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Copper‑doped functionalized 
β‑cyclodextrin as an efficient 
green nanocatalyst for synthesis 
of 1,2,3‑triazoles in water
Mahdieh Tajbakhsh & Mohammad Reza Naimi‑Jamal*

The synthesis of 1,2,3-triazoles with immobilized Cu(I) in thiosemicarbazide-functionalized 
β-cyclodextrin (Cu@TSC-β‐CD) as a supramolecular catalyst was discussed. The catalyst was 
characterized by Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), 
X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy 
(EDS), and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) measurements. 
The catalyst showed high activity (up to 95% yields of triazole products under optimized reaction 
conditions), providing a one-pot, atom-economic, and highly regioselective green method for 
1,2,3-triazoles synthesis in an azide-alkyne cycloaddition (AAC) protocol in water. High stability and 
no appreciable leaching of Cu(I) were observed, owing to its strong binding via the coordination with 
thiosemicarbazide functionality.

In recent years, supramolecular chemistry has found special attention in various fields of chemistry. Cram, Lehn, 
and Pedersen raised their study about host–guest chemistry for the first time, and in 1987 they won the Nobel 
Prize1–5. Among the various well-known supramolecules such as Calix[n]arenes6, cucurbits7, and rotaxanes8, 
cyclodextrins and their derivatives are very interesting to study, due to their hydrophobic cavities, and ability to 
encapsulate small molecules and generate inclusion complexes, which demonstrate host–guest relationships9. 
These compounds are very useful in drug delivery due to their non-toxicity in small amounts10,11, and in remov-
ing pollution from wastewater12–14. In recent years, cyclodextrins containing silver and gold nanoparticles have 
been used to detect heavy and polluting metals mercury, lead, magnesium, and cadmium, and as well as organic 
pollutants such as nitrobenzene15–17. Composites of β-Cyclodextrins with polymers or modified β-Cyclodextrins 
with the novel anionic or cationic acrylamide polymers have been recently used in the composite industr18 or 
enhancing oil recovery19. Cyclodextrins are cyclic oligosaccharides consisting of subunits with six (α-CD), seven 
(β-CD), eight (γ-CD), or more glucose subunits joined by α-1,4 glycosidic bonds20,21. Compared to other deriva-
tives, β-cyclodextrin is the most accessible, most useful, with the lowest price, and is non-toxic one that has a 
hydrophilic exterior and a hydrophobic interior cavity22. There is much research currently being done in this 
area to show that β-CD and its functionalized derivatives are useful catalysts in synthetic organic reactions23. The 
formation of ethers and esters by the electrophilic attack at the OH-groups of cyclodextrins is the most frequently 
studied substitution reaction of cyclodextrins. The substitution of β-CD at the primary face with a ligand also 
demonstrates a similar conjoint of hydrophobicity and molecule reorganization properties as the CD. So, differ-
ent synthetic modifications of β-CD were carried out for a better host–guest interaction24–26. On the other hand, 
metal complexes of β-CD have also been used for various transformations in aqueous media27. Mono tosylation 
of β-CD was a turning point in the derivation of β-CD, as it allowed derivation or coupling β-CD at the primary 
hydroxyl group position28. Rashidi Ranjbar and his research group did the green synthesis of triazolyl quina-
zolinone derivatives using a Cu@β-CD@SiO2@SPION catalyst29. In 2018 Jin and his co-workers used modified 
β-CD as a catalyst in Suzuki–Miyaura coupling30. In a similar study, Pd@aminopropanol-functionalized β-CD 
was used to catalyze the Suzuki reaction in the Jian research group in 201831.

Perhaps the most widely studied organic reaction of all copper-catalyzed reactions is Cu(I)-catalyzed azide-
alkyne 1,3-dipolar cycloaddition (CuAAC) reaction32. The use of sodium ascorbate with copper (II) sulfate 
together, in aqueous tert-butanol, is a useful method in these reactions25. But in this type of reaction, because 
of their thermodynamic instability and initiation of undesired alkyne–alkyne coupling, the direct use of Cu(I) 
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salts was restricted and the presence of heterogeneous catalysts can further contribute to the reaction process33,34. 
In recent years, various phosphorus-based or phosphine-free ligands such as diverse N-heterocyclic carbenes, 
diimines, diamines, and amides have attracted considerable attention as competent ligands for different organic 
reactions. Ligands have been employed to protect the metal center and enhance its catalytic activity35–37. Even 
in 2013, Runo and co-workers performed this reaction in solvent-free conditions with a ball-milling system38. 
Cu2O/reduced graphene oxide/TiO2 (Cu2O/rGO/TiO2) photocatalyst under ultrasonic irradiation was also used 
to synthesize these compounds with epoxide derivatives and alkynes39. Although many ways to synthesize alkyl 
azides have been reported in various research groups, methods for making aryl azides are limited40. Kaboudin 
et al. reported the one-pot synthesis of 1,2,3-triazoles of aryl boronic acids with sodium azide in the presence 
of Cu(II)-β-CD, in water41. Rostamnia’s research group used a new ionic liquid system as a catalyst via aryl and 
alkyl halide substrates42.

1,2,3-Triazole is a well-known substructure present in different biologically active compounds with bioactivi-
ties, such as antimicrobial43, antiviral44, antitumor45, and anti-inflammatory46 (Fig. 1). The structural features 
of 1,2,3-triazole enable it to be a good candidate for optical brighteners, light stabilizers, fluorescent whiteners, 
and corrosion retarding agents47,48. They can also be made from other starting materials such as nitroolefins 
with different catalysts49.

This work aims to develop a new catalyst (Cu@TSC-β‐CD) via functionalization of β-cyclodextrin by thio-
semicarbazide and copper (I) chloride or iodide (Scheme 1) and investigate its use in performing Click reac-
tion. We tried to use water as a solvent in most of our reactions, as a safe, non-toxic, environmentally friendly, 
and inexpensive solvent. In addition, the purpose of this study was to construct a homogeneous and green 
catalyst based on a natural compound. The stability of copper (I) iodide in an aqueous medium is very low and 
it turns gradually to Cu (0) and Cu (II) via disproportionation. Nitrogen-containing ligands protect the metal 
center from oxidation and disproportionation, by immobilizing the copper ion in the structure of the modified 
β-cyclodextrin. Also, the solubility of copper (I) ion as its iodide salt in water is extremely low and it can be 
increased by being in the structure of modified β-cyclodextrin. This also improves the recovery, reusability, and 
activity of the catalyst50.
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Figure 1.   Compounds containing triazole ring with biological and pharmacological activity.
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Material and methods
Reagents and instrumentation.  Except for copper (I) iodide salt (which was freshly prepared), the rest 
of the reagents like β‐cyclodextrin (98%) and thiosemicarbazide were purchased from commercial sources 
(Sigma-Aldrich and Merck). They were used without further purification. The melting points of the prepared 
derivatives were measured by an Electrothermal 9100 apparatus and were reported without any correction. The 
FT-IR spectra were recorded in the range of 400–4000  cm−1 using the AVATAR spectrometer from Thermo 
company by using KBr pellets. Elemental analysis was provided by EDX analysis, which was recorded by TES-
CAN4992. The morphology of the catalyst was studied by SEM using MIRA2 TESCAN instrument. The TGA 
of the prepared nanocomposite was obtained by an STD Q600. The XRD measurements were recorded with the 
Rigaku Ultima IV.

General experimental procedures.  All click reactions were carried out under air or inert atmosphere 
(N2, Ar) in a single-neck, round bottom flasks fitted with a rubber septum. Thin-layer chromatography (TLC) 
was used for following the progress of the reactions. Visualization was done with a 254 nm UV light source.

Catalyst preparation.  For simplicity, the detailed preparation for the Cu@TSC-β‐CD complex is illus-
trated in Scheme 1.

Synthesis of mono‑6‑(p‑tosylsulfonyl)‑6‑deoxy‑β‑cyclodextrin (6‑OTs‑β‑CD)51.  β-Cyclodextrin (10.0  g, 
8.8 mmol) was solved in 100 ml deionized water at 0–5 °C, and 2–3 ml NaOH (8 M) was added dropwise over 
5 min until the solution was completely clear. An amount of 0.20 g (1.05 mmol) p-toluenesulfonyl chloride dis-
solved in 10 ml of acetonitrile was added dropwise over 10 min, forming a white precipitate. After stirring for 2 h 
at room temperature, the precipitate was acidified to about pH 6–7 with HCl (6 M) and kept in a refrigerator at 
0–4˚C overnight. The resulting white precipitate was obtained by filtration. The white solid product was recrys-
tallized from hot water. Finally, the product was dried for 6 h, at room temperature (Yield: 55%). IR: ν (cm−1) 
3367(OH), 1641 (Ph-SO2-), 850 (Ph-SO2-O-R).

Synthesis of mono‑6‑(hydrazinylcarbothioamide)‑6‑deoxy‑β‑cyclodextrin (6‑TSC‑β‑CD)52,53.  At this step, 0.5 g 
of 6-OTs-β-CD with 0.02 g thiosemicarbazide was dissolved in 4 ml of DMF and a few drops (0.1 ml) of Et3N as 
a base was added to the above flask. The reaction mixture was stirred for 24 h in the reflux condition (a cream-
yellow turbid solution was formed). Then, by adding 5–10  ml of acetone, a white precipitate appeared. The 
precipitate was filtered through a Buchner funnel under vacuum, washed with fresh acetone twice, and stored 
for the next step23 (Yield: 25%).

Modification of TSC‑β‐CD with copper (I) chloride and copper (I) iodide (Cu@TSC‑β‐CD).  Various methods for 
making fresh copper iodide salt have been reported54,55. By examining these methods, copper (I) iodide salt was 
freshly prepared with a slight change in the procedure in an easy, efficient, and cost-effective way56. Briefly, 0.5 g 
I2 (4 mmol) and 5 g NaI (33 mmol) were dissolved in 50 mL deionized water in a 100 mL round-bottom flask 
which was previously filled with a small amount of purified and polished Cu foil or granules. Then 2 drops of 
glacial acetic acid were added, and the reaction was carried out at 70–80 °C under vigorous stirring for 30 min. 
The change in color of the solution from brown to milky color indicated the formation of a product. The copper 
foil was completely removed, and the reaction mixture was poured into a container of deionized water and ice 
and stirred for 10 min. It was then filtered and washed with plenty of water and acetone and dried in a vacuum 
oven. This product can be stored fresh for two weeks under argon gas. Finally, the obtained ligand 6-TSC-β-CD 
was stirred with Cu (I) salt in dry toluene at reflux condition in an inert atmosphere (Ar or N2) for 24 h. The pre-
cipitate was filtered and washed with acetone, and dried at room temperature. In addition to copper (I) iodide, 
we also used copper (I) chloride salt to modification of the TSC-β-CD ligand. Comparisons of two modified 
catalysts showed that copper (I) iodide had better performance.

General procedure for azidation of arylamines.  Typically, aryl azide compounds are prepared through nucleo-
philic substitution of halides in activated arenes by the azide anion, or by azido-demetalation of aryl magnesium 
halides and aryl lithium reagents (alkali azides, trimethylsilyl azide, or p-toluenesulfonyl azide are the most 
frequent azide sources)57. We found an efficient and reliable procedure for the synthesis of aryl azides through 
the reaction of arene diazonium tosylates with sodium azide that was developed in the D. Filimonov research 
group in 201358. In brief, to a solution of p-TSA in deionized water (9 mmol in 9 mL H2O), 1 mmol Ar-NH2 
was added and stirred for 1 min. NaNO2 (9 mmol) was dissolved in 1 ml H2O and added dropwise to the reac-
tion (in 5 min) in an ice bath. The mixture of the reaction was stirred at 5–25 °C for 20 min-1 h. An Amount of 
1.6 mmol anhydrous NaN3 is added slowly to the reaction flask. Observation of immediate emission of N2 gas 
was a sign of product formation. After 15–30 min, solid products were filtered off and washed with cold water, 
and oil products were extracted with EtOAc (3 × 10 mL) and dried with Na2SO4 and the solvent was removed 
in a rotary evaporator under reduced pressure (Scheme 2). The products were used in the next step without any 
purification.

General procedure for Click reaction with organic halides or aryl azides.  NaN3 (72 mg, 1.1 mmol), 
benzyl bromide (119  mg, 1  mmol) or other aryl halides, and terminal alkyne (e.g., phenylacetylene (110  µl, 
1  mmol)) were added to a suspension of Cu(I)@TSC-β‐CD in an appropriate solvent (mostly water) under 
an atmosphere of air or inert atmosphere (see Tables 3 and 4). The reaction progress was being monitored by 
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TLC. The reaction mixture was extracted with EtOAc (3 × 10 ml). The organic phase was dried with anhydrous 
MgSO4, and the solvent was removed in vacuo to give the crude material. Most products did not require further 
purification and were only recrystallized from ethanol. The catalyst was dissolved in large amounts of water. To 
recycle the catalyst from the water, acetone was added and the resulting precipitate was filtered off and dried.

Result and discussion
Characterization of catalysts.  FT‑IR spectroscopy.  Figure  2 shows the FT-IR spectra of (a) 
β-Cyclodextrin, (b) β-CD-OTs, (c) 6-TSC-β-CD, and (d) Cu@TSC-β‐CD. In Fig.  2a, the strong absorption 
bands at 3380 cm−1 and 1640 cm−1 correspond to the stretching vibration and bending vibrations of OH groups, 
respectively. The aliphatic CH absorption bands of cyclodextrin can be seen at 2925 cm−1. The peak in the curve 
(b) at 1370 cm−1 corresponds to the characteristic bands of the S =O tosyl group. The IR-absorption bands 3349, 
and 3448 cm−1 in Fig. 2d were due to the free –OH and –NH2 groups of β-CD and thiosemicarbazide of 6-TSC-
β-CD. In Fig. 2c, the band around 1658 cm−1 corresponds to the ν(C= S) of TSC, which moved to ca. 1633 cm−1 
in Cu@TSC-β‐CD upon complexation with copper (Fig. 2d). It is noteworthy to mention that the amount of 
TSC was not enough high to change the spectra considerably. The presence of TSC and copper were approved by 
further data as EDAX and ICP-OES as follows.

EDAX and ICP analyses.  Energy Dispersive X-Ray Analysis (EDAX) was used to identify the elemental com-
position of (a) β-CD-TSC and (b) Cu@TSC-β‐CD (Fig. 3). As expected, the presence of sulfur and nitrogen 
in the β-CD-TSC and copper in the structure of the final catalyst is proved. The presence of the copper on the 
catalyst was confirmed with the bands of 8.04, 8.90 keV (K lines), and 0.92 keV (L line).
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The exact amount of copper in the catalyst was measured by ICP analysis. This showed that the copper loading 
was about 0.05 mmol per gram of the Cu@TSC-β‐CD.

Microscopic properties.  The surface morphology and the size of the Cu@TSC-β‐CD particles were studied by 
scanning electron microscopy. The SEM images of the catalyst on 3 scales are shown in Fig. 4. It is observed that 
most parts of the sample display monodispersed spherical particles. The diameter of the nanospheres is mostly 
in the range of < 100 nm.

UV–Vis analysis.  Figure 5A shows step-by-step UV–Vis spectra of all components. In A1, no absorption band 
was noted in the UV absorption spectrum of β-CD. The significant increase in Amax = 220–250 may be due to 
the interaction of the chromophoric group of tosylate in A2 with auxochromic groups in β-CD. In addition to 
the covalent bond between TSC and β-CD, different kinds of interaction forces are present, such as hydrogen 
bonding, and dipole–dipole interaction, which will make different contributions to the conformation variation, 
and immobilization of the TSC. Due to the different interaction forces, the resonant system will be affected for 
concerning bond angles and bond lengths, to decrease the overlapping of the adjacent π orbital, which will affect 
the UV–Vis absorption spectra. Since there is no UV–Vis absorption from β-CD itself, the absorption peaks 
of β-CD-TSC in A3 are assigned to the corresponding TSC molecules. Blue shifts reveal the higher electronic 
energy gaps (π–π*) of the TSC included in β-CD.

XRD analysis.  The XRD patterns of (1) β-Cyclodextrin, (2) β-CD-OTs, (3) β-CD-TSC, and (4) Cu@TSC-β‐
CD are shown in Fig. 5B. A scan efficiency of 0.1°·S−1 was applied to record the powder patterns in the range 
of 3° ≤ 2θ ≤ 80°. The XRD pattern of β-CD showed its characteristic peaks with crystalline nature. Here is no 
obvious change in the structure of β-Cyclodextrin after functionalization with TSC. The diffraction peaks at 
2θ = 35.76°, 39.60° in @Cu β-CD-TSC could be indexed to the (111), and (200) planes of Cu, which is very close 
to the values in JCPDS– International Center for Diffraction Data.

TGA analysis.  The thermogravimetric analysis (TGA) curves for (1) β-CD-TSC, and (2) Cu@TSC-β‐CD are 
shown in Fig. 5C. Weight loss at temperatures less than 200 °C can be attributed to the elimination of adsorbed 
water and other solvents. When heated to 600 °C, the weight loss can be attributed to the decomposition of the 
organic moiety. In the case of β-CD-TSC, the whole structure is decomposed up to 500 °C. In β-CD-TSC@Cu, a 
weight loss of 77.78% occurred at temperatures of 200–350 °C.

Application of the catalyst in the click reaction.  The catalytic activity of Cu@TSC-β‐CD was inves-
tigated for the synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazole as a model reaction at ambient temperature 
(Table 1, Entry 1). In the absence of any catalyst, the reaction needs temperatures of 100 °C and higher, and a 
long reaction time. In the presence of catalytic amounts of triethylamine (Et3N) under different solvent condi-

Figure 2.   FT-IR spectra of (a) β-Cyclodextrin, (b) β-CD-OTs, (c) β-CD-TSC, and (d) Cu@TSC-β‐CD.
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tions such as dichloromethane (DCM), toluene, ethanol, methanol, and water, there was no sign of the forma-
tion of the corresponding product at room temperature (Table 1, Entry 2). The addition of copper salts CuI or 
Cu(OAc)2 on β-CD did not result in good yields (Table 1, Entries 4, 5). The model reaction proceeded smoothly 
using Cu@TSC-β‐CD (Table 1, Entries 6–11). The catalyst was prepared using two copper salts (CuCl and CuI) 
and the catalytic activity of both of them was investigated. Because copper iodide salt was freshly prepared, its 
activity with the same reaction conditions as with copper chloride was higher (Table 1, entry 7,8). Therefore, it 
was possible to use this catalyst without sodium ascorbate in an inert gas atmosphere (N2 or Ar). After testing 
several conditions, it was found that 5 mol % of the catalyst Cu@TSC-β‐CD in water as solvent was sufficient for 
the efficient synthesis of triazole compounds (Table 1, entry 7). By increasing the amount of catalyst concentra-
tion to 10 mol%, no further improvement in the product yield was recorded, but decreasing of its concentration 
to less than 5 mol% resulted in a significant reduction in product yield (Table 1, entries 6 and 9). The reaction was 
then performed with the solvent’s ethanol, ethanol/water, acetonitrile, and PEG/water (Table 1, entries 8–11). No 
better result than in pure water was observed.

The obtained optimized conditions were applied for the reaction of different alkynes with various benzyl 
halides and sodium azide as summarized in Tables 2 and 4. All the products were produced with very good to 
excellent yields and selectivity. The use of 2-bromoacetophenone derivatives slightly reduced the product yields 

Figure 3.   EDAX analysis of (a) β-CD-TSC and (b) Cu@TSC-β‐CD.
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Figure 4.   SEM images of β-CD-TSC@Cu.

Figure 5.   (A): UV–Vis spectrum, (B): XRD patterns, (C): TGA curves recorded in the air at a heating rate of 
10 °C min−1.
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Table 1.   The optimization results obtained for the reaction of benzyl bromide with phenylacetylene and 
sodium azide as a model reaction. a Solvent (2 mL). b Under N2 or Ar atmosphere. c With by-product. Bold 
indicates the best result of our experiments.

 

Entry Catalyst Solventa Temp. (°C) Time (h) Yield (%)

1 – t-BuOH/H2O 100 48 75

2 Et3N DCM, Toluene, EtOH, MeOH, H2O r.t 24 0

3 – H2O 50 24 0

4b, c CuI/ β-CD, 20 mol% H2O 70 8 80

5 Cu(OAc)2/ β-CD 20 mol% H2O 70 24 0

6 CuI@TSC-β‐CD 2 mol% H2O 70 8 78

7 CuI@TSC-β‐CD 5 mol% H2O r.t 0.5 95

8 CuCl@TSC-β‐CD 5 mol% H2O r.t 0.5 89

9 CuI@TSC-β‐CD 5 mol% EtOH 70 6 85

10 CuI@TSC-β‐CD 10 mol% EtOH-H2O (1:2) r.t 1 85

11 CuI@TSC-β‐CD 5 mol% PEG-H2O (1:1) 80 5 90

12 CuI@TSC-β‐CD 5 mol% CH3CN r.t 8 30

Table 2.   Click reaction with organic halides.
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and increased the reaction time (Tables 2, 3f–i). The presence of electron-withdrawing groups on the benzene 
ring of 2-bromoacetophenone derivatives increased the product yield (Tables 2, 3f). The products made with 
propargyl alcohol instead of phenylacetylene had less yield (Tables 2, 3c,g).

Dipolar cycloaddition reactions of aryl azides with alkynes in the presence of copper catalysts and copper 
salts may cause the formation of 1,4-disubstituted and 1,5-disubstituted 1,2,3-triazoles products. We decided to 

Table 3.   Azidation of arylamines.

Table 4.   Click reaction with aryl azides.
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study also this reaction in the presence of our catalyst. The derivatives 5a-5n were first prepared from primary 
aromatic amines in high yield (Table 3). No side-products were detected (e.g., phenols and triazenes), which are 
often formed in the reactions with diazonium salts. So, by a one-pot reaction of p-TsOH with sodium nitrite in 
water, followed by the reaction with sodium azide without isolation of the intermediate, a variety of aromatic 
amines can be directly converted into the corresponding aromatic azides (Table 3, 5g, 5h, 5i, 5j).

The reaction between synthesized aryl azides and alkyne described in Table 4 can afford 1,2,3-triazoles in high 
yields with excellent regioselectivity. In derivatives with an electron-withdrawing group (EWG) on the benzene 
ring, the product yields were higher than in those with electron-donating groups (7h, 7g). The amount of the 
catalyst used to prepare the products 7a-h was more than 3a-i products. The final products obtained from 5 h, 
5i, 5j azides had very low yields.

The plausible reaction pathway is as in Scheme 2. The Cu(I) species reacts with the alkyne moiety to give a 
copper acetylide. The subsequent 1,3-dipolar cyclization of the resulting Cu acetylide with an organic azide and 
following protonation provided the formation of the triazole and the regeneration of the Cu(I) catalyst. It seems 
that the hydrophobic interior cavity of β-cyclodextrin provides a suitable place for the organic ingredients, as 
well as copper ions, and they can interact more effectively with each other.

The recyclability of the catalyst.  The recyclability of the β-CD-TSC@Cu as a catalyst was tested sev-
eral times (Fig. 6) in the Click reaction of benzyl azide and phenylacetylene. After each run, the product was 
extracted from aqueous solution with ethyl acetate. After addition of acetone, the catalyst was precipitated from 
the solution, filtered out, and dried, and reused under the same condition. The ICP-OES analysis of the filtrate 
did not detect a significant amount for the leaching of copper species at the 3rd stage of the recyclability study 
of the catalyst (≤ 2 ppm). The results indicated that the recovered catalyst was still enough active without a sig-
nificant loss of its performance. At the end of the seventh cycle, a yield of 82% of the product has been achieved.

Comparison with other catalysts.  The comparison of some previously reported catalysts in the synthesis 
of cyclic triazole compounds showed that the catalyst synthesized by our group has the necessary efficiency for 
this reaction (Table 5).

Table 5.   Comparison of catalytic activity of the present catalyst with some other reported methods in the click 
reaction of phenylacetylene, benzyl bromide, and sodium azide.

No Catalyst Reaction conditions Time(h) Yield (%) References

1 Cu(I)-pABA H2O, Et3N, RT 3 98 59

2 Cu/Al2O3 Ball-milling 1 96 38

3 NiFe2O4–glutamate–Cu H2O, RT 1.5 85 60

4 Cu/MWCNT-GAA@Fe3O4 H2O, 50 °C 1 98 61

5 Cu@SBA-15-PTAA​ H2O, 50 °C 12 92 62

6 Ag–NHC@SiO2 H2O, Quinine, 60 °C 6 89 63

7 CuNPs/NC Glycerol, RT 1.5 99 64

8 CuSO4·5H2O H2O/t-BuOH (2:1), RT, NaAsc 8 91 32

9 Fe3O4@SiO2–ABT/ Cu(OAc)2 PEG/H2O(9:1) 0.25 95 65

10 β-CD-TSC@Cu(I) H2O, RT-70 °C 0.5 95 Present study

Figure 6.   Recycling of the catalyst, in the click synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazole.



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4948  | https://doi.org/10.1038/s41598-022-08868-9

www.nature.com/scientificreports/

Conclusion
In summary, we designed and synthesized a water-soluble, homogeneous, and stable new catalyst consisting 
of copper (I) ions supported on functionalized β-cyclodextrin as a supramolecular substrate. The catalyst was 
fully characterized by FT-IR, SEM, TGA, EDAX, ICP-OES, and XRD analyses. The effectiveness and its applica-
tion were tested in the synthesis of 1,4-disubstituted-1,2,3-triazoles through a multicomponent alkyne–azide 
1,3-dipolar cycloaddition. Moreover, this catalyst was successfully used in the synthesis of a wide range of 
triazoles from different terminal alkynes and benzyl chlorides and bromides, as well as aryl azides with high to 
excellent yields (up to 98%). The reactions proceeded well in an environmentally benign and mild conditions. 
The catalyst can be easily recovered by simple anti-solvent precipitation, and filtration, and reused at least 7 times 
without significant loss in its activity.
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