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Recurrent neural networks (RNNs) are complex dynamical systems, capable of ongoing

activity without any driving input. The long-term behavior of free-running RNNs, described

by periodic, chaotic and fixed point attractors, is controlled by the statistics of the neural

connection weights, such as the density d of non-zero connections, or the balance

b between excitatory and inhibitory connections. However, for information processing

purposes, RNNs need to receive external input signals, and it is not clear which of

the dynamical regimes is optimal for this information import. We use both the average

correlations C and the mutual information I between the momentary input vector and

the next system state vector as quantitative measures of information import and analyze

their dependence on the balance and density of the network. Remarkably, both resulting

phase diagrams C(b,d) and I(b,d) are highly consistent, pointing to a link between

the dynamical systems and the information-processing approach to complex systems.

Information import is maximal not at the “edge of chaos,” which is optimally suited

for computation, but surprisingly in the low-density chaotic regime and at the border

between the chaotic and fixed point regime. Moreover, we find a completely new

type of resonance phenomenon, which we call “Import Resonance” (IR), where the

information import shows a maximum, i.e., a peak-like dependence on the coupling

strength between the RNN and its external input. IR complements previously found

Recurrence Resonance (RR), where correlation and mutual information of successive

system states peak for a certain amplitude of noise added to the system. Both IR and

RR can be exploited to optimize information processing in artificial neural networks and

might also play a crucial role in biological neural systems.

Keywords: recurrent neural networks (RNNs), dynamical system, edge of chaos, information processing,

resonance phenomena

INTRODUCTION

At present, the field of Machine Learning is strongly dominated by feed-forward neural networks,
which can be optimized to approximate an arbitrary vectorial function y = f(x) between the
input and output spaces (Funahashi, 1989; Hornik et al., 1989; Cybenko, 1992). Recurrent neural
networks (RNNs) however, are a much broader class of models, which encompass the feed-
forward architectures as a special case, but which also include partly recurrent systems, such
as contemporary LSTMs (long short-term memories) (Hochreiter and Schmidhuber, 1997) and
classical Jordan or Elman networks (Cruse, 2006), up to fully connected systems without any
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layered structure, such as Hopfield networks (Ilopfield, 1982)
or Boltzmann machines (Hinton and Sejnowski, 1983). Due to
the feedback built into these systems, RNNs can learn robust
representations (Farrell et al., 2019), and are ideally suited to
process sequences of data such as natural language (LeCun et al.,
2015; Schilling et al., 2021a), or to perform sequential-decision
tasks such as spatial navigation (Banino et al., 2018; Gerum et al.,
2020). Furthermore, RNNs can act as autonomous dynamical
systems that continuously update their internal state st even
without any external input (Gros, 2009), but it is equally possible
to modulate this internal dynamics by feeding in external input
signals xt (Jaeger, 2014). Indeed, it has been shown that RNNs
can approximate any open dynamical system st+1 = g(st , xt) to
arbitrary precision (Schäfer and Zimmermann, 2006).

It is therefore not very surprising that biological neural
networks are also highly recurrent in their connectivity
(Binzegger et al., 2004; Squire et al., 2012), so that RNN models
play an important role in neuroscience research as well Barak
(2017) and Maheswaranathan et al. (2019). Modeling natural
RNNs in a realistic way requires the use of probabilistic, spiking
neurons, but even simpler models with deterministic neurons
already have highly complex dynamical properties and offer
fascinating insights into how structure controls function in
non-linear systems (Krauss et al., 2019b,c). For example, we
have demonstrated that by adjusting the density d of non-
zero connections and the balance b between excitatory and
inhibitory connections in the RNN’s weight matrix, it is possible
to control whether the system will predominantly end up in
a periodic, chaotic, or fixed point attractor (Krauss et al.,
2019b). Understanding and controlling the behavior of RNNs
is of crucial importance for practical applications (Haviv et al.,
2019), especially as meaningful computation, or information
processing, is believed to be only possible at the “edge of chaos”
(Bertschinger and Natschläger, 2004; Natschläger et al., 2005;
Legenstein and Maass, 2007; Schrauwen et al., 2009; Büsing et al.,
2010; Toyoizumi and Abbott, 2011; Dambre et al., 2012).

In this paper, we continue our investigation of RNNs with
deterministic neurons and random, but statistically controlled
weight matrices. Yet, the present work focuses on another
crucial precondition for practical RNN applications: the ability
of the system to store information, i.e., to “take up” external
information and to incorporate it into the ongoing evolution
of the internal system states. For this purpose, we first set
up quantitative measures of information import, in particular
the input-to-state correlation C(xt , st+1), which is defined as
the root-mean-square (RMS) average of all pairwise neural
correlations between the momentary input xt and the subsequent
system state st+1. Furthermore, we compute the input-to-state
mutual information I(xt , st+1), an approximation for the mean
pairwise mutual information between the same two quantities.
We then compute these measures for all possible combinations
of the structural parameters b (balance) and d (density) on a
grid, resulting in high-resolution phase diagrams C(b, d) and
I(b, d). This reveals that the regions of phase space in which
information storage (memory capacity) and information import
(representation) are optimal, surprisingly do not coincide, but
nevertheless have a small area of phase space in common. We

speculate that this overlap region, where both crucial functions
are simultaneously possible, may represent a “sweet spot” for
practical RNN applications and might therefore be exploited by
biological nervous systems.

RESULTS

Free-Running Network
In the following, we are analyzing networks composed of
Nneu = 100 deterministic neurons with arctangent activation
functions. The random matrix of connection weights is set
up in a controlled way, so that the density d of non-zero
connections as well the balance b between excitatory and
inhibitory connections can be pre-defined independently (for
details see Section 4). Visualizations of typical weight matrices
for different combinations of the statistical control parameters d
and b are shown in Figure 1.

We first investigate free-running networks without external
input and compute a dynamical phase diagram Css(b, d) of
the average correlation Css = C(st , st+1) between subsequent
system states (Figure 2a, for details see Section 4). The resulting
landscape is mirror-symmetric with respect to the line b =

0, due to the symmetric activation functions of our model
neurons, combined with the definition of the balance parameter.
Apart from the region of very low connection densities with
d ≤ 0.1, the phase space consists of three major parts: the
oscillatory regime in networks with predominantly inhibitory
connections (b ≪ 0, left green area in Figure 2a), the chaotic
regime with approximately balanced connections (b ≈ 0, central
blue and red area in Figure 2a), and the fixed point regime with
predominantly excitatory connections (b≫ 0, right green area in
Figure 2a).

It is important to note that C(st , st+1) is a root-mean-square
(RMS) average over all the Nneu × Nneu pairwise correlations
between subsequent neural activations (so that negative and
positive correlations are not distinguished), and that these
pairwise correlations are properly normalized in the sense of a
Pearson coefficient (each ranging between –1 and +1 before the
RMS is computed). For this reason, C(st , st+1) is close to one
(green) both in the oscillatory and in the fixed point regimes,
where the system is behaving regularly. By contrast, C(st , st+1)
is close to zero (blue) in the high-density part of the chaotic
regime, where the time-evolution of the system is extremely
irregular. Medium-level correlations (red) are therefore expected
in the transition region between these two extreme dynamical
regimes, and they are indeed found in the correlation phase
diagram for densities larger than ≈0.3 in the form of narrow
stripes at the border of the chaotic “valley.” It is however
surprising that medium-level correlations also exist across the
whole chaotic valley for relatively low densities d ∈ [0.1, 0.3].
Since medium-level correlations are thought to be optimally
suited for information processing (Bertschinger and Natschläger,
2004; Natschläger et al., 2005; Legenstein and Maass, 2007;
Schrauwen et al., 2009; Büsing et al., 2010; Toyoizumi and
Abbott, 2011; Dambre et al., 2012), it is remarkable that this can
take place not only at the classical “edge of chaos” (between the
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FIGURE 1 | Examples of weight matrices for selected combinations of the balance b between excitatory and inhibitory connections and the density d of non-zero

connections in an RNN.

oscillatory and the chaotic regime), but also in other (and less
investigated) regions of the network’s dynamical phase space.

In order to verify the nature of the three major dynamical
regimes, we investigate the time evolution of the neural

activations for selected combinations of the control parameters
b and d. In particular, we fix the connection density to d =

0.5 and gradually increase the balance from b = −0.5 to
b = +0.5 in five steps (Figures 2b–f). As expected, we find
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FIGURE 2 | Dynamical phases of a free-running RNN, controlled by the structural parameters b (balance) and d (density). (a) Phase diagram of the correlation

C(st, st+1) between successive neuron activations, as defined in the methods section. The three basic regimes are the oscillatory phase for negative balances (large

correlations), the chaotic phase for balances close to zero (small correlations), and the fixed point phase for positive balances (large correlations).

(Continued)
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FIGURE 2 | (b–f) Typical time dependence of the neural activations for fixed density (d = 0.5) and balances increasing from b = −0.5 to b = +0.5. The system

behavior evolves from almost homogeneous oscillations (b), to a heterogeneous oscillatory state (c), to fully chaotic behavior (d), to a heterogeneous fix point state

state with a sub-group of slowly oscillating neurons (e), and finally to an almost global fixed point attractor (f). The low-density example (g) shows out-of-phase,

imperfect oscillations with a period larger than 2, with phase differences between the neurons. Longer state sequences of the cases (c,d) are shown in (h,i). (j) Shows

the difference of neural activations between the chaotic state sequence (d) and a second run, where the initial activation of only one neuron (with index 0) was

changed by a value of 0.1.

FIGURE 3 | Dynamical phases of a RNN driven by external input in the form of continuous random signals that are coupled independently to all neurons with a

coupling constant of η = 0.5. The suitability of the system for information processing is characterized by the statistical dependency between subsequent states (left

column), the suitability for information import by the statistical dependency between the input xt and the subsequent state st+1 (right column). First row (a,b)

Root-mean-square of correlations. Second row (c,d) Mean pairwise mutual information. Information import is optimal in the low-density chaotic regime and at the

border between the chaotic and fixed point regime (red and green color in right column). Third row (e,f) Approximation of the mean pairwise mutual information, where

only a sub-population of 10 neurons is included to the evaluation.
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FIGURE 4 | Phase diagram of information import as in Figure 3b, but with one parameter changed in each of the four panels. (a) Width of the Gaussian distribution

of weight magnitudes increased from w = 0.5 to w = 1. (b) Number of neurons reduced from N = 100 to N = 50. (c) Time delay between input signal and system

state increased from 1 to 2. (d) Width of the Gaussian distribution of weight magnitudes decreased from w = 0.5 to w = 0.25. The results are similar to Figure 3b in

all cases except for reduced weight fluctuations (d), where both edges of chaos become available for information import.

almost perfect oscillations (here with a period of two time steps)
for b = −0.5 (case Figure 2b), at least after the transient
period in which the system is still carrying a memory of the
random initialization of the neural activations. At b = 0 (case
Figure 2d), we find completely irregular, chaotic behavior, and
at b = +0.5 (case Figure 2d) almost all neurons reach the
same fixed point. However, the cases close to the two edges of
the chaotic regime reveal an interesting intermediate dynamic
behavior: For b = −0.25 (cases Figures 2c,h), most neurons
are synchronized in their oscillations, but some are out of
phase. Others show a long-period regular “beating”-like behavior
superposed on the oscillations of period two (see the longer time
trace in Figure 2h). For b = +0.25 (cases Figures 2e,i), most
neurons reach (approximately) a shared fixed point, but some
end up in a different, individual fixed point, thus resembling a
state of quenched disorder. However, a sub-group of neurons
is simultaneously engaged in long-period oscillations (see the
longer time trace in Figure 2i).

The apparent irregularity of the neural activations in case
Figure 2d does not necessarily imply chaotic behavior. To
demonstrate the sensitive dependence of the neural trajectories
on the initial condition, we change the activation of only a single

neuron at t = 0 by a small amount of 0.1 and re-run the
simulation. We find that drastic, system-spanning differences
appear between the two time evolutions after about 30 time steps
(see Figure 2j).

Moreover, we observe that the memory time τ of the system
for the information imprinted by the initialization (that is, the
duration of the transient phase) depends systematically on the
balance parameter: Deep within the oscillatory regime (b =

−0.5, case Figure 2b), τ is short. As we approach the chaotic
regime (b = −0.25, case Figure 2c), τ increases, finally becoming
“infinitely” long at b = 0 (case Figure 2d). Indeed, from
this viewpoint the chaotic dynamics may be interpreted as the
continuation of the transient phase. As we move deeper into the
fixed point regime (cases Figures 2e,f), the memory time τ is
decreasing again.

In the medium and high-density regime of the phase diagram,
we find for negative values of the bias parameter mainly
oscillations of period two, as the large number of negative weights
causes the neurons to switch the sign of their sigmoidal outputs
from one time step to the next. However, in the low-density
regime, the magnitude of the neuron’s total input is reduced and
we then find also oscillations with larger periods (case Figure 2g).
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FIGURE 5 | Information import as a function of the coupling strength η

between the RNN neurons and the external input signals. For weak coupling

[η = 0.5 in (a)], only the low-density chaotic regime and the border between

the chaotic and fixed point regime are suitable for information import. As the

coupling in increases from η = 1 in (b) to η = 2 in (c), the correlations between

input xt and subsequent RNN states st+1 become gradually large throughout

the complete chaotic regime.

Network Driven by Continuous Random
Input

Next, we feed into the network a relatively weak external input
(with a coupling strength of η = 0.5), consisting of independent
normally distributed random signals that are continuously
injected to each of the neurons (for details see Section 4).

We find that the external input destroys the medium-level
state-to-state correlations C(st , st+1) in most parts of the chaotic
regime, except at the classical edge of chaos (Figure 3a, red).
Moreover, the input also brings the state-to-state correlations in
the fixed point regime down to a very small value, as now the
external random signals are superimposed onto the fixed points
of the neurons.

Another important practical factor is the ability of neural
networks to store information, i.e., to take up external
information at any point in time and to incorporate it into their
system state. We quantify this ability of information import by
the RMS-averaged correlation C(xt , st+1) between momentary
input and subsequent system state. Surprisingly, we find that
information import is best, i.e., C(xt , st+1) is large, in the low-
density part of the chaotic regime, including the lowest part of
the classical edge of chaos (region between chaotic and oscillatory
regimes), but also at the opposite border between the chaotic and
fixed point regimes (Figure 3b, green and red). We thus come to
the conclusion that (at least for weak external inputs with η =

0.5) our network model is simultaneously capable of information
import and information processing only in the low-density part
of the classical edge of chaos.

To backup this unexpected finding, we also quantify
information storage and information import by the average pair-
wise state-to-state mutual information I(st , st+1) (Figure 3c),
and the mutual information between the momentary input and
the subsequent system state I(xt , st+1) (Figure 3d), respectively.
These mutual-information-based measures can also capture
possible non-linear dependencies, but are computationally much
more demanding (for details see Section 4).

Despite of these drastic differences between the two measures,
we obtain practically the same phase diagrams for information
import and information storage/processing when we use the
RMS-averaged pairwise correlations (Figures 3a,b) and when
we use the mutual information (Figures 3c,d). This congruence
may simply indicate the absence of higher-order statistical
dependencies between subsequent states in our specific RNN
system. However, in the context of adaptive stochastic resonance,
we have already reported a surprisingly close relation between
linear correlation and mutual information for a large range
of model systems (Krauss et al., 2017). Taken together, these
findings suggest a possible link between information-processing
and dynamical approaches to complexity science (Mediano et al.,
2021).

Furthermore, we compare the results to a computationally
more tractable approximation of the mean pairwise mutual
information, where only a sub-population of 10 neurons is
included to the evaluation. It also shows the same basic
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characteristics (Figures 3e,f), implicating the possibility to
approximate mutual information in large dynamical systems,
where an exhaustive sampling of all joint probabilities necessary
to calculate entropy and mutual information is impractical
or impossible.

Effect of Other System Parameters
In order to test the robustness of the above results on information
import, we re-compute the phase diagram of the correlations
between the input and a later system state (Figure 4), now
however varying some of the parameters that have been kept at
their standard values (w = 0.5, N = 100, 1t = 1, η = 0.5) so
far. We obtain results similar to Figure 3b when the fluctuation
widthw of the Gaussian weight distribution is increased tow = 1
(Figure 4a), when the number of neurons in reduced to N = 50
(Figure 4b), and when the lag-time between input signal and
system state is increased to 1t = 2 (Figure 4c). However, when
the fluctuation width of the weight distribution is reduced to
w = 0.5, which decreases the total neural inputs and therefore
brings the system closer to the linear regime, we find that now
both edges of chaos become available for information uptake
(Figure 4d).

Effect of Increasing Coupling Strength
We return to our standard parameters (w = 0.5, N = 100,
1t = 1), but now increase the coupling strength to the random
input signals step-wise from η = 0.5 to η = 1 and finally to
η = 2 (Figure 5). We observe that by this way also the higher
density parts of the chaotic regime become eventually available
for information import (green color).

Import Resonance (IR) and Recurrence
Resonance (RR)
Next, we increase the coupling strength η gradually from zero
to a very large value of 20, at which the random input already
dominates the system dynamics. For this numerical experiment,
we keep the balance and density parameters fixed at b =

−0.5, d = 0.5 (oscillatory regime), b = 0, d = 0.5
(chaotic regime), and b = 0.5, d = 0.5 (fixed point regime),
respectively.

When in the fixed point regime (Figure 6f), we find that
the dependence of the state-to-state correlation C(st , st+1) on
the coupling strength η has the shape of a “resonance peak.”
Since η effectively controls the amplitude of “noise” (used by
us as pseudo input) added to the system, this corresponds to
the phenomenon of “Recurrence Resonance” (RR), which we
have previously found in three-neuron motifs (Krauss et al.,
2019a): At small noise levels η, the system is stuck in the fixed
point attractor, but adding an optimal amount of noise (so that
C(st , st+1) becomes maximal) is freeing the system from this
attractor and thus makes recurrent information “flux” possible,
even in the fixed point regime. Adding toomuch noise is however
counter-productive and leads to a decrease of C(st , st+1), as the
system dynamics then becomes dominated by noise. We do not

observe recurrence resonance in the other two dynamic regimes
(Figures 6b,d).

Interestingly, we find very pronounced resonance-like curves
also in the dependence of the input-to-state correlation
C(xt , st+1) on the coupling strength η, for all dynamical regimes
(Figures 6a,c,e). Since C(xt , st+1) is a measure of information
import, we call this novel phenomenon “Import Resonance” (IR).

Network Driven by Continuous Sinusoidal
Input
Next, we investigate the ability of the system to import more
regular input signals with built-in temporal correlations, as well
as inputs that are identical for all neurons. For this purpose, we
feed all neurons with the same sinusoidal input signal, using
an amplitude of asin = 1, an oscillation period of Tsin = 25
time steps, and a coupling strength of η = 2 (Figure 7). The
density parameter is again fixed at d = 0.5, while the balance
increases from b = −0.6 to b = +0.6 in five steps. We find
that the input signal does not affect the evolution of neural states
when the system is too far in the oscillatory phase or too far in
the fixed point phase (c,g). Only systems where excitatory and
inhibitory connections are approximately balanced are capable of
information import (d-f). For b = −0.3 (d), most of the neurons
are still part of the periodic attractor, but a small sub-population
of neurons is taking up the external input signal (d). Interestingly,
the system state is reflecting the periodic input signal even in the
middle of the chaotic phase (e).

Correlations for Longer Lagtimes
So far, we have analyzed input-to-state and state-to-state
correlations mainly for a lag-time 1t = 1. We finally extend
this analysis to larger lag-times up to 50 time steps (Figure 8),
however only for three selected RNNs in the oscillatory, chaotic
and fixpoint regime, using again our standard parameters
(w = 0.5, N = 100, η = 0.5). Since our correlation
measures C(xt , st+1) (left column) and C(st , st+1) (right column)
are defined as RMS averages, these values never fall below a
certain noise level, which is in our case about 0.034. Another
consequence of the RMS-average is that perfectly oscillatory
RNN states with a period of two show up as C(st , st+1) = 1
(Figure 8b).

In the oscillatory regime, we find that input-to state
correlations (as a measure of information import) remain at the
noise level for all lag-times (a), while the system states are bound
in a perfectly periodic attractor (b). Also in the fixpoint regime,
both types of correlation are negligible for all non-zero lag-times.
But remarkably, information can be imported (c) and stored (d)
to a small but significant extent even in the middle of the chaotic
regime, although the correlations decay back to noise level after
about 20 time steps for this specific point in phase space (b = 0,
d = 0.5). Future work will analyze how this correlation decay
time depends on the statistical system parameters b and d.

DISCUSSION

In this study, we investigate the ability of RNNs to import
and store information as a function of the weight statistics, a
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FIGURE 6 | Import resonance and recurrence resonance in RNNs. We compute the input-to-state correlation C(xt, st+1) (left column) and the state-to-state

correlation C(st, st+1) (right column) for RNNs in the oscillatory (top row), chaotic (middle row) and fixed point regimes (bottom row), as the coupling strength to the

random (noise) input xt is gradually increased from zero to 20. The computation has been repeated for 10 different realizations (colors) of RNNs with the given control

parameters b (balance) and d (density). We find the phenomenon of import resonance in all three dynamical regimes (a,c,e) and the phenomenon of recurrence

resonance in the fixed point regime (f). No resonance is found in cases (b,d).

problem that has been met with considerable interest during
the past years (Bässler, 1986; Derrida et al., 1987; Gutfreund
et al., 1988; Langton, 1990; Wang et al., 1990, 2011; Molgedey
et al., 1992; Crisanti et al., 1993; Kaneko and Suzuki, 1994;
Solé and Miramontes, 1995; Greenfield and Lecar, 2001; Jaeger,
2001; Bertschinger and Natschläger, 2004; Rajan et al., 2010;
Toyoizumi and Abbott, 2011; Boedecker et al., 2012; Wallace
et al., 2013; Kadmon and Sompolinsky, 2015; Brunel, 2016;

Folli et al., 2018; Schuecker et al., 2018; Grigoryeva and Ortega,
2019; Grigoryeva et al., 2021). We specialize on discrete-time,
deterministic RNNs with an arctan activation function and
describe the weight statistics by the density of non-zero weights
and on the balance of excitatory and inhibitory connections, as
introduced in our previous studies (Krauss et al., 2019b,c). In
contrast to the human brain, where the vast majority of neurons
is either purely excitatory or purely inhibitory (Dale’s principle),
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FIGURE 7 | Effect of a “sinusoidal” input (b) on the activations of the RNN neurons (c–g) at five different points in the system’s dynamic phase space (a). For all cases

(c–g), the density parameter is d = 0.5, while the balance increases from –0.6 to +0.6. Only for balances sufficiently close to zero (d,e,f) the input is able to affect the

system state.

each given neuron can simultaneously have positive and negative
output weights in our simplified model system.

It turned out that our RNN model is simultaneously capable
of both information import and information storage only in
the low-density, i.e., sparse, part of the classical edge of chaos.
Remarkably, this region of the phase space corresponds to the
connectivity statistics known from the brain, in particular the
cerebral cortex (Song et al., 2005; Sporns, 2011; Miner and
Triesch, 2016). In line with previous findings, i.e., that sparsity
prevents RNNs from overfitting (Narang et al., 2017; Gerum et al.,
2020) and is optimal for information storage (Brunel, 2016), we
therefore hypothesize that cortical connectivity is optimized for
both information import and processing. In addition, it seems
plausible that there might be distinct networks in the brain that
are either specialized to import and to represent information, or
to process information and perform computations.

Furthermore, we found a completely new resonance
phenomenon which we call import resonance, showing that
the correlation or mutual information between input and the
subsequent network state depends on certain control parameters

(such as coupling strength) in a peak-like way. Resonance
phenomena are ubiquitous not only in simplified neural network
models (Ikemoto et al., 2018; Krauss et al., 2019a; Bönsel et al.,
2021), but also in biologically more realistic systems (McDonnell
and Abbott, 2009), where they show up in diverse variants
such as coherence resonance (Lindner and Schimansky-Geier,
2000; Gu et al., 2002; Lindner et al., 2002), finite size resonance
(Toral et al., 2003), bimodal resonance (Mejias and Torres, 2011;
Torres et al., 2011), heterogeneity-induced resonance (Mejias
and Longtin, 2012, 2014), or inverted stochastic resonance
(Buchin et al., 2016; Uzuntarla et al., 2017). They have been
shown to play a crucial role for neural information processing
(Moss et al., 2004; Krauss et al., 2018; Schilling et al., 2020).
In particular with respect to the auditory system, it has been
argued that resonance phenomena like stochastic resonance are
actively exploited by the brain to maintain optimal information
processing (Krauss et al., 2016, 2017, 2018; Schilling et al., 2021b).
For instance, in a theoretical study it could be demonstrated that
stochastic resonance improves speech recognition in an artificial
neural network as a model of the auditory pathway (Schilling
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FIGURE 8 | Information import and storage for longer lagtimes. We compute the input-to-state correlation C(xt, st+1) (left column) and the state-to-state correlation

C(st, st+1) (right column) for RNNs in the oscillatory (top row), chaotic (middle row) and fixed point regimes (bottom row), for increasing lagtimes between zero and 50.

The computation has been repeated for 10 different realizations (colors) of RNNs with the given control parameters b (balance) and d (density). Note that correlations

C never become lower than a noise level of about 0.034, because we compute C as an RMS average. Due to this RMS, the signature of an oscillatory state is

C(st, st+1) = 1, as found in (b). Import and storage of information, above the noise level (and at non-zero lagtimes), is observed only in the cases (c,d), even though

the RNN is deeply in the chaotic regime at b = 0,d = 0.5. In the oscillatory and fixpoint regimes (a,b,e,f), this is not possible.

et al., 2020). Very recently, we were even able to show that
stochastic resonance, induced by simulated transient hearing
loss, improves auditory sensitivity beyond the absolute threshold
of hearing (Krauss and Tziridis, 2021). The extraordinary
importance of resonance phenomena for neural information
processing indicates that the brain, or at least certain parts
of the brain, do also actively exploit other kinds of resonance

phenomena besides classical stochastic resonance. Whereas,
stochastic resonance is suited to enhance the detection of
weak signals from the environment in sensory brain systems
(Krauss et al., 2017), we speculate that parts of the brain dealing
with sensory integration and perception might exploit import
resonance, while structures dedicated to transient information
storage (short-term memory) (Ichikawa and Kaneko, 2020) and
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processing might benefit from recurrence resonance (Krauss
et al., 2019a). Similarly, the brain’s action and motor control
systems might also benefit from a hypothetical phenomenon
of export resonance, i.e., the maximization of correlation or
mutual information between a given network state and a certain,
subsequent readout layer.

Finally, our finding that both, correlation- and entropy-
based measures of information import and storage yield
almost identical phase diagrams (Figures 3a,b compare with
Figures 3c,d), is in line with previously published results, i.e.,
that mutual information between sensor input and output
can be replaced by the auto-correlation of the sensor output
in the context of stochastic resonance (SR) (Krauss et al.,
2017). However, in this study we find that the equivalence of
measures based on correlations and mutual information even
extends to the phenomena of recurrence resonance (RR) (Krauss
et al., 2019a) and import resonance (IR), thereby bridging the
conceptual gap (as described inMediano et al., 2021) between the
information-processing perspective and the dynamical systems
perspective on complex systems.

METHODS

Weight Matrices With Pre-defined
Statistics
We consider a system of Nneu neurons without biases, which are
mutually connected according to a weight matrix {wmk}, where
wmk denotes the connection strength from neuron k to neuronm.
The weight matrix is random, but controlled by three statistical
parameters, namely the “density” d of non-zero connections,
the excitatory/inhibitory “balance” b, and the “width” w of the
Gaussian distribution of weight magnitudes. The density ranges
from d = 0 (isolated neurons) to d = 1 (fully connected
network), and the balance from b = −1 (purely inhibitory
connections) to b = +1 (purely excitatory connections). The
value of b = 0 corresponds to a perfectly balanced system.

In order to construct a weight matrix with given parameters

(b, d,w), we first generate a matrixM
(magn)
mn of weight magnitudes,

by drawing the N2
neu matrix elements independently from a zero-

mean normal distribution with standard deviation w and then
taking the absolute value. Next, we generate a random binary

matrix B
(nonz)
mn ∈ {0, 1}, where the probability of a matrix element

being 1 is given by the density d, i.e., p1 = d. Next, we generate

another random binary matrix B
(sign)
mn ∈ {−1,+1}, where the

probability of a matrix element being +1 is given by p+1 =

(1 + b)/2 where b is the balance. Finally, the weight matrix is

constructed by elementwise multiplication wmn = M
(magn)
mn ·

B
(nonz)
mn · B

(sign)
mn . Note that throughout this paper, the width

parameter is set to w = 0.5.

Time Evolution of System State
The momentary state of the RNN is given by the vector s(t) =
{

sm(t)
}

, where the component sm(t) ∈ [−1,+1] is the activation
of neuron m at time t. The initial state s(t=0) is set by assigning
to the neurons statistically independent, normally distributed

random numbers with zero mean and a standard deviation of
σini = 1.

We then compute the next state vector by simultaneously
updating each neuronm according to

sm(t + 1) =
2

π
arctan

(

η xm(t)+

N
∑

k=1

wmk sk(t)

)

. (1)

Here, xm(t) are the external inputs of the RNN and η is a global
“coupling strength”. Note that the input time series xm(t) can, but
must not be different for each neuron. In one type of experiment,
we set the xm(t) to independent, normally distributed random
signals with zero mean and unit variance. In another experiment,
we set all xm(t) to the same oscillatory signal x(t) = asin ·

sin (2π t/Tsin).
After simulating the sequence of system states forNstp = 1000

time steps, we analyze the properties of the state sequence (see
below). For this evaluation, we disregard the first Ntra = 100
time steps, in which the system may still be in a transitory state
that depends strongly on the initial condition. The simulations
are repeated Nrun = 10 times for each set of control parameters
(b, d, η).

Root-Mean-Squared Pairwise Correlation
C(ut, vt+1)
Consider a vector u(t) in M dimensions and a vector v(t)
in N dimensions, both defined at discrete time steps t. The
components of the vectors are denoted as um(t) and vn(t). In
order to characterize the correlations between the two time-
dependent vectors by a single scalar quantity C(ut , vt+1), we
proceed as follows:

First, we compute for each vector component m the temporal
mean,

µum =
〈

um(t)
〉

t
(2)

and the corresponding standard deviation

σum =

√

〈

(

um(t)− µum

)2
〉

t
. (3)

Based on this, we compute the M × N pairwise (Pearson)
correlation matrix,

C(uv)
mn =

〈 [

um(t)− µum

]

·
[

vn(t+1)− µvn

] 〉

t

σum σvn
, (4)

defining C
(uv)
mn = 0 whenever σum = 0 or σvn = 0.

Finally we compute the root-mean-squared average of this
matrix,

C(ut , vt+1) = RMS
{

C(uv)
mn

}

mn
=

√

√

√

√

1

MN

M
∑

m=1

N
∑

n=1

∣

∣

∣C
(uv)
mn

∣

∣

∣

2
(5)

This measure is applied in the present paper to quantify the
correlations C(st , st+1) between subsequent RNN states, as well
as the correlations C(xt , st+1) between the momentary input and
the subsequent RNN state.
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Mean Pairwise Mutual Information
I(ut, vt+1)
In addition to the linear correlations, we consider the mutual
information between the two vectors u(t) and v(t), in order
to capture also possible non-linear dependencies. However,
since the full computation of this quantity is computationally
extremely demanding, we binarize the continuous vector
components and then consider only the pairwise mutual
information between these binarized components.

For the binarization, we first subtract the mean values from
each of the components,

um(t) −→ 1um(t) = um(t)− µum. (6)

We then map the continuous signals 1um(t) ∈ [−∞,+∞]
onto two-valued bits ûm(t) ∈ {0, 1} by defining ûm(t) = 0 if
1um(t) < 0 and ûm(t) = 1 if 1um(t) > 0. In the case of a tie,
1um(t) = 0, we set ûm(t)=0 with a probability of 1/2.

We next compute the pairwise joint probabilities P(ûm, v̂n) by
counting how often each of the four possible bit combinations
occurs during all available time steps. From that we also obtain
the marginal probabilities P(ûm) and P(v̂n).

The matrix of pairwise mutual information is then defined as

I(uv)mn =
∑

ûm=0,1

∑

v̂n=0,1

P(ûm, v̂n) log

[

P(ûm, v̂n)

P(ûm) · P(v̂n)

]

, (7)

defining all terms as zero where P(ûm) = 0 or P(v̂n) = 0.

Finally we compute the mean over all matrix elements (each
ranging between 0 and 1 bit),

I(ut , vt+1) = MEAN
{

I(uv)mn

}

mn
=

1

MN

M
∑

m=1

N
∑

n=1

I(uv)mn (8)

This measure is applied in the present paper to quantify
the mutual information I(st , st+1) between subsequent RNN
states, as well as the mutual information I(xt , st+1) between the
momentary input and the subsequent RNN state.
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