ATM
has also been reported to achieve enhancement of ICI therapeutic
efficacy through the cGAS-STING-independent pathway (88). In
addition, there is the most important point for brain tumors. ATM/
ATR has been shown to be an important cause of chemotherapeutic
drug resistance in GBM tumors, so could the detoxification of
resistance to chemotherapeutic drugs as well as upregulation of
immunotherapy sensitivity be achieved by blocking ATM/ATR.
Meanwhile, the application of TMZ resulted in replication fork
arrest of GBM cells and successive activation of ATR-Chk1 axis and
ATM-Chk2 axis, which may be potential targets for combining
chemotherapy with immunotherapy (89).

CTLA-4
CTLA-4 is a coinhibitory molecule expressed by Tregs cells that
can be regulated by activated CD4+ versus CD8+ T cells and
achieve interference with T-cell activation (90, 91). CD28 is
expressed by activated CD4+ versus CD8+ and has a role in
promoting immune responses and activating T cells. When the
T-cell receptor (TCR) is engaged, CTLA-4 increases rapidly at
the immune synapse through cytoskeletal reorganization,
achieving enrichment. The CTLA-4 that reaches the synaptic
site has a higher affinity for CD80 (B7-1) and CD86 (B7-2) than
CD28 (92, 93). The above process is extracellular pathway. In
addition, CTLA-4 has been shown to function through
intracellular pathways, specifically by binding to CD80/CD86
and acting within activated conventional T-cells. CTLA-4
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suppresses immune responses by recruiting SHP-2 and PP2A to
immune synapses (92, 94). Different routes to the same goal,
both of which negatively regulate T-cell proliferation (95, 96).
Ensure T-cell activity by fine-tuning the TCR to help safeguard
beneficial anti-pathogen and anti-tumor responses, while
maintaining tissue integrity, promoting tissue repair, and
regulating immune sensitivity (97).

Other Potential Biomarkers
RPA is a ssDNA binding protein, which plays an important role in
both NER and HR (98, 99). In the primary GBM cell lines, high-
level expression of RPA was detected. RPA expression can also be
detected in differentiated GBM cells, and it has been observed that
RPA70 and RPA14 have priority in expression. RPA mediates the
high invasiveness of GBM. It is believed that blocking the function
of RPA may increase the responsiveness of radiotherapy. And RPA
can function by interacting with sites such as ATR, Rad51, BRCA1/
2, and p53 (100, 101). This may be a potential biomarker for highly
aggressive tumors such as GBM (102).

Zhang J et al. supplied a new immune target where DNA-PKcs
could influence TGF-b1, a significant factor in the epithelial-
mesenchymal transition (EMT) process (103). DNA-PKcs
deletion enhances ICI treatment (104). The mutant group had a
more satisfactory survival outcome after ICI treatment compared to
patients with normal DNA-PKcs (105). Echoing this, Yang H et al.
concluded that the combination of immunotherapy with DNA-
PKcs as a target can have a synergistic effect, with the result that
patients can benefit more from immunotherapy (106). There is also
a DNA-PK inhibitor called CC-115, which is able to cross the BBB,
whose efficacy in patients with GBM is being tested and CC-115 is
being considered in combination with radiotherapy and TMZ for
GBM (107).

In recent years, there has also been significant progress in the
exploration of protein-coding RNAs, and it is thought that RNA
dysfunction can also influence cancer development (108).
Subsequently, immunotherapies targeting RNAs have also
emerged, particularly LncRNA, whose expression has been
shown to be associated with various immune checkpoints such
as PD-1/PD-L1 and CTLA-4 (109). It has also been shown that
Lnc-talc interferes with the action of temozolomide by affecting
the immune microenvironment, leading to GBM resistance (110,
111). In addition to this, epidermal growth factor receptor
(EGFR) and mesenchymal-epithelial transition factor (MET)
signaling pathways have been demonstrated in temozolomide
resistance (112). The experiments conducted for the above new
targets provide new therapeutic strategies for GBM and offer the
possibility to explore immunotherapy for GBM.
COMBINED DNA DAMAGE REPAIR-
BASED THERAPY WITH
IMMUNOTHERAPY

A growing number of experiments have shown that therapies
that destabilize DNA and disrupt the repair process of tumor cell
damage, can reshape the tumor immune microenvironment and
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offer the possibility of applying immunotherapy to tumor cells
that are resistant or less sensitive to immunotherapy. This is
particularly important for the application of immunotherapy in
brain tumors. On this basis, it becomes feasible and meaningful to
combine immunotherapy with other tumor treatment modalities.

Radiotherapy With Immunotherapy
It is well known that radiation therapy corrects tumor mainly
through two mechanisms, one is the production of free radicals,
which induce oxidative responses in the body and activate
damage-associated molecular patterns (DAMPs), and in this
way enhance DC function. The other is DNA damage, the vast
majority of which is DNA strand breaks, with double-strand
breaks (DSBs) being the key damage in radiation-killed cells. The
role that radiation therapy plays in the immune process has been
discovered step by step in recent years. Its effect on immune
response is mainly to enhance tumor immunogenicity by
increasing tumor-recognizable neoantigens, expression of
MHC molecules, etc. (113) And to recruit CD8+ T cells and
DC cells to awaken the body’ s anti-tumor immune process
(114). Radiotherapy triggers immunogenic cell death by both of
these means (115), enhances DC function and further promotes
antigenic expression of dendritic cells (DCs) (116), allows DCs to
be recruited between tumor tissues. Common DAMPs include
HMGB1 and calreticulin, etc. (117) HMGB1 allows DC cells to
acquire the ability to process and present antigens by acting on
toll-like receptor (TLR) 4 receptors and furthermore induce T
cell immune responses (118). Cells expressing calreticulin on the
surface can be recognized by DCs and achieve phagocytosis of
would-be dead cells. In contrast, DSBs resulting from DNA
damage after radiotherapy produce cytosolic DNA fragments
and micronuclei that activate the cGAS/STING pathway (119,
120). Further stimulates the production of IFN, increases the
expression of MHC molecules on the surface of tumor cells,
promotes the maturation of DC cells and drives other immune-
related processes (111, 121–124). To achieve the purpose of
enhancing the recognition ability of the immune system. Because
of this, radiotherapy is also thought to be involved in the DNA
damage repair process known as activate mTOR signaling (125).
However, the effects of radiotherapy go far beyond this.
Radiotherapy has also been reported to induce the expression
of adhesion molecules ICAM and VCAM1 on tumors and
endothelial cells, and in this way block the binding of adhesion
molecules to T cells. Then reduced the incidence of tumor
rejection (126). In addition, radiotherapy has been shown to
increase the expression of inflammatory chemokines, such as
CXCL5 and CXCL2, which recruit suppressive cells in TME
while producing TGFb and participating in the tumor immune
process (126, 127). The common outcome of these
aforementioned post-radiotherapy alterations is to promote the
infiltration of CD8+ T cells in TME and to achieve up-regulation
of PD-L1 expression by all of the above (128). Therefore, this
behavior is a key part of the therapeutic effect of radiotherapy
combined with PD-1/PD-L1 inhibitors (129). More importantly,
the increase of MDSCs in TME after radiotherapy, which has
been shown to drive tumor growth and angiogenesis, upregulate
CTLA-4 expression in Tregs (130) and inhibit cytotoxic T-cell
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activation acting as a coordinating immunosuppressive agent
(131). Furthermore, it has been suggested that TAMs and
regulatory T-cells (Tregs) are more resistant to radiation than
T cells, contributing to the enrichment in TME after
radiotherapy (132). Radiotherapy can also activate NK cell
action by upregulating the NKG2D receptor in the co-
stimulatory receptor, achieving immunomodulation by
interfering with the innate immune system. Also, radiotherapy
has been reported to act on TNF receptors (133). Including FasL,
TNF-a receptor, TRAIL-R1 and TRAIL-R2. Since CTL can
express ligands of the above receptors, it makes tumor cells
more sensitive to the action of CTL after radiotherapy. This also
explains from a certain perspective, why some tumors gradually
show a more satisfactory sensitivity to immunotherapy after
receiving radiotherapy. It may be related to the direct or indirect
recruitment and activation of CTL caused after radiotherapy. For
example, IFN-g and TNF-a produced after radiotherapy can
induce CXCL9, CXCL16, etc. And then further collect CTL into
TME. These reports support that the effect of radiotherapy on
DNA damage repair can act on the immune system and provide
a theoretical basis for the feasibility of radiotherapy combined
with immunotherapy (134). Not only that, there are many
animal experiments embarking on the combination of
radiotherapy and immunotherapy.

Radiation therapy (RT) is widely used in patients with solid
tumors, and GBM is no exception. Several preclinical studies
have reported that RT can lay the foundation for
immunotherapy and improve the response rate of
immunotherapy. The most widely used immunotherapies are
ICIs, and three types of ICIs have been approved by the FDA for
clinical use, namely anti-CTLA-4, anti-PD-1 and anti-PD-L1.
TIM-3 is a negative regulator that is widely expressed on Tregs
and NK cells, and blocking TIM-3 can help CD4/CD8+ T cells to
restore specific immune function, which is helpful in relieving
the immune resistance of tumor cells (135). It has been shown
that TIM-3 expression is elevated in glioma patients and can be
detected not only on the surface of TIL, but also in circulating
blood lymphocytes (136, 137). Kim, Jennifer E et al. attempted to
apply anti-TIM-3 along with stereotatic radiosurgery (SRS) and
analyzed the role of the combination in the treatment of glioma.
The experiment showed that the median survival time of SRS
alone was 27 days, while the combined anti-TIM-3 group could
extend up to 100 days. Also, the team experimented with the
possibility of combining two ICIs, anti-PD-1 and anti-TIM3. It
was shown that both PD-1 and TIM-3 have inhibitory effects on
the secretion of some cytokines such as IFNg and TNFa (138).
Compared to anti-PD-1 alone, Kim, Jennifer E et al. did not
observe an increase in the amount of IFNg in the combination of
anti-PD-1 with anti-TIM-3. However, there was positive
feedback from the trinity treatment approach of both ICI
combined with SRS compared to the anti-PD-1 combined with
SRS group. That is, a trend was detected to promote the secretion
of IFNg, TNFa, and the secretion of such cytokines was widely
shown to be associated with prolongation of OS. Although the
combination of ICI and RT has been repeatedly reported to have
a synergistic effect in saving brain tumors, there are conflicting
Frontiers in Immunology | www.frontiersin.org 9
opinions about the side effects (139). Clausi MG et al. suggested
that RT in combination with ICI induced activation of CD8+ T
cells and polarization of TAMs. It was reported that CD8+ T cells
were not found in normal brain tissue, while traces of CD8+ T
cells were detected in the white matter and hippocampus of mice
with brain tumors after combined treatment. Meanwhile, in
studying the side effects of the combination treatment, they
evaluated the cognitive and behavioral performance and
neuroinflammation in the mice. The results showed that
although the combination therapy reflected better results on
tumor control, it also induced cognitive and behavioral,
neuroinflammatory and other side effects that affected the
quality of survival (140). However, positive side effects of the
combination treatment have also been reported, as Qiu B et al.
found that RT combined with ICI treatment can lead to
permanent depletion of neuroblasts in the subgranular zone
(SGZ) of the hippocampal dentate gyrus, which can indirectly
protect the function of the hippocampal region. The addition of
anti-PD-1 provided a cerebral protective effect relative to RT
applied alone (141).

Chemotherapy With Immunotherapy
Chemotherapy is one of the most effective methods of treating
tumors. It is used to kill tumor cells through the application of
drugs to achieve a therapeutic goal. One of the main advantages
of chemotherapy over traditional surgery and radiation therapy
is that chemotherapy is a systemic treatment. Chemotherapy
drugs can act on most tissues throughout the body through blood
circulation, which is an outstanding advantage in treating
metastatic cancer. Also for GBM, the application of
chemotherapeutic drugs has shown to be extremely superior,
and TMZ plays an integral role in GBM treatment. However, in
recent years, as chemotherapy has become more widely
understood, it has been found that chemotherapy has not only
cell-damaging effects, but also significant effects on the immune
system. Chemotherapy can expose neoantigens on the surface of
tumor cells, which are recognized by DCs and presented to CTL
cells, further activating the antitumor immune response. In
recent years, the exploration of the relationship between
chemotherapy and immune response has gradually become a
popular topic. Toll-like receptors (TLRs) mentioned before is
one of the cases. Many immune cells activate the relevant
immune response through the interaction between receptors
called TLRs and pathogens (142). Based on this, molecules that
have agonistic effects on TLRs have won widespread attention.
One of them is an oligonucleotide called CpG-ODN (143). CpG-
ODN is classified as A, B and C according to the type of cells it
acts on. Among them, type B CpG-ODN has been shown to
inhibit tumor cell growth by acting on TLR9 in several preclinical
models, with long-lasting effects and immune memory detected
in specific subjects (144). TLR4 has also been found to be
induced by paclitaxel and cause immune cell death. But
chemotherapy is also thought to activate the immunostimulatory
pathway and can be used to kill cancer cells by this mechanism.
After the application of drugs such as docetaxel, oxaliplatin and
cyclophosphamide (CPA). ATP, HMGB1 and tumor cell surface
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calcineurin can be detected. These exposed neoantigens increase the
possibility of tumor cells being recognized by immune cells (145,
146). Chemotherapeutic agents can also directly modulate immune
cell populations. Cyclophosphamide depletes immunosuppressive
myeloid suppressor cells and Treg cells, relieves their inhibitory
effects on NK and T cells, elevates the innate immune response, and
promotes Th1 cytokine production (147). Cyclophosphamide has
been used as a first-line chemotherapeutic agent formany years, and
although it has been shown to have excellent anti-tumor
performance, experimental feedback suggests that combination
therapy can achieve superior results compared to monotherapy.
Jordan, M et al. conducted a study in 2016, which showed that the
addition of CpG-1826 immunotherapy on day 12 after the
application of cyclophosphamide therapy prolonged the duration
of immune response prompted by cyclophosphamide and a
satisfactory antitumor response was observed. Combining CpG-
1826 after cyclophosphamide treatment minimizes the ablation of
immune cells by cyclophosphamide and prolongs the duration of
response (142). It is well known that temozolomide synchronized
chemotherapy is an indispensable and critical part of GBM
treatment, so how to use TMZ rationally to enhance the effect of
GBM immunotherapy is being paid attention to (148). Although
reduction of multiple lymphocytes in TME can be observed after
TMZ application, in some cases, TMZ was found to induce anti-
tumor immune response (149). Hasan, Md Nabiul et al. focused on
the effect of Na/H exchanger 1 in combination with TMZ on
immunotherapy. They found that NHE1 was closely related to the
immunosuppressive TME of GBM, which is one of the reasons for
downregulating the sensitivity of GBM to the immune response
(150). And further validated the effect of combination treatment of
NHE1 inhibitor HOE642 with TMZ on PD-1. The results showed
that the infiltration of GAMs and T cells was significantly increased
in the combination treatment group, and Th1 was activated along
with enhanced anti-tumor immunity. In addition to this, the
combination therapy increased the sensitivity of anti-PD-1
treatment modality, providing the possibility of ICI in GBM
treatment (151). The rationale for this therapeutic approach
focuses on the metabolic reprogramming of TAMs and T cells
that has been discovered in recent years, which plays an important
value in the anti-GBM immune response. This is thought to be a
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pathway for tumor cells to evade surveillance by the immune
system, i.e., by upregulating PD-L1 and binding to PD-1 on the
surface of T cells to induce T cell apoptosis to complete the immune
escape process (152). Although this process is a survival strategy for
tumor cells, it also brings an idea for the application of
immunotherapy, i.e., the possibility of targeting immune
checkpoints for blockade, which is a breakthrough for brain
tumors that are part of cold tumors. One trial specifically
analyzed the effect of combining TMZ with ICI and reported that
when TMZ was administered systemically, the combined ICI
treatment did not show any survival advantage. In contrast, when
TMZ was administered locally, the survival advantage appeared to
be significantly altered with the combined application of ICI. This
seems to indicate that the effect of TMZ on anti-tumor immune
response is related to factors such as dose and route of
administration (153). In addition, the oncolytic virus, which has
been widely studied in brain tumors, has shown satisfactory results
in joint experiments with TMZ. Sampson JH et al. demonstrated
that an enhanced antitumor immune response was observed with
the application of TMZ in GBM patients treated with
oncolytic virus.

DNA Damage Repair Inhibitors
With Immunotherapy
Poly ADP-Ribose Polymerase Inhibitor (PARPi)
PARP, is a DNA repair protein. It maintains genomic stability by
repairing damaged DNA single strands during DNA damage
repair, PARP is mainly divided into PARP1 and PARP2, with
PARP1 playing a key role in the efficient repair of DNA single
strand breaks (SSBs) (154). This mechanism is also generalized
in tumor cells. A large proportion of antitumor drugs interfere
with the normal life activities of tumor cells by damaging their
DNA, and in this way, they aim to kill them. Unfortunately,
tumor cells can protect themselves through the above damage
repair mechanism. Inhibitors of poly ADP-ribose polymerase
(PARPi) have emerged as new tumor therapeutic agents
(Table 2). PARPi applies the concept of synergistic lethality of
DNA damage repair by competitively binding to PARP to inhibit
HR, resulting in the accumulation of large amounts of single-
stranded DNA in tumor cells that are not repaired in time (155).
TABLE 2 | FDA-approved PARPi class drugs.

PARP inhibitors FDA-approved cancers Year of approval

Olaparib Advanced ovarian cancer 2014
Primary peritoneal cancer 2017
HER-2 negative metastatic breast cancer 2018
Metastatic pancreatic adenocarcinoma 2019
Metastatic castration-resistant prostate cancer(mCRPC) 2020

Rucaparib Ovarian cancer 2016
Recurrent epithelial ovarian 2018
Primary peritoneal cancer
Metastatic castration-resistant prostate cancer(mCRPC) 2020

Niraparib Primary peritoneal cancer 2017
Advanced ovarian 2019
Primary peritoneal cancer

Talazoparib HER-2 negative locally advanced or metastatic breast cancer 2018
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This enhances the efficacy of chemotherapeutic agents. However,
PARPi’s contribution to tumor therapy goes far beyond this.
While inhibiting DNA-SSB repair, PARPi acts with the cofactor
NAD+ to anchor PARP1 to damaged DNA, forming a stable
PARP-SSB complex. In turn, the replication fork disintegrates
upon contact with the PARP-SSB complex and consequently
leads to more severe DSBs, which serve to induce tumor cell
death (154, 156). More notably, PARPi has a targeted effect on
BRCA-deficient tumors. BRCA is also a DNA repair protein, but
unlike PARP, BRCA is primarily responsible for the repair of
DSBs. Therefore, BRCA1 and BRCA2-deficient tumor cells are
very dependent on PARP for repair, and for this reason, PARPi
has a significant effect on DNA damage in such tumor cells,
showing great cytotoxicity (147, 157). Therefore, it has become a
precision drug for cancers with DDR defects in the HR pathway
and was approved by the FDA in 2018 for the treatment of
BRCA-deficient cancers. Many studies have shown that the
antitumor effect of PARPi is related to innate immune
response in addition to the induction of DNA strand breaks
(158). PARPi accomplishes antitumor efficacy by activating the
cGAS-STING pathway, recruiting CD8+ T cells, and inducing
type 1 interferon (IFN) signaling, thereby resetting or initiating
the tumor microenvironment (159). Currently, most of the
clinical trials assessing the role of PARP in GBM neglect to
assess BRCA (160), which may be related to the low frequency of
BRCA mutations in GBM (161). PARP expression has been
reported to be associated with tumor grade as well as poorer
survival (162). An increase in tumor radiotherapy sensitivity was
observed in in vitro experiments applying PARPi against GBM
models (163). With a better understanding of the molecular
relationship between PARP and GBM (164), PARP may be used as
a biomarker to assess prognosis and drug resistance mechanisms.

Other DNA Damage Repair Inhibitors
Heat shock protein 70 (Hsp70) is often expressed on the surface
of highly aggressive tumor cells such as GBM, while the
upregulation of Hsp70 can also be observed after radiotherapy
and chemotherapy (165). Shevtsov M et al. investigated the
antitumor effect of a combination therapy consisting of Hsp70-
peptide TKD/IL-2-activated NK cells and anti-PD-1 on GBM in
mice. The results showed that both alone retarded the growth
and migration of tumor cells and prolonged the OS of the GBM
mouse model, while the combination therapy further improved
the outcome parameters compared to the monotherapy
modality. The OS in the combination treatment group was 2.3
times higher than that in the control group. Tumor tissue
sections showed increased infiltration of CD8+ T cells and NK
cells in the treatment groups, with the most pronounced immune
cell infiltration in the combination treatment group and a 1.5-
fold increase in anti-tumor cytotoxicity. This is consistent with
previous reports that blocking PD-1 on the surface of NK cells
can enhance immune responses (166).

In addition, phosphatases are also attracting attention as new
brain tumor targets (167). It has been claimed that PP2A can
activate CTLA-4 on the surface of T cells through
dephosphorylation, which has a potential inhibitory effect on
the immune function of CTL (168). Besides, researchers also
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found that the negative immune regulatory function of Treg was
broken in the model of PP2A deficiency, which contributed to
the proliferation of TIL (169). Based on this, Maggio D et al.
considered to analyze the effect of simultaneously targeting both
PP2A and PD-1 checkpoints on tumor control. It was found that
simultaneous blockade of PP2A and PD1 significantly improved
OS in GBM mice, with a substantial increase in the number of
immunoreactive T cells in the group compared to the control
group, and resulted in complete regression of GBM in about a
quarter of the mice. The team further speculated that this might
be related to the activation of the mTORC1 pathway after the
application of PP2A inhibitor (170). Another molecule highly
expressed in GBM is arginase (ARG), which is more easily
detected especially in TAMs with highly aggressive GBM.
Some studies have confirmed that ARG has a proliferative
effect on CTL, while lower plasma concentrations of ARG are
often accompanied by the appearance of significant
immunosuppression (171). Inhibition of ARG restored the
function of TAMs and NK cells and improved the sensitivity
to anti-PD-1. Zhang J et al. applied an anti-ARG called OAT-
1746 in combination with anti-PD-1 in a GBM mouse model,
and OAT-1746 could penetrate the BBB, which is known for its
defensive capabilities. The results observed an increase in
the proportion of CD3+ T cells in the TME of mice after the
combination treatment, which is important for considering the
simultaneous inhibition of ARG and PD-1 in the GBM
population for potential feasibility. Meanwhile, decreased
expression of CCL2 and CCL7 was detected in the
experimental group, and the expression of CCL2 is closely
associated with tumor angiogenesis and high invasiveness
(172), while CCL7 has a recruitment effect on Treg (173). The
positive feedback of combination therapy for TME may be
related to OAT-1746 affecting the expression of CCL2 and
CCL7-related genes (174).
CONCLUSION

Tumor immunotherapy has evolved rapidly in the past decade.
And today, many therapies targeting the immune response have
been approved and are used in clinical practice. However,
unfortunately, the use of immunotherapy in the field of brain
tumors still has not progressed much. Due to the existence of BBB,
the intracranial system can protect the brain tissue from damage,
but also increase the difficulty of drugs breaking through
the barrier. Moreover, brain tumors are immunologically
“cold tumors” that do not show satisfactory sensitivity to
immunotherapy, and the use of autoimmune response to
achieve clearance of brain tumors remains a major challenge.
Fortunately, tumors are associated with genomic instability, and
DNA damage repair is an important way for the body to maintain
and correct genetic information. Therefore, targeting DNA
damage repair mechanisms in tumor therapy may be a
breakthrough guide in the fight against tumors. This study also
focused on this hot topic and analyzed the intrinsic link between
immunotherapy and DNA damage repair. We also found that
appropriate biomarkers are particularly important for evaluating
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immunotherapy. TAMs, as the largest group of cells in brain
tumor TME, play an important role in immune regulation of the
microenvironment. And biomarkers such as MSI and ATM,
which have been widely used in “hot tumors”, also seem to
guide brain tumors that are not sensitive to immunotherapy.
RPA, DNA-PKcs and other proteins in the DNA damage repair
process may provide a precursor assessment for the rational
implementation of immunotherapy in brain tumors and may
serve as a guide for immunotherapy. At the same time, we
discuss the feasibility of combining immunotherapy with other
treatments. DNA double-strand breaks during radiation therapy,
chemotherapy that partially targets DNA damage directly, and
targeted therapies that are now used to break the DNA damage
repair process in tumor cells all provide favorable premises for the
use of immunotherapy. We also describe the current state of
research in combination therapy. Even so, little is known about
brain tumors and TME and how the promising immunotherapy
can be used in the clinic. The application of immunotherapy in
brain tumors remains a major challenge that needs to be explored
jointly by clinicians, genomics, translational medicine and other
multidisciplinary personnel. Together, we will reveal the intrinsic
link between DNA damage repair processes and brain tumor
immunotherapy, and provide inspiration and support for the
application of damage repair in brain tumor immunotherapy.
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